
DISS. ETH NO. ………………
(This number is assigned at registration for the doctoral examination.

Until it is known the field should be left empty.)

TITLE OF THE DOCTORAL THESIS
(WARNING: The title of the doctoral thesis can no longer be changed after it

has been approved by the Department Conference.)

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES

(Dr. sc. ETH Zurich)

presented by

FIRST NAME(S) & FAMILY NAME

abbreviated academic title, name of university
(according to Diploma or Master degree certificate)

born on dd.mm.yyyy

accepted on the recommendation of

name examiner (doctoral thesis supervisor)
name(s) co-examiner(s)

20XX
(Year of acceptance of the doctoral thesis by the Department Conference)

 TOMMASO D’ORSI

06.04.1993

 Prof. Dr. David Steurer
 Prof. Dr. Luca Trevisan

 Dr. Vincent Cohen-Addad

 Doctorate, ETH Zürich

 INFORMATION-COMPUTATION GAPS
IN

ROBUST STATISTICS

 2023

 TOMMASO D’ORSI

A Bruno e Liliana.

Information-computation gaps in robust statistics

Tommaso d’Orsi

The success of modern machine learning algorithms in extracting global information from
data crucially relies on strong distributional assumptions on the input datasets. However,
real-world datasets may contain outliers, fake or malicious data, or measurement errors

that are known to substantially degrade the performance of many of these algorithms. The
design of robust algorithms –that succeed even when the input dataset satisfies the

distributional assumptions only approximately– has thus become a fundamental topic
across statistics, mathematics and computer science.

In this thesis we resolve several open questions central to this broad research agenda. Our
focus is two-fold: on one side we establish statistical and computational tractability of

adversarial models; on the other, we introduce novel, efficient and robust algorithms that
provide provably optimal guarantees.

With respect to the first goal, we unveil surprising information-computation gaps that
show how the computational landscape of semi-random problems may differ from their
average-case or worst-case counterparts. For example in the context of sparse principal

component analysis or constraint satisfaction problems.
With respect to the second goal, we design new algorithms that achieve provably optimal
guarantees in these general semi-random models. When there is a computational price to

pay for robustness, our efficient algorithms match the new computational limits we
established. When there is no price for robustness – such as for stochastic block models–
our algorithms match the guarantees of their fragile counterparts and, in some cases, even

improve over them.
By-products of our results are novel techniques to speed-up robust algorithms, and new

state-of-the-art algorithms satisfying other important, related, requirements, such as
differential privacy.

Acknowledgments

First and foremost I want to acknowledge my advisor David Steurer. David is the person
who most influenced my view about math and computer science. I started my PhD with a
fervid desire to explore the concept of computation but without any of the experience and
mathematical skills required to do so. Armed with patience, generosity and his unique

positive pragmatism, David shared with me his knowledge and shaped me into a
computer scientist. Among many invaluable lessons, David also taught me what truly

working in a team means. I cannot thank him enough for that.
One of the most important thing I did in my PhD was writing an email to Vincent
Cohen-Addad. Starting from this email, Vincent shared with me many fascinating

questions in computer science (a few we have solved, some we will solve) and has been one
of my closest collaborators ever since. He also introduced me to Google and has been my
host there for an incredible, eight months long, internship. From our very first interaction,
Vincent went above and beyond his role, always seeking the best for me and supporting

me towards my goals.
Surprisingly enough, another crucial thing I did in my PhD was reaching out to Luca

Trevisan. Early on in my education, it was through his "In Theory" blog that I first learned
about many captivating phenomena in mathematics, and science in general. With a

background comparable to mine, Luca quickly became one of my scientific heroes. From
our first meeting, Luca has been an incredible source of ideas, concerning both computer

science and life as a whole. I am beyond grateful for his support and advice.1
Next, I want to thank Pravesh Kothari. Pravesh has been a recurring character in my PhD

since the very beginning. He has always been available to discuss any idea, doubt or
concern I had. Thanks to his contagious optimism and deep understanding of computer

science, Pravesh has been a role model to me.
I want also to thank Alessandro Epasto, Warren Schudy, Peilin Zhong and the whole
Omega team. I had a fantastic time at Google, which provided me with a completely

different perspective and made me a better researcher and individual. Ale, Warren and
Peilin spent many hours working with me. Our joint projects have been both fun and

instructive. I am very grateful for that.
I have had the great luck to work with an outstanding set of collaborators, without whom

this thesis would not exist. Thanks to (excluding people already mentioned): Hongjie
Chen, Davin Choo, Jingqiu Ding, Yiding Hua, Jacob Imola, Chih-Hung Liu, Rajai Nasser,
Gleb Novikov and Stefan Tiegel. Many of you became close friends, I am very grateful for

1We can consider this a counterexample to the saying "Never meet your heroes".

that. Gleb and I have been colleagues for our whole PhD. We have a lot to show for the
countless hours spent working together: several joint publications and a deep and sincere
friendship. Thanks to Jingqiu Ding and Rajai Nasser for the herculean effort behind our

robust algorithm for stochastic block models. That 200 pages proof is the main reason why
this thesis is so long. Thanks also to Chih-Hung for hosting me in Taiwan for what has

been one of the best journeys of my life.
I am grateful to Afonso Bandeira, for being my second advisor and for keeping his door
always open for me. Thanks also to Claudia Günthart and Bernadette Gianesi for being the

best administrative team. Things always worked out for me because of you!
During my PhD years I have been lucky to meet some incredible people. Thanks to my
friends Andrea, Daniele, Gustavo and Julia. Thanks also to my Rötelvillains: Carl (my

Cicero in Zürich), Francesco, Isabel, Kathrin, Matias, Merel, Sarka, Sophie, Tina (adopted)
and Ulrike. You are family to me and I cannot be grateful enough for that.

Next, I would like to thank my lifelong friends Big Mike, Federico, Gigi, Irene, Linus2 and
Mattew, for keeping me grounded and always sticking around no matter what. Thanks

also to Gianni, Marco, Massimo, Luciana and Vittorina, for their deep affection and
support. Via del Ricordo will always be home to me.

Finally, I would also like to thank my family, to whom I owe it all. In particular, thanks to
my brother Lorenzo, for being my role model. To my mother Laura, for her unconditional
love and for always reminding me what life is about. To my father Fulvio, for instilling in

me the values of honesty and hard work.
Last, thanks to Chiara for all that words can say, and more.

2and Linus and Linus and Linus and Linus.

Contents

1 Introduction 1
1.1 Themes . 3

1.1.1 The price of robustness . 3
1.1.2 Certification algorithms . 6
1.1.3 Sharp phase transitions in the presence of adversarial corruptions . . 8
1.1.4 Constraint satisfaction problems with adversarial signs 13
1.1.5 From robustness to privacy . 15
1.1.6 Fast and robust algorithms . 19

1.2 Main contributions and road-map of the thesis 24

2 Preliminaries 26
2.1 General definitions and notation . 26
2.2 Sum-of-squares . 28

2.2.1 Pseudo-distributions . 28
2.2.2 Sum-of-squares proofs . 29
2.2.3 Sum-of-squares toolkit . 31

I The price of robustness 33

3 Sparse PCA with adversarial perturbations 34
3.1 Techniques . 41

3.1.1 Robustness from sparse eigenvalue certificates 41
3.1.2 Concrete lower bounds for robust algorithms 45

3.2 Robustness of the basic SDP and certified upper bounds 47
3.2.1 Basic certificates for sparse quadratic forms 48
3.2.2 The basic SDP algorithm . 49

3.3 Robustness of SoS and stronger certified upper bounds 53
3.3.1 SoS certificates for sparse eigenvalues via certifiable subgaussianity . 54
3.3.2 SoS certificates for sparse eigenvalues via limited brute force 56
3.3.3 SoS algorithms . 59

3.4 Unconditional lower bound in the presence of adversarial perturbations . . 62

3.4.1 Low-degree likelihood ratio . 62
3.4.2 Almost Gaussian vector in random subspace 67

4 Stochastic block models with edge corruptions 76
4.1 Techniques . 77
4.2 Preliminaries . 86
4.3 Robust recovery meta-algorithm . 89

4.3.1 Lower bound for the optimum . 93
4.3.2 Correlation of nearly-optimal solutions 96

4.4 Robust recovery for stochastic block model 98
4.4.1 Applying the meta-algorithm to the stochastic block model 99
4.4.2 Boosting the probability of success . 106

4.5 Trace bounds for stochastic block models . 116
4.5.1 Preliminary discussion . 118
4.5.2 Lower bound for non-centered Schatten norm 123
4.5.3 Upper bound on the centered Schatten norm 137
4.5.4 Concentration of block self-avoiding walks 142

5 Stochastic block models with node corruptions 157
5.1 Techniques . 158
5.2 Preliminaries . 161
5.3 Reaching the KS threshold for diverging degree 163
5.4 Reaching KS threshold for constant degree 167

5.4.1 Degree-pruning based algorithm . 167
5.5 Lower bound on the corrupted fraction . 171
5.6 Robust synchronization . 172

6 Random CSPs with adversarial signs 176
6.1 Techniques . 179
6.2 Preliminaries . 184

6.2.1 CSPs, k-XOR and strong refutations 185
6.3 A generalized Ihara-Bass formula . 187

6.3.1 Norm bounds via the Ihara-Bass formula 190
6.4 Warm-up: spectrum of binary matrices with dependencies 192

6.4.1 Powers of non-backtracking matrices 193
6.4.2 Expectation of block non-backtracking walks 195
6.4.3 Bound on the spectrum of non-backtracking matrices 197

6.5 Strong refutations for random k-XOR . 198
6.5.1 Bounding the norm of A’ . 201

6.6 Strong refutations for random CSPs . 213
6.7 Algorithm for k-XOR with adversarial signs 215

6.7.1 Rounding with low local correlation 218
6.7.2 Driving down global correlation . 219
6.7.3 From local correlation to global correlation 220

6.8 Algorithm for CSPs with adversarial signs patterns 222

II Privacy from robustness 227

7 Private algorithms for stochastic block models and mixture models 228
7.1 Techniques . 232
7.2 Preliminaries . 239

7.2.1 Differential privacy . 240
7.2.2 Explictly bounded distributions . 243

7.3 Stability of strongly-convex optimization . 244
7.4 Private recovery for stochastic block models 245

7.4.1 Private weak recovery for stochastic block models 245
7.4.2 Private exact recovery for stochastic block models 248
7.4.3 Inefficient recovery using the exponential mechanism 253
7.4.4 Lower bound on the parameters for private recovery 257

7.5 Private algorithms for learning mixtures of spherical Gaussians 261
7.5.1 Privacy analysis . 264
7.5.2 Utility analysis . 271

III Speeding up robust algorithms 276

8 Fast and robust algorithm for graph partitioning problems 277
8.1 Techniques . 279
8.2 Preliminaries . 281

8.2.1 The matrix multiplicative weights method for SDPs 282
8.3 A fast algorithm for semi-random balanced cut 286

8.3.1 The algorithm . 288
8.4 The heavy vertices removal oracle . 292

8.4.1 The fast heavy vertices removal procedure 292
8.4.2 The oracle . 297

8.5 The semi-random hierarchical stochastic model 300
8.5.1 Related notions . 300
8.5.2 The algorithm for the semi-random hierarchical stochastic model . . 302

9 Practical algorithms robust against adversarial distributions 304
9.1 The algorithm . 305

9.1.1 Recovery of the random vector u . 308

9.1.2 Recovery of the sparse direction v . 315
9.2 Experimental results . 318

9.2.1 Experimental Setup . 318

Bibliography 320

IV Appendices 338

A Deferred proofs and addendum to Chapter 3 339
A.1 Thresholding algorithms are fragile . 339

A.1.1 SVD with thresholding is fragile . 339
A.1.2 Diagonal thresholding is fragile . 340
A.1.3 Covariance thresholding is fragile . 341

A.2 Existence of the adversarial distribution of Model 3.41 348
A.3 Additional tools . 351

B Deferred proofs and addendum to Chapter 4 358
B.1 Bounds for the non-centered matrix . 359

B.1.1 Useful notation . 359
B.1.2 An upper bound for every multigraph 360
B.1.3 Bounds for nice multigraphs . 373
B.1.4 Bounds for products of block self-avoiding-walks 388

B.2 Bounds for the centered matrix . 395
B.2.1 An upper bound for every block self-avoiding-walk 396

B.3 Proofs of technical lemmas for the trace bounds 404
B.3.1 Proofs of technical lemmas for the non-centered matrix 404
B.3.2 Proofs of technical lemmas for the centered matrix 453

B.4 Tools for block self-avoiding walks . 469
B.4.1 Splitting the expectation of block self-avoiding walks 469
B.4.2 Counting block self-avoiding walks 473

B.5 Additional tools . 496

C Deferred proofs and addendum to Chapter 5 498
C.1 Push-out effect of basic SDP . 498
C.2 Spectral bound of degree-pruned submatrix 498
C.3 Deferred proofs . 500

D Deferred proof and addendum to Chapter 6 504
D.1 Deferred proofs . 504
D.2 Additional tools . 508

E Deferred proofs and addendum to Chapter 7 509
E.1 Deferred proofs for stochastic block models 509
E.2 Deferred proofs for clustering mixtures of Gaussians 511

E.2.1 Privatizing input using the Gaussian Mechanism 515
E.3 Additional tools . 517

Chapter 1

Introduction

Estimating information from structured data is a central theme in statistics and has found
applications in an incredibly wide array of disciplines. In an estimation problem, the
starting assumption is the existence of a –known a priori– family of probability distributions
P := {êG | G 2 ⌦} over some spaceY, each indexed by some parameter G 2 ⌦. One then
receives a collection of observations1 Y = (y1, . . . , y=) drawn from an unknown probability
distribution êG 2 P. The goal is to invert this random process and (approximately) recover
the parameter G.

The last two decades have seen tremendous advancements in the understanding
of estimation problems, from both a statistical and a computational perspective. These
advancements have resulted in novel algorithms (and complementary statistical and
computational lower bounds) that can efficiently infer global information from the large,
high dimensional datasets used by modern applications (see [Wai19] and references
therein). The Achilles heel of this framework is its over-reliance on the model assumptions.
For example, consider the basic task of computing the mean of a 3-dimensional spherical
Gaussian distribution given a sequence of = independent observations. Here the empirical
mean estimator fares well (in fact, it achieves the essentially optimal ✓2 error convergence
$(

p
3/=) with high probability). However, the existence of even a single outlier can lead

the algorithm to output a vector completely unrelated to the true mean.
As the assumptions of classical models are too unrealistic to capture the multiple facets

of real world datasets, the design of algorithms that are less susceptible to unpredictable,
possibly malicious, perturbations have become a pressing challenge. A convenient ab-
straction to capture these robustness requirements is that of adversarial perturbations. In
an estimation problem with adversarial perturbations, the collection of observations Y is
secretely replaced by an adversary –assumed to have unbounded computational power–
with a modified version .0. The goal is then to invert this semi-random process and recover
the parameter G.

The quantity and quality of changes that an adversary can introduce in .
0 result

1In this introductory chapter, we use boldface to denote random variables.

1

in distinct models with different levels of generality and diverse properties. While the
high level goal is always that of capturing natural (real world) instances, often multiple
reasonable definitions of adversaries exist for the same problem. Hence, finding the right
constraint to impose on .0 is often a delicate, problem dependent process. In our example
above, a natural adversary would be one that is allowed to replace a small, yet constant,
fraction of the observations with arbitrary points.

In recent years, a flurry of works have produced robust algorithms for many estimation
problems (see [DK19, LM22] and references therein). Despite these advancements, the
statistical and computational landscapes of robust estimation remain largely unknown.
Improving our understanding of the statistical and computation trade-offs of estimation
problems in the presence of adversarial corruptions is the goal of this thesis.

A number of other reasons makes the study of robust algorithms compelling. There is a
rich theory about the computational complexity of worst-case problems [AB09] and their
(in)approximability [Kho10, FLM20]. A similar understanding is also being developed in
the context of average-case complexity [Hop18, Wai19, RSS18], particularly in the settings
of high dimensional estimation. To perform well in the worst-case settings, an algorithm
needs to be able to perform well on all instances. Conversely, in the average case, the
algorithm is only required to perform well on typical instances drawn from the given
distribution (estimation problems are average-case problems2). The pictures developed
in these two settings provide a stark contrast: problems that are computationally hard in
the worst-case, can often be approximately solved in the average case in polynomial time.
Semi-random adversarial models provide a natural way to interpolate between worst-case
and average-case and thus, allow one to study how the computational landscape of these
problems is affected as one consider larger and larger families of inputs.

Another motivation is that of collecting evidence of a qualitative separation between
different computational models. Despite this concept being somewhat difficult to formalize,
the belief that certain algorithmic techniques are "robust" –in contrast to others which are
"fragile"– has driven many of the recent advancements in robust statistics [dKNS20]. To
understand how semi-random models can be used in these settings, picture3 two students
�, ⌫ which are both able to optimally solve some test). One way to gather evidence that
the former is more proficient in the subject than the latter, consists of providing them
with a harder test)0 that only student � is able to solve. By observing this same outcome
for more and more tests, one begins to wonder whether indeed the first student is more

2In this thesis, the distinction between estimation and problems and average-case problems is generally
only conceptual. In an average case problem there is not a parameter G to recover but only a function to
optimize. The underlying statistical and computational phenomena, as well the algorithmic techniques, are
essentially the same. In particular, while for clarity of the exposition we focus on estimation problems, as we
will see in Section 1.1.4, our ideas can be naturally applied to average-case problems without the planted
structure.

3This analogy is inspired by oracle separations in computational complexity theory.

2

knowledgeable in the subject than the second.

1.1 Themes

1.1.1 The price of robustness
Perhaps the most fascinating phenomenon in high dimensional statistics is the existence
of information-computation gaps. In many estimation problems, for a given objective and
a given set of parameters C, there is a value �stat(C) such that, when the signal-to-noise
ratio4 satisfies ��� > �stat(C), it is information-theoretically possible to solve the problem,
and below which the objective is unreachable. That is, there is a statistical phase transition at
the value �stat(C).

To make things more concrete, let us introduce our first running example: the single
spiked covariance model for sparse PCA. Here we are given a collection of 3-dimensional
vectors Y = (y1, . . . , y=)> drawn from the distribution #(0, Id3 + �GGT), for an unknown
:-sparse unit vector G 2 í3 and a signal strength � 2 í. The goal is to compute an estimate
x̂ for G with correlation5 bounded away from zero so that kx̂k = 1 and hx̂, Gi2 > ⌦(1).6
(Here, we square the inner product because G is identifiable only up to sign.) We can
achieve optimal statistical guarantees for sparse PCA in the spiked covariance model by
the following kind of exhaustive search: among all :-by-: principal submatrices of the
empirical covariance matrix of the vectors {y8}82[=], find one with maximum eigenvalue and
output a corresponding eigenvector [AW08, BR13]. In particular, this procedure achieves
constant correlation with high probability as long as min{�, �2} · = > ⌦̃(:) . However, the
running-time is exponential in :.

A similar phenomenon occurs when we restrict ourselves to the set of estimators
computable in polynomial time.7 In this case we indicate the threshold by �comp and the
objective is then achievable for ��� > �comp(C). When �comp(C) > �stat(C) the computa-
tional phase transition does not match the statistical phase transition and the problem
exhibits an information-computation gap as, for �stat(C) < ��� < �comp(C), solving the
objective requires a super-polynomial resources budget.

For a wide range of parameters, sparse principal component analysis indeed exhibits

4The signal-to-noise ratio is a (possibly complicated) function of the signal strength and (if relevant) the
number of observations.

5Instead of asking for the correlation to be bounded away from 0, we could also ask for it to approach
1. Alternatively, we could ask to recover the support of G. At the granularity of our discussion here, these
measures of success are equivalent in most regards.

6To simplify our discussion, we hide absolute constant multiplicative factors using the standard notations
. , &, $(·), ⌦(·) and ⇥(·). Similarly, we hide multiplicative factors logarithmic in the parameters at hand
using the notation $̃(·), ⌦̃(·).

7Note that one could also restrict the analysis to subexponential algorithm or, in general, to any specific
computational budget.

3

such a information-computation gap. The model has a sharp transition in the top eigenvalue
for = · �2 > ⌦(3) (called BPP transition [BBAP05] in reference to the authors’ names). In this
regime, called strong-signal regime, the following spectral algorithm matches the optimal
statistical guarantees of exhaustive search: compute the top right singular vector of Y (the
matrix with rows y1, . . . , y=) and restrict it to the : largest entries [KNV13]. We refer to this
algorithm as SVD with thresholding. In other words, there is no information-computation
gap in this strong signal regime.

In contrast, whenever �2 · = 6 $(3), a principal component analysis of
{y8}82[=] cannot be used to recover G. The best known polynomial-time algorithms
[JL09, DM14, dKNS20, DKWB23, Cd21] for this weak-signal regime succeed with high
probability whenever �2 · = > ⌦(:2log 3

:
2), almost quadratically worse than exhaustive

search! A large and diverse body of work provides formal evidence of this trade-off
[AW08, CMW13, BR13, KNV13, HKP+17, DKWB23, PR22, Cd21], in the form of reductions
from conjecturally hard problems, such as planted clique [BR13], or concrete lower bounds
against restricted classes of algorithms [HKP+17, DKWB23, PR22, Cd21].

For robust estimation problems, the presence of adversarial perturbations adds another
dimension to this picture and generates a three-way trade-off between the desired accuracy
objective, the signal-to-noise ratio and the strength of the adversarial model. For a given
objective, a set of parameters C, and a constrained family of adversarial corruptions E
the problem is information-theoretically solvable for ��� > �stat(C , E) and efficiently so
for ��� > �comp(C , E). Depending on E, these thresholds may differ from their canonical
counterparts. When �comp(C , E) > �comp(C), we call the difference �comp(C , E)� �comp(C)
the computational price for robustness against E. Similarly, we refer to �stat(C , E) � �stat(C) as
the statistical price for robustness.

In the spiked covariance model, the introduction of adversarial perturbations, where
an adversary may change each entry of the input vectors y1, . . . , y= by a small amount,
drastically changes the algorithmic landscape. In the strong signal regime � · = > ⌦(3), it is
possible to adversarially perturb the vectors y1, . . . , y= by at most $̃(1/

p
=) per entry such

that SVD with thresholding achieves only vanishing correlation with the true vector G. An
adversarial perturbation with this effect is very natural. It can be viewed as a whitening
transformation and corresponds to a natural generative process for y1, . . . , y= , where the
vectors are chosen randomly from an =-dimensional subspace containing an approximately
sparse vector (see Section 3.4). The weak-signal regime offers a remarkably different picture.
Exhaustive search and certain polynomial time algorithms continue to provide essentially
the same guarantees, both in terms of error and sample complexity, as in the vanilla single-
spike model. In particular, these algorithms can afford entry-wise perturbations bounded
by $(1/=1/4), substantially larger than the other aforementioned algorithms. This value is
significant because with perturbations larger than $̃(1/=1/4) an adversary could completely
remove the signal from Y, making the problem information theoretically impossible. In other
words, if E is the family of adversarial matrix perturbations ⇢ satisfying k⇢k1 6 $(1/=1/4),

4

then �stat(C) ⇡ �stat(C , E) for all configurations C. Among polynomial time algorithms,
the above discussion also suggests that in the weak-signal regime �comp(C , E) ⇡ �comp(C).
The picture further shows that no known efficient algorithm optimally solving the strong
signal regime in the vanilla settings is robust. Surprisingly, it turns out that this is not a
coincidence, but an inherent property of the problem: there is a large computational price
to pay for robustness.

Theorem 1.1 (Evidence of a computational price of robustness, informal). Let C > 0 be a
constant and suppose that

3 6 =0.99C�1

� · = 6 $
⇣
: · C · (3/:)1/C

⌘
�2 · =1.1 6 :2

.

Then, there exists a distribution ⇠ over = ⇥ 3 matrices Y of the form Y =
p
�ux) + W + E where

kEk1 6 $̃
�
1/
p
=

�
, with the following properties:

• ⇠ is indistinguishable from the Gaussian distribution#(0, 1)3⇥= with respect to all multilinear
polynomials of degree at most =0.001

• the jointly-distributed random variables W, u, x are independent,

• the marginal distribution of x is supported on unit vectors with entries in
n
�1/
p
: , 0, 1/

p
:

o
,

• the marginal distribution of u is uniform over {�1, 1}= ,

• the marginal distribution of W is #(0, 1)=⇥3.

The third inequality ensures we are in a regime where known polynomial-time algo-
rithms for the weak-signal regime do not work. The other two still admit a wide range of
parameters for which exhaustive search would successfully recover the sparse direction.
Moreover, for E = 0, SVD with thresholding would also work whenever � > ⌦(

p
3/=) (for

example, consider the mildly sparse settings : = 3
0.6, 31/5 = =, C = 10). To fully understand

the significance of this result, there a number of underlying questions that needs to be
addressed.

First, why are we considering multilinear polynomials? Deep results in recent years have
shown that essentially all8 state-of-the-art polynomial time algorithms in high dimension
estimation (without adversarial corruptions) are captured by the computational model
of (multilinear) polynomials of logarithmic degree [HKP+17, Hop18, KWB22]. While
formalizing this claim into a theorem remains a crucial open question in computer science,

8Certain algorithms which heavily rely on the algebraic structure of the input are not captured by this
computational model [ZSWB22]. By their very nature these algorithms are extremely brittle and thus can be
easily fooled by adversarial corruptions.

5

one can use low-degree polynomials as a proxy for the class of all efficiently computable
algorithms.

Second, what does indistinguishable mean? Here the precise notion involves both
classical decision theory [NP33, LCY90] and results on low-degree polynomials [Hop18].
While we thoroughly formalize this in Section 3.4, at the granularity of this discussion
we say two distributions are indistinguishable by a family of polynomials if, every such
polynomial takes roughly the same values under both distributions, with large probability.

From this perspective, in the strong signal regime, whenever 3 is significantly smaller
than =C , Theorem 1.1 states that even tiny, but clever, adversarial perturbations can modify
the instance so that only algorithms running in time exponential in =⌦(1) (among those
captured by the restricted computational model of polynomials) can distinguish Y from a
typical = ⇥ 3 Gaussian matrix with no hidden structure!

1.1.2 Certification algorithms
Beyond the striking computational price of robustness just observed, there is a second
fascinating phenomenon taking place in the context of sparse PCA. Namely that all known
algorithms based on spectral methods [JL09, DM14, KNV13] fail in the presence of the
adaptive corruptions above, but the basic SDP9 [KNV13] provides virtually the same
guarantees it achieves in the vanilla settings. In fact, sparse PCA is not just a fortuitous,
isolated, example and this happens to be a recurring phenomenon in the context of
estimation problems. The underlying question can be phrased as follows:

Is there some inherent property that makes an algorithm robust to adversarial perturba-
tions?

In this thesis we positively answer this question for several average-case problems. Con-
tinuing with our running example, recall we represent the =-by-3 semi-random input
matrix as . =

p
�uG) + W + ⇢ where u,W are as in Theorem 1.1, ⇢ captures adversarial

corruptions bounded in k·k1 and G is the :-sparse structured direction we are seeking. For
simplicity let us also assume � > 1. The aforementioned exhaustive search algorithm boils
down to computing the vector maximizing the :-sparse norm10 of the empirical covariance
..

T = �kuk2GGT + # , where we used # to capture cross-terms and noise terms in the
multiplication. Without adversarial perturbations, whenever � · = > ˜⌦(:) the algorithm
succeeds with high probability because

k# kk-sparse 6 $̃(:) , (1.1.1)
and �kuk2 ·

��
GG

T��
k-sparse = $(�=) .

9Throughout this thesis the term "basic SDP" is used to denote the canonical semidefinite relaxation of
the problem. For this reason it can indicate different programs for different problems.

10For a matrix " 2 í3⇥3 the :-sparse norm of " is defined as max
kEk=1,E :-sparse

k"Ek.

6

An insightful way to view this reasoning is through the lens of sum-of-squares proofs (we
assume knowledge of the sum-of-squares paradigm here and otherwise direct the reader
to Chapter 2). There exists a degree $(3 + =) sum-of-squares proof (also called a sum-of-
squares certificate) of Eq. (1.1.1), and consequently a sum-of-squares algorithm that captures
exhaustive search (in the sense that the two procedures achieve comparable guarantees).
In a similar fashion, the basic SDP can be interpreted as a sum-of-squares algorithm of
degree 2. Its worse guarantees then stems from the fact that, unfortunately, we only know
degree-2 sum-of-squares certificates of the looser inequality k# kk-sparse 6 $̃(:2). Now,
these algorithms are robust because, as entry-wise perturbations bounded by $(1/=1/4)
cannot significantly change the value of the :-sparse norm of # , the same certificates can
also be obtained in the semi-random case!

More generally, we will see how algorithms that come with certificates of key statistics of
the problem at hand are intrinsically robust, in the sense that small perturbations – which
by virtue of being small cannot significantly change such statistics – cannot be used to fool
them. In contrast, fragile algorithms – which do not produce such certificates – may be
easily fooled by the same adversarial perturbations.

Certification algorithms for Sparse PCA. In line with the emerging picture above, we
are able to completely characterize the computational landscape of sparse PCA with
adversarial signs. We summarize these results here in two tables and then discuss them in
detail in Chapter 3. Our algorithmic conclusion reads as follows:

For the problem of sparse PCA, the sum-of-squares algorithm achieves the best known
guarantees among robust polynomial time algorithms. Furthermore, under the restrict
computational model of low-degree polynomials, these guarantees are nearly optimal.

Strong Signal Regime

Algorithm Succeeds if Running
Time Robust

SVD with thresholding � &
q

3

=
+ : log 3

=

$̃(=3) No

Sum of squares, Theorem 3.2 � & :·C
=

�
3

:

�1/C for 3 & $̃(C= log =)C 3
$(C) Yes

Table 1.1: Algorithmic landscape in the strong signal regime. The requirements of the
robust algorithm complements, up to constants, those of the lower bound Theorem 1.1.

7

Weak Signal Regime

Algorithm Succeeds if Running
Time Robust

Diagonal thresholding � & :p
=·C

p
log 3 for C 6 1

ln 3 min{3, =} poly(=)3$(C) No
Covariance thresholding
/ polynomials*11 � & :p

=

q
log 3

:
2 for : .

p
3 and : .

p
= poly(= , 3) No

Sum of squares, Theo-
rem 3.6 � & :p

=·C

p
log 3 for C 6 1

ln 3 min{3, =} poly(=)3$(C)
Yes

Sum-of-squares, Theo-
rem 3.5 � & :p

=

q
log 3

:
2 for : .

p
3 and : .

p
= poly(= , 3) Yes

Table 1.2: Algorithmic landscape in the weak signal regime. Novel robust algorithms tightly
match the existing bounds of fragile algorithms. More details can be found in Chapter 3.

1.1.3 Sharp phase transitions in the presence of adversarial
corruptions

Among estimation problems, perhaps the most fascinating phase transition phenomenon
can be observed in the context of stochastic block models (SBMs). In its most basic form,
the stochastic block model describes the following joint distribution (x,G) ⇠ SBM=(3, ✏)
between a vector G of = binary labels and an =-vertex graph G:

• draw a vector x 2 {±1}= uniformly at random,

• for every pair of distinct vertices 8 , 9 2 [=], independently create an edge {8 , 9} in the
graph G with probability (1 + ✏ · x8 · x9) · 3

=
.

Note that for distinct vertices 8 , 9 2 [=], the edge {8 , 9} is present in G with probability
(1 + ✏) · 3

=
if the vertices have the same label x8 = x9 and with probability (1 � ✏) · 3

=
if the

vertices have different labels x8 < x9 . Given a graph G sampled according to this model, the
goal is to recover the (unknown) underlying vector of labels as well as possible.

More general versions of the stochastic block model allow for more than two labels,
non-uniform probabilities for the labels, and general edge probabilities depending on the
label assignment. However, many of the algorithmic phenomena of the general version can
in their essence already be observed for the basic version, so we limit our discussion to that.

Due to its simplicity, the stochastic block model has emerged independently in different
communities as a way to represent structured graph models, from statistical physics

11In [dKNS20], a fragile algorithm (based on low-degree polynomials) extending the guarantees of
Covariance Thresholding to a (slightly) larger set of parameters was introduced. At the granularity of our
discussion here this is not relevant and hence, we omit it for clarity.

8

to sociology and computer science (see [Abb17] and references therein). An attractive
feature of this model is the existence of a sharp threshold, below which it is information
theoretically impossible to recover the community structure, and above which efficient
algorithms exists.12 One downside of studying the spiked covariance model is the fact
that the phase transitions are known up to constant factors. This makes it unattainable to
provide a fine grain analysis of the trade-off between accuracy, signal-to-noise ratio and
robustness. The stochastic block model instead does not present a similar issue and it is a
perfect candidate to study the fine-grade trade-offs of adversarial perturbations.

We say that an algorithm achieves (weak) recovery for the stochastic block model
{SBM=(3, ✏)}=2é if the correlation of the algorithm’s output Ĝ(G) 2 {±1}= and the under-
lying vector x of labels is bounded away from zero as = grows. 13

Ö
(x,G)⇠SBM=(3,✏)

h
1
=
|hG , Ĝ(G)i |

i
> ⌦✏,3(1) .

(Here,⌦✏,3(1) hides a positive number depending on ⌘ and 3 but independent of =). A series
of seminal works [MNS15b, MNS18, Mas14] showed that weak recovery is possible (also
computationally efficiently) if and only if 3 > ✏/⌘2, confirming a conjecture [DKMZ11]
from statistical physics (this threshold is commonly referred to as the Kesten-Stigum
threshold).14

Robustness. In an apparently similar fashion to the sparse PCA problem, a fascinating
issue arises in the context of the works on weak recovery when one takes into account
robustness: the algorithms used to show that weak recovery is possible when 3 > 1/✏2 are
fragile in the sense that adversarially modifying a vanishing fraction of edges could fool
the algorithm into outputting labels completely unrelated to the true labels. The reason
is that these algorithms are based on particular kinds of random walks (self-avoiding or
non-backtracking) that can be affected disproportionally by adding small cliques or other
dense subgraphs.

As expected, other kinds of algorithms (based on semidefinite programs certifying
certain matrix norms) have stronger guarantees in robust settings [FK01, GV16, MS16].
However, these algorithms are only known to work for 3 > ⇠/✏2 for an absolute constant
⇠ > 1, even in the non-robust setting.15 Further complicating the picture,“monotone
adversaries” (a monotone adversary is allowed to change an arbitrary number of edges

12In the multi-community settings with : > 4, there is a gap between the information theoretic threshold
and the computational threshold.

13We remark that other definitions of weak recovery require that the algorithm achieves constant correlation
with probability tending to 1 as = grows. It turns out that in the setting we consider it is always possible to
boost the success probability from ⌦(1) to 1 � >(1). See Section 4.1.

14For : communities a similar computational threshold is known.
15For high-degree graphs, the best-known bound for the basic semidefinite programming relaxation to

achieve weak-recovery is of the form ✏2
3 > 1+ >3(1) for an unspecified function >3(1) tending to 0 as 3 grows

[MS16].

9

as long as each change increases the likelihood of the planted labeling) were shown in
[MPW16] to: (i) change the threshold so that a bound of the form 3 > ⇠ · 4/⌘2 for ⇠ > 1
is required to ensure that weak recovery remains possible; (ii) have the same optimal
solutions for the aforementioned semidefinite program as their vanilla counterpart.

Despite this statistical price to pay for robustness against monotone perturbations, for
a natural class of adversaries that are allowed to alter any vanishing fraction of edges,
it remained open whether the threshold for weak recovery changes, or whether weak
recovery robust against this class of adversaries is possible. In the asymptotic setting 3!1,
this kind of robustness was achieved using the basic semidefinite programming relaxation
for the likelihood maximization problem [MS16]. However, as previously mentioned,
non-rigorous statistical-physics calculations [JMRT16] suggest that the same algorithm
cannot achieve the threshold for constant degree parameter 3. Some more recent algorithms
[ABARS20], based on graph powering, were shown to achieve the Kesten-Stigum (KS)
threshold while being robust against certain weak perturbations (e.g. introduction of a few
tangles), but turned out to be fragile against the general perturbations discussed here.

Groundbreaking work [BMR21] provided some early insight. Banks, Mohanty and
Raghavendra developed a polynomial-time algorithm for the corresponding distinguishing
problem: given a graph drawn from SBM=(3, ✏) with 3 > 1/✏2 and an Erdős-Rényi random
graph with the same expected number of edges, the algorithm can distinguish between
the two graphs and robustly so, i.e., even after altering a small constant fraction of edges.
In the vanilla stochastic block models, it is easy to distinguish a graph sampled from
SBM3,✏ from an Erdős-Rényi graph (counting the number of triangles suffices). Thus it
remained unclear whether this result was the consequence of a similar phenomenon.
Nevertheless, [BMR21] introduced novel ideas. Similarly to previous algorithms achieving
the threshold 3 > 1/✏2, the algorithm takes into account certain kinds of random walks
(specifically non-backtracking ones). A crucial difference is that the algorithm considers
only walks of constant length (for fixed 3 and ✏) as opposed to walks of logarithmic length
like previous algorithms. In order to leverage the more limited information provided by
shorter walks, the algorithm in [BMR21] needs to employ heavier convex optimization
techniques (specifically sum-of-squares). The upside is that robustness follows almost
directly: The altered edges can affect only a small constant fraction of the (constant-length)
walks considered by the algorithm. Correspondingly, the effect on the optimal value for
the optimization is small.

Surprisingly, inn this we will see that, indeed, there is no price to pay for robustness.
The underlying message is that by designing more sophisticated certification algorithms
–which can leverage as much as possible the information underlying the data– it is possible
to achieve optimal guarantees even in the robust settings.

Concretely, we say that an algorithm that given a graph G outputs an estimate Ĝ(G) for
the community labels of G achieves ⌧-robust weak recovery for {SBM=(3, ✏)}=2é if

Ö
(x,G)⇠SBM=(3,✏)

min
⌧
�2#⌧(G)

h
1
=
|hx, Ĝ(⌧�)i |

i
> ⌦3,⌘(1) ,

10

where #⌧(G) is the set of graphs ⌧� that can be obtained from G by changing at most a
⌧-fraction of its edges16 (so that |⇢(G)4 ⇢(⌧�)| 6 ⌧ · (|⇢(G)| + |⇢(⌧�)|)).

The following theorem, which we prove in Chapter 4, shows that this notion of
robustness does not significantly alter the statistical threshold and that robust polynomial-
time algorithms exist that work all the way up to this threshold.

Theorem 1.2. For every ✏, 3 with 3 > 1/✏2, there exists ⌧ > 0 such that ⌧-robust weak recovery
for {SBM=(3, ✏)}=2é is possible. Moreover, the underlying algorithm runs in polynomial time.

The SDP algorithm behind Theorem 1.2 requires several novel careful ideas and signifi-
cantly departs from previous algorithms for robust recovery (including those discussed
in Section 1.1.2). A key challenge is the peculiar optimization landscape underlying our
algorithm: the planted partition may be far from optimal in the sense that completely
unrelated solutions could achieve the same objective value. This phenomenon is related to
the push-out effect at the BBP phase transition for PCA. The algorithm in Theorem 1.2 is the
first to achieve robust recovery in the presence of such a push-out effect in a non-asymptotic
setting.

Weak recovery in the presence of node corruptions. Is it possible to achieve weak
recovery for stochastic block models at the Kesten-Stigum threshold when the number of
corruptions is larger than the number of edges in the original graph? Without additional
constraints the answer is clearly no. Surprisingly, we show that under the node corruption
model the answer turns to be yes!

Definition 1.3 (Node-corrupted SBM). Given ⇠ 2 [0, 1) and (x,G) ⇠ SBM=(3, ✏), an
adversary may choose up to ⇠= vertices in G and arbitrarily modify edges incident to at
least one of them to produce the corrupted graph ⌧�.

That is, upon drawing a graph from a stochastic block model, an adversary may pick a
constant fraction of the nodes and arbitrary alter all the edges incident to at least one of
them.

There are several reasons why this model is attractive. First, the adversary is allowed to
change an arbitrary number of edges for each corrupted vertex and could introduce up to
$(⇠=2) edges. This means that, in contrast to the other models discussed, the magnitude of
the corruptions can be significantly larger than the signal! While vertices of untypically
large degree are algorithmically easy to identify and remove, less naive adversaries may
remove all edges of an arbitrary subset of ⇠= vertices, and replace them by roughly 3

spurious edges of their choosing. Such an adversary would introduce $(⇠ · 3 · =) edges,
causing the algorithm previously discussed (as well as the basic SDP [MS16]) to fail when
⇠ > ✏.

16That is, each ⌧� can be obtained from G through a sequence of ⌧ · |⇢(G)| edits, each consisting of an
addition or deletion.

11

(1 � ⇠)=

(1 � ⇠)= ⇠=

⇠=

Figure 1.1: For stochastic block models with node corruptions, the entries in the red area
are adversarially corrupted, while the entries in the green area are sampled as in stochastic
block model.

Second, it is not a priori clear if weak recovery at the KS threshold is possible or if
there is some price to pay for robustness. Indeed, it is easy to see that weak recovery
becomes information theoretically impossible when more than ✏ · 3 · = arbitrary edges are
corrupted.17

Third, this model appears to be "close in spirit" to the canonical ⇠-Huber contamination
model (see [DK19]) studied in the context of clustering mixtures of Gaussians [HL18, KSS18,
BDH+20, BDJ+22] (the adjacency matrix of ⌧ is expected to look as in Fig. 1.1). Compared
to those settings however, it allows for the investigation of sharp phase transitions.

Among previous works, it is important to mention that none of the aforementioned
algorithms work against such adversarial corruptions. [LM22] showed how to obtain a
polynomial-time algorithm –robust to ⇠ = >(1) node corruptions18–that achieves optimal
recovery rates (i.e. beyond our weak recovery objective) when ✏2

3 � 1 is a sufficiently
large constant. Although this algorithm provides weak recovery for large values of ✏2

3,
it falls short of reaching the KS threshold, requiring ✏2

3 > ⇠ > 1. [SM19] provided an
algorithm achieving the KS threshold in sparse graph, but robust to only $(=0.001) vertices
corruptions in sparse graphs.

We say that an algorithm that given a graph G outputs an estimate Ĝ(G) for the
community labels of G achieves ⇠-node-robust weak recovery for {SBM=(3, ✏)}=2é if

Ö
(x,G)⇠SBM=(3,✏) ,

min
⌧
�2+⇠(G)

h
1
=
|hx, Ĝ(⌧�)i |

i
> ⌦3,✏(1) , (1.1.2)

where +⇠(G) is the set of graphs that can be obtained from G as in Definition 1.3. Similarly
to the context of edge corruptions, the underlying message is that by better leveraging

17An adversary may remove each intra-cluster edge with probability ✏ · 3/= and add each inter-cluster
edge with probability ✏ · 3/=. With high probability such process alter at most ✏ · 3 · =(1 + >(1)) edges. The
graph now is indistinguishable from an Erdős-Rényi graph.

18The algorithm in [LM22] is further robust against a different type of adversary corruptions with
unbounded monotone changes from semi-random model previously mentioned.

12

the global information contained in the data, it is possible to achieve node robust weak
recovery down to the Kesten-Stigum threshold.

Theorem 1.4. For every ✏, 3 with ⇣ := 3✏2 � 1 > 0, and ⇠ 6 ⌦⇣(1), ⇠-node-robust weak recovery
is possible. 19 Moreover, the underlying algorithm runs in polynomial time.

This algorithm is the first one that succeeds down to the KS threshold under node
corruptions, [LM22] cannot work unless ⇣ is sufficiently large, and the algorithm discussed
in Theorem 1.2 cannot tolerate the corruption of ⌦⇣(1) vertices. The dependence on ⇣ is
necessary: if ⇠ is a fixed constant, then recovery is impossible for a small enough constant
⇣ (see Section 5.5 for details). The techniques behind Theorem 1.4 can be applied to related
problems such as ö2-synchornization. We show these results in Chapter 5.

1.1.4 Constraint satisfaction problems with adversarial
signs

Another natural kind of adversarial perturbations consists of corruptions that adaptively
break the symmetry of the distribution at hand. To see how powerful such adversaries can
be, notice that, in the spiked covariance model previously considered, an adversary that
can flip the signs in the observations {y8}82[=] could completely hide the signal in input.

Natural problems in which these corruptions arise are constraint satisfaction problems
(henceforth CSPs). CSPs play a major role in computer science. Because of its centrality to the
theories of proof complexity [BSB02] and of average-case complexity, and its connection to
other questions in cryptography [ABW10], computational complexity[Fei02], and statistical
physics [CLP02], the complexity of solving constraint satisfaction problems has been
extensively studied since the 1980s.

A canonical example of a CSP that captures the computational phenomena at play, is
:-XOR. Indeed, it is possible to essentially reduce arbitrary constraint satisfaction problems
to :-XORs [Fei07] (we provide a self-contained simple proof in Section 6.6). A XOR clause
over : variables is a constraint of the form G81 · · · G8: = � for � 2 {±1}. Then a :-XOR
instance can be represented by a symmetric :-th order tensor) such that)81 ,...,8: = 0 if
there is no constraint on the :-tuple of variables G81 , . . . , G8: , and otherwise)81 ,...,8: 2 {±1}
depending on the right-hand-side of the constraint. The value of an assignments G 2 {±1}=
is given by ’

81 ,...,8:

)81 ,...,8: G81 · · · G8: = h) , G⌦:i = h(� /, G⌦:i , (1.1.3)

where in the last step we decomposed the tensor) as the Hadamard product20 of the

19⇠ 6 ⌦⇣(1) here means that ⇠ is bounded by a constant depending on ⇣.
20The Hadamard product of two tensors �, ⌫ of same size produces a tensor ⇠ of same size where each

entry (here indexed by the multi-index �) ⇠� has value �� · ⌫� .

13

symmetric sign tensor (with entries in {±1} and the symmetric indicator tensor / such
that /81 ,...,8: = 1 if there is a clause containing 81, . . . , 8: and zero otherwise.

There is a vast theory of the complexity of both worst-case satisfiability [BJK05] and
approximability [Rag09] of CSPs. The resulting picture is grim: for a large class of CSP
instances [Cha16, MR08, FLP15], the Exponential time hypothesis [IKW02] rules out sub-
exponential time algorithms that beat the random assignment. In the average case however
the computational landscape is more promising. A random :-XOR instance I over =
variables can be generated by drawing < clauses independently and uniformly at random,
i.e. by picking a symmetric sign tensor (and a symmetric indicator tensor with :< non-zero
entries, both uniformly at random (the exact sampling process is inconsequential to our
discussion). The computational complexity is captured by the density � = </= of the
instance. Rigorous evidence (along with proofs for specific settings[DSS15]) suggests the
existence of a critical density �: , below which a satisfying assignment exists, and above
which the instance is unsatisfiable with high probability [COGL07, Ach09, BKS15, RRS17].

Two distinct natural algorithmic tasks are associated with these regimes. For � > �:
the goal is that of refuting the instance, by showing a certificate of unsatisfiability. A strong
refutation of a 3-SAT formula is a certificate, verifiable in polynomial time, that every
assignment fails to satisfy a constant fraction of the clauses. Conversely, for satisfiable
instance, the goal is to find the optimal assignment.

Among several important algorithmic milestones, we mention the idea of using spectral
techniques to find refutations and strong refutations (introduced in [FGK05] and then
refined in subsequent work) and a reduction from the problem of finding strong refutations
for random 3SAT to the problem of finding strong refutations for random 3XOR (introduced
in [Fei02] and then refined in subsequent work). We refer the reader to the introduction of
[AOW15] for an extended survey of algorithmic ideas and results related to refutations
of random constraint satisfaction problems. In particular, the emerging picture shows
that refutations and PTAS for solving constraint satisfaction problems [AOW15, AJT19]
exist for random instances on = variables and =:/2(log =)$(1) constraints. (When : is even,
$(=:/2) constraints suffice.21). But below this value the problem becomes computationally
intractable [ABW10, DLSS14, Dan16, BKS15].

Semi-random CSPs. There are two natural way one can extend these formulations to
semi-random models. One one side, one can consider smoothed instances. In the context
of :-XOR these are semirandom instances generated by picking an arbitrary worst-case
instance, then randomly and uniformly resampling the sign of each clause.22 That is, in
Eq. (1.1.3) the sign tensor S is random but the indicator vector / is worst-case. On the other

21In the even settings several of the technical challenges related to the study of tensors disappear, as the
instance can be represented as a =:/2 ⇥ =:/2 matrix. The same ideas do not work for the odd case. An intuition
of this difference can be found observing that the spectrum of a rectangular random matrix is characterized
by its largest dimension.

22In fact, one needs not to resample all signs but only a sufficiently large constant fraction.

14

side, one can consider instances where the clauses are sampled randomly but the signs are
worst-case. This corresponds to picking an arbitrary tensor (and a random tensor Z in
Eq. (1.1.3).

The effects of the two adversaries are different and essentially incomparable. In the
former case, the underlying hypergraph spanned by the instance is arbitrary but has
hyper-edge weights that are symmetrically distributed. In the latter case, the hypergraph
satisfies typical expansion properties of random hypergraphs, but weights are worst case.
Surprisingly, [GKM22] showed that there is no price to pay for robustness against smoothed
instances: efficient strong refutation algorithms exist for < > ⌦(=:/2)(log =)$(1). We tackle
the second family of adversarial corruptions introducing a PTAS that succeeds at the sharp
threshold < & =:/2. As often is the case, the underlying insight also immediately leads
to sharp strong refutations whenever < & =

:/2 (in fact, both algorithms boil down to
producing sharp certificates of injective tensor norms, see Chapter 6). Hence, the result not
only extend the state of the art from the average-case to semi-random models, but breaks
a long standing barrier that immediately applies to the random settings, matching the
computational threshold predicted by lower-bounds (up to constant factors).23

Theorem 1.5 (Semi-random k-CSPs, informal). Let = , : be positive integers, ⌘ > 0 , = and
=
�:/2/⌘2 < 1. Let % : {�1,+1}: ! {0, 1} be a Boolean :-ary predicate. Let I be a ⇠(%(%)

instance constructed through the following process:

• Sample a random ⇠(%(%) instance I 0 with at least =:/2/⌘2 constraints.

• Given I 0, for each clause in I 0, replace the sign pattern with an arbitrary (possibly adversarial)
sign pattern.

There exists a polynomial time algorithm that, with probability at least 0.99, returns an assignment
x̂ with value ValI(x̂) > OptI � $(⌘) .

1.1.5 From robustness to privacy
Privacy in machine learning and statistical tasks has recently become of critical importance.
New regulations, renewed consumer interest as well as privacy leaks, have led the major
actors to adopt privacy-preserving solutions for the machine learning [Ela15, app17, 20221].
This new push has resulted in a flurry of activity in algorithm design for private machine
learning [MNVT22, KSSU19, CKM+21, TCK+22, KMV22, AL22, DNT15]. Despite this effort,
with few exceptions (e.g. [KMV22]) these algorithms provides error guarantees that are
significantly worse than their non-private counterparts. Hence, improving on these results
remain a pressing open question. Although not immediately obvious, privacy can be seen
as a particular extension of robustness.

23As we will see in Chapter 6, our result and [GKM22] require solving different technical challenges,
therefore it remains unclear whether the gap between random instances and smooth instances is due technical
reasons, or whether there is some hidden cost of robustness.

15

The general picture is the following: a machine learning algorithm receives in input
a database, say containing information about individuals, and processes this data to
extract meaningful, structured, global information about the whole dataset, say correlation
between habits and illnesses. For the algorithm to be private, it should be impossible24 to infer
from the output, with reasonable confidence, information about any single element in input
(or individual in our example). While other notions of privacy exists (e.g. :-anonymity)
the de facto privacy standard is the differential-privacy framework of Dwork, McSherry,
Nissim, and Smith [DMNS06]. In this framework, the privacy quality is governed by two
parameters, ⌘ and ⇣, which in essence tell us how the probability of seeing a given output
changes (both multiplicatively and additively) between two datasets that differ by any
individual data element. This notion, in essence, quantifies the amount of information
leaked by a given algorithm on a single data elements. More precisely:

Definition 1.6 (Differential privacy). An algorithm M : Y ! O is said to be (⌘, ⇣)-
differentially private for ⌘, ⇣ > 0 if and only if, for every (✓ O and every datasets. ,.0 2 Y
differing in at most one element25, we have

ê[M(.) 2 (] 6 4⌘ · ê[M(.0) 2 (] + ⇣ .

The goal of the algorithm designer is then to come up with differentially-private
algorithms for ⌘ being a small constant and ⇣ being of order 1/=⇥(1).

From robustness to differential privacy. The goal of designing privacy-preserving
machine learning models turn out to be closely related to the design of robust algorithms.
Indeed on a high level, in both cases the objective is to design algorithms that extract global
information without over-relaying on individual data samples.

Concretely, robust parameter estimation tends to morally follow a two-steps process: (i)
argue that typical inputs are well-behaved, in the sense that they satisfy some property
which can be used to accurately infer the desired global information, (ii) show that
adversarial perturbations cannot significantly alter the quality of well-behaved inputs, so
that it is still possible to obtain an accurate estimate. In fact, the estimation algorithms
discussed in previous sections are consistent with this paradigm. The analysis of private
estimation algorithms can also be conceptually divided in two parts: utility, which is
concerned with the accuracy of the output, and privacy, which ensures there is no leak of
sensitive information. In particular, according to Definition 1.6, privacy can be interpreted
as the requirement that, for any distinct inputs . ,.0 2 Y, the change in the output is
proportional to the distance26 between . and .0.

It is easy to see this as a generalization of robustness: while robust algorithm needs this
property to hold for typical inputs, private algorithms needs to satisfy it for any possible

24From an information theoretic perspective.
25We say that . ,.0 are neighboring datasets.
26The notion of distance is inherently application dependent.

16

input. Then, stability of the output immediately implies that the introduction of small
additive noise to the output (e.g. via standard privatization mechanisms) yields privacy.
If the introduced noise is small, then utility is also likely to be preserved. In Chapter 7
we show that natural modifications of known robust (sum-of-squares) algorithms –such
as algorithms for learning Gaussian mixtures models [HL18, KSS18, ST21] or community
detection in graphs [MS16, GV16]– satisfy the privacy requirement above. We formalize
this extended notion through a simple, yet key, insight: if two strongly convex functions
over constrainted sets –where both the function and the set may depend on the input– are
point-wise close (say in a ✓2-sense), their minimizers are also close (in the same sense).
The alternative perspective is that projections of points that are close to each other, onto
convex sets that are point-wise close, must also be close. The result is a clean, user-friendly,
framework to turn robust estimation algorithms into private algorithms, while keeping virtually
the same guarantees. We apply this paradigm to the spherical Gaussian Mixture Model:

Model 1.7 (Mixtures of spherical Gaussians). Let ⇡1, . . . ,⇡: be Gaussian distributions on
í3 with covariance Id and means ⇠1, . . . , ⇠: satisfying

��⇠8 � ⇠9�� > � for any 8 < 9. Given
a set Y = {y1, . . . , y=} of = samples from the uniform mixture over ⇡1, . . . ,⇡: , estimate
⇠1, . . . , ⇠: .

We prove the result below:

Theorem 1.8 (Privately learning mixtures of spherical Gaussians, informal). Consider an
instance of Model 1.7. Let C > 0 be such that � > $

⇣p
C:

1/C
⌘
. For = > ⌦

�
:
$(1) · 3$(C)�

, : >

(log =)1/5
, there exists an algorithm, running in time (=3)$(C), that outputs vectors -̂1, . . . , -̂:

satisfying

max
✓2[:]

��-̂✓ � ⇠�(✓)
��

2 6 $(:�10) ,

with high probability, for some permutation � : [:]! [:] . Moreover, for ⌘ > :�10
, ⇣ > =�10

, the
algorithm is (⌘, ⇣)-differentially private27 for any input ..

The Theorem matches the state-of-the-art results in the non-private settings [HL18,
KSS18, ST21, LL22] (see Chapter 7 for an in-depth discussion). Among differentially private
algorithms, prior results could only learn a mixture of :-spherical Gaussian either if: (1)
they were given a ball of radius ' containing all centers [KSSU19, CKM+21];28 or (2) the
minimum separation between centers needs an additional additive ⌦(

p
log =) term, i.e.

a super-polynomial increase in the minimum required separation whenever : 6 =
>(1).

Theorem 1.8 is the first to get the best of both worlds and, just like its non-private sum-of-
squares counterparts, seamlessly works for the significantly more general class of mixtures
of Poincaré distributions.

27Our notion of adjacent databases here is the obvious one. See Definition 7.51.
28In [KSSU19, CKM+21] the sample complexity of the algorithm depends on this radius '.

17

We also consider stochastic block models, where we focus on exact recovery. Here the
goal is to actually recover the true partition with high probability. As in the weak-recovery
settings, the algorithmic landscape is well-understood [DKMZ11, Mas14, ABH15, MNS15b,
MNS18, Abb17]: exact recovery is possible (and can be achieved efficiently) if and only if
3

log =

⇣
1 �

p
1 � ✏2

⌘
> 1 .

Theorem 1.9 (Private exact recovery of SBM, informal). Let (x,G) ⇠ SBM=(3, ✏). For any
✏, 3, ⌘, ⇣ > 0 satisfying

3

log =

✓
1 �

q
1 � ✏2

◆
> ⌦(1) and

✏3
log = > ⌦

✓
1
⌘2 ·

log(1/⇣)
log = + 1

⌘

◆
,

there exists a polynomial time algorithm that, on input G, returns Ĝ(G) 2 {x,�x} with probability
1 � >(1). Moreover, the algorithm is (⌘, ⇣)-differentially private with respect to edge changes.

For any constant ⌘ > 0, Theorem 1.9 states that (⌘, ⇣)-differentially private exact recovery
is possible, in polynomial time, already a constant factor close to the non-private threshold.
Previous results [MNVT22] could only achieve comparable guarantees in time $(=$(log =)).

A price for differential privacy? The notion of differential privacy, so tightly connected
to that of robustness, also raises a similar question. Namely, whether there is an inherent
price an algorithm has to pay to be differentially private and whether this price is in the
form of a statistical or computational barrier. That is, analogously to robustness, whether
there is a price for privacy. In contrast to the results in Section 1.1.3, Theorem 1.9 cannot
provide a sharp analysis of the phase transition in the context of differential privacy.
Nevertheless, for sparse graphs that admit exact recovery (3 = ⇥(log =)), it highlights a
natural, polynomial trade-off between, the desired accuracy, the bias parameter ✏ and the
privacy parameters ⌘, ⇣. Our next result shows that to some extent this trade-off is inherent
and the guarantees of our algorithm are almost tight.

Theorem 1.10 (Price for privacy, informal). Suppose there exists an ⌘-differentially private algo-
rithm such that for any balanced G 2 {±1}= , on input G ⇠ SBM=(3, ✏, G),29 outputs Ĝ(G) 2 {±1}=
satisfying

ê(err(Ĝ(G), G) < ✓) > 1 � ◆ .
Then,

⌘ > ⌦
✓
log(1/✓)

✏3
+

log(1/◆)
✓=✏3

◆
.

Notice that this is a lower bound for a large range of error rates (partial to exact
recovery). Importantly, while formally incomparable, in the context of exact recovery
✓ < 1/=, this lower bound suggests that the guarantees obtained by Theorem 1.9 might

29We use this notation to indicate the conditional distribution of G, given x for stochastic block models.

18

be close to optimal. In general, setting ⇣ = =
�⇥(1), implies that Theorem 1.9 achieves

(⌘, =�⇥(1))-private exact recover, i.e., whenever30 ⌘ > ⌦
✓q

log =
✏3

◆
. Theorem 1.10 states that

in this exact recovery setting ⌘ > ⌦
⇣

log =
✏3

⌘
is necessary. In particular, for the gold standard

of differential privacy (i.e. the parameters that are required for real-world applications)
⌘ ⇡ 1 , ⇣ 6 $(1/=), Theorem 1.9 matches the lower bound up to constant factors. The
existence of this separation between our efficient algorithmic result and the statistical lower
bound remains an intriguing open question.

1.1.6 Fast and robust algorithms
The robust algorithms discussed in previous sections have one main weakness: their
running time. On an =-sized input, algorithms based on sum-of-squares runs in time of the
order at least $(=⇠), for some large constant ⇠ > 1, even when only requiring low-degree
certificates. However, to be useful in practice, modern inference algorithms need to run
on high dimensional datasets over billions of observations and thus, have to essentially
scale linearly in the sample size. In other words, without additional improvements, there is
virtually no scenario in which the algorithms seen in the previous chapters can be used on
real world datasets.

This phenomenon arises in the context of robustness due to the fact that more easily
implementable algorithms, such as spectral methods, heavily rely on extremely fragile
distributional assumptions. But for the same reason it is even more central to the study of
worst-case complexity, where semidefinite programming has historically had a fundamental
role [GW95, KKMO07, KV15, ARV09, Rag08, RST12, ABS15], and where the input is
arbitrary.

A very reach and successful theory –often called the matrix multiplicative weights
framework (MMW)31– has been developed in an effort to design fast algorithms achieving
results comparable to their SDP counterparts [AK07, She09, Ste10a]. On a high level, this
approach is based on the following steps: (i) find an assignment of the program variables
that is only approximately feasible, (ii) round this infeasible solution into a feasible, integral
solution. The key underlying idea is that, for many problems, if the subset of constraints
that gets satisfied is chosen carefully, then the rounding algorithm works even though the
starting assignment is not feasible! Finally, one obtains a running time improvement if this
crucial subset of constraint can be identified and satisfied quickly.

Of course, the error guarantees that can be achieved in polynomial time for worst-case
instances are significantly worse than what robust algorithms achieve on semi-random
inputs. So directly applying results along the outline above does not yield satisfying results.

30In addition to the condition independent of ⌘.
31This can be seen as an application of the mirror descent algorithm with the von Neumann negative

entropy as the chosen mirror map.

19

However, these ideas can be adapted to semi-random problems.

Matrix multiplicative weights for semi-random models. Sum-of-squares algorithms
for semi-random inputs relies on certifying some crucial property that typical random
instances (i.e. without adversarial perturbations) satisfy, and that are still approximately
satisfied even upon introducing adversarial corruptions. Thus, the additional challenge
in applying the MMW framework to these settings amounts to showing that, with high
probability over the input, the rounding scheme works even for infeasible solutions that
satisfy this property only approximately.

A convenient example to showcase these ideas is the balance cut problem.

Problem 1.11 (0-balanced cut). Let 0 2 [0 , 1/2] and let ⌧ be a graph on = vertices. Find the
partition (�, ⌫) with maximum cut that also satisfies min{|�|, |⌫|} > 0=.

In a celebrated result, [ARV09] Arora, Rao and Vazirani introduced a first $(
p

log =)-
approximation algorithm for Problem 1.11, based on a semidefinite relaxation.32 Subsequent
work [AK07, She09] used the MMW framework to design an $(

p
log =/⌘)-approximation

algorithm running in time $̃
�
=

1+⌘� .33 A lot of work has been devoted to finding reasonable
random and semi-random models that captures the behavior of real world networks,
and to solve the balanced cut problem over them [BCLS87, DF86, Bop87, FK01, McS01,
JS93, DI98, BL12, MMV12, MMV14, Pen20, CPRT22]. Indeed the stochastic block models
of Section 1.1.3 are premier examples. We study here a related but different model, first
introduced in [MMV12].

Model 1.12 (Random cut with monotone perturbations). We consider graphs over =
vertices generated through the following process. Let 0 2 (0, 1/2), ◆(=) 2 (0, 1):

(i) The adversary partition [=] into sets �, ⌫ satisfying |�|, |⌫| > 0=.

(ii) Each edge between � and ⌫ is drawn randomly and independently with probability
◆.

(iii) The adversary arbitrarily adds edges within � and within ⌫.

(iv) The adversary arbitrarily removes edges between � and ⌫.

Model 1.12 is significantly more general than stochastic block models. Indeed it
captures both the antiferromagnetic settings34, as well as monotone adversarial perturbations
[MPW16]. We remark however, that it remains incomparable with the adversarial models
discussed in Section 1.1.3.

32Which is captured by degree-4 sum-of-squares.
33We remark that this running time is achieved combining the work of [AK07, She09] with the max-flow

algorithm in [CKL+22].
34Where the probability of an intra-cluster edge is smaller than the probability of an inter-cluster edge.

20

In [MMV12], the authors designed an $(1)-approximation algorithm for Model 1.12
(among other problems). This algorithm relies on heavy machinery, among which it requires
to solve polylogarithmically many SDPs, each an instance of the canonical semidefinite
relaxation for Problem 1.11. It is possible to go beyond the $(

p
log =)-approximation

of [ARV09] using this algorithm because it leverages the randomness of the cut in the
true partition. Hence, the main challenge faced in designing a fast $(1)-approximation
algorithm for Model 1.12 consists of finding a subset of constraints that: (i) can be satisfied
easily, in the sense that one can find a feasible assignment in near-linear time (ii) still captures
enough of the underlying graph structure so that one can still leverage the randomness of
the cut in the true partition to obtain a good approximation, from a solution that satisfies
those constraints, but not necessarily others.

We present such an algorithm, which provide guarantees analogous (up to constant
factors) to those of [MMV12] but runs in almost linear time.

Theorem 1.13 (Fast and robust algorithm for balanced cut). Let ⌧ > 0. Let ⌧ be a graph over
= vertices generated through Model 1.12 with parameters 0 > 0, ◆ > ⌦((log =)2·(log log =)2

=
) . There

exists an algorithm that on input ⌧, with probability 1 � >(1), outputs an ⌦(0)-balanced cut of
value at most $(=2 · ◆ · ⌧), namely a cut where each side has size at least ⌦(0 · =).

Moreover, the algorithm runs in time $̃
⇣
|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|

⌘
.

Remark 1.14 (Fast algorithms for other graph partitioning problems). In the worst-case
settings, obtaining fast algorithms for max-cut via the MMW framework is significantly
easier than for Problem 1.11. Indeed, the natural SDP relaxation Problem 1.11 can be
obtained from the classic max-cut semidefinite relaxation introducing additional constraints
(✓2

2 triangle inequality costraints). In a similar fashion, for stochastic block models, it is
also possible to speed up some of the robust weak-recovery algorithms discussed in
Section 1.1.3. The ideas behind Theorem 1.13 can also be combined with known reductions
[AK07] to design an $(1)-approximation algorithm for sparsest cut, with the same running
time. Furthermore, as we will see in Chapter 8, Theorem 1.13 can be further extended
to more sophisticated problems such as the semi-random hierarchical stochastic block model
of [CKMM19].

1.1.6.1 Practical algorithms
Through the matrix multiplicative weights framework it is possible to design, in some cases,
fast algorithms for average-case problems that are also robust to adversarial corruptions.
However, there is a fundamental drawback in implementing the matrix multiplicative
framework in practice, namely that the algorithm is not numerically stable: small approx-
imation errors compound, possibly altering the final outcome, so that the final error is
significantly larger than expected.

21

Is it possible to circumvent this issue and design robust algorithms that run well in
practice? It turns out that, for certain, specific, weaker adversarial perturbations, this can
indeed be achieved.

Practical but fragile spectral algorithms from sum-of-squares. To grasp the required
ideas it is necessary to provide additional context and temporarily cast adversarial per-
turbations aside. There is by now a vast literature on sum-of-squares algorithms for
estimation problems, among others we cite [HSS15, BKS14, BKS15, BGG+16, MSS16, PS17,
RRS17, dKNS20, dNNS23, dT23, KSS18, HL18]. For a wide range of such problems, it
is possible to capture the sum-of-squares algorithm by low-degree spectral methods
[HSSS16, HKP+17, SS17, HSS19, dKNS20, DdL+22]. Compared to classical spectral algo-
rithms, these newer algorithms differ as the entries of the matrices considered are particular
low-degree polynomials in the instance. The main advantage of these algorithms is that
they are often very fast, running in subquadratic time (if not linear) in the input size.
However, in stark contrast with their sum-of-squares counterparts, they suffer from the
same limitations of classical spectral algorithms in that they are extremely susceptible to
adversarial corruptions. That is, even when the starting sum-of-squares program is robust
against certain adversarial perturbations, the related spectral algorithm, which does not
certify the relevant statistics, is not expected to be.35

Practical algorithms robust against adversarial distributions. Despite the picture
painted above, there are certain weaker notion of adversaries for which it is possible
to design robust and practical spectral algorithms. [CPRT22] designed spectral algorithms
that achieve nearly-optimal guarantees for semi-random models in which the adversary
can introduce large perturbations, but does not have access to the drawn observations.

Another possibility is to force the adversary to follow some specific distributional
assumptions. One may (correctly) argue that, this is equivalent to change the noise
distribution in the original planted problem, however the observation becomes interesting
if the new distribution captures the type of adversarial perturbations that are known to
make the problem computationally harder. That is, when these distributional assumptions
capture the price of robustness of the problem at hand.

As a concrete example, we consider again the adversarial sparse PCA model discussed
in Section 1.1.1. Theorem 1.1 showed that there exists a distribution over matrices, captured
by natural adversarial corruptions, for which when � 6 $

�
:

=
· C · (3/:)1/C

�
and �=/: 6 =0.49,

no algorithm captured by the computational model of degree 6 =0.001 polynomials, can
approximately recover the hidden vector G. Hence providing formal evidence of the
computational price to pay to solve this natural generalization of sparse PCA and of the

35We remark there exists specific settings with notable exceptions. In particular, in the context of tensor
decomposition, [SS17, HSS19] introduced spectral algorithms that are robust against malicious perturbations
of magnitude only logarithmically smaller than their sum-of-squares counterparts.

22

near optimality of our sum-of-squares algorithm in Section 1.1.2.
We prove that there exists a near-linear time spectral algorithm achieving comparable

guarantees to sum-of-squares of degree 6 6 against the family of adversaries used to prove
Theorem 1.1.

Theorem 1.15 (Practical spectral algorithm for the strong signal regime, informal). Given
an =-by-3 matrix Y of the form,

Y =
p
�uGT + W + E ,

for � > 0, a unit :-sparse vector G 2 í3, a Gaussian matrix W ⇠ #(0, 1)=⇥3, a Gaussian vector
u ⇠ #(0, Id=) such that u ,W are distributionally independent, and E is a =-by�3 matrix as in
Theorem 1.1 for C 6 3.36 Suppose that 3 & =3 log 3 log =, : & = log = and

� &
:p
=

✓
3

:

◆1/3
.

Then there exits an algorithm that computes in time $(=3 log =) a unit vector x̂ 2 í3 such that

1 � hG , x̂i 6 0.01

with probability at least 0.99.

The algorithm behind the Theorem (which we call SVD-C, where C is the corresponding
sum-of-squares degree) captures the behavior of degree 6 6 sum-of-squares in Theorem 3.2,
but runs in time nearly linear in the input size. Unsurprisingly, the algorithm cannot certify
upper norm bounds, and so it is not expected to be robust in general. However, it solves the
problem when the noise distribution is as in Theorem 1.1 (or when there are no adversarial
perturbations). Such adversarial settings are especially interesting as the problem has a
nice geometric description, in which the objective is to recover an approximately sparse
vector planted in a random subspace. (see Section 3.4.2.1 and Theorem 9.5). Indeed, the
famous fast algorithm of [HSSS16] for recovering sparse vectors, corresponds to (+⇡-4. In
other words, this algorithm can be seen as a generalization of [HSSS16]! Similarly, for C = 2
the algorithm corresponds to the SVD+thresholding algorithm outlined in Section 1.1.1.

It is important to remark that we do not have a mechanical way to study spectral proce-
dures capturing higher-order sum-of-squares algorithm. Hence, extending Theorem 1.15
to degree C > 6 remains a fascinating open question.

We remark that, as the algorithm behind Theorem 1.15 indeed runs well in practice. We
provide experiments showing how it improves other previous algorithms in Section 9.2.

36More precisely, recall that in Theorem 1.1 we consider a specific distribution over matrices E (this
distribution depends on G , u and W), and here we mean that E is sampled from this distribution.

23

1.2 Main contributions and road-map of the the-
sis

The central part of the thesis "The price of robustness" is devoted to the general study of
semi-random models with adversarial perturbations. Specifically in the context of sparse
principal component analysis (Chapter 3), stochastic block models (Chapter 4 and Chapter 5)
and constraint satisfaction problems (Chapter 6). The rest of the thesis investigates related
topics. Respectively privacy (Chapter 7) and algorithms that are both fast and robust
(Chapter 8 and Chapter 9). With the exception of Chapter 9 which builds on Chapter 3,
each chapter is essentially self-contained and relies only on the common introduction
(Chapter 1) and preliminaries (Chapter 2). In particular, the notational convention in each
chapter is optimized for the context and hence, while it is consistent with the common
preliminaries, it may not be consistent with other chapters. Finally, the appendices contain
additional discussion and deferred proofs of the various chapters.

Part I: The price of robustness
• Chapter 3 provides algorithms and lower bounds for sparse PCA with adversarial

perturbations. It is based on the FOCS’20 paper [dKNS20].

• Chapter 4 provides an algorithm for stochastic block model robust against a constant
fraction of adversarial edge perturbations. It is based on the FOCS’22 paper [DdNS22].

• Chapter 5 provides an algorithm for stochastic block models robust against a constant
fraction of adversarial node perturbations. It is based on the COLT’23 paper [DdH23].

• Chapter 6 provides sharp strong refutations and robust algorithms for random CSPs.
It is based on the CCC’23 paper [dT23].

Part II: Privacy from robustness
• Chapter 7 provides algorithms and lower bound for stochastic block models and

Gaussian mixture models that achieve guarantees comparable to their non-private
counterparts. It is based on the (in submission) paper [CKM+21] .

Part III: Speeding up robust algorithms
• Chapter 8 provides fast and robust algorithms for balanced cut and hierarchical

stochastic block models. It is based on the (in submission) paper [CdM23].

• Chapter 9 provides a fast algorithm for a weaker sparse PCA adversarial model. It is
based on the FOCS’20 paper [dKNS20].

24

Remark 1.16. We remark that the following published papers do not appear in this thesis:

• [dNS21] ICML’21.

• [dLN+21] NeurIPS’21.

• [Cd21] NeurIPS’21.

• [Cd22] COLT ’22.

• [DdL+22] COLT’22.

• [dNNS23] SODA’23.

25

Chapter 2

Preliminaries

This chapter introduces common notation used throughout the rest of the thesis and
contains some preliminary results required for the subsequent chapters. Other specific
notions and notation will be directly introduced in the chapter themselves.

2.1 General definitions and notation
Often times, to simplify our discussion, we hide multiplicative factors logarithmic in
the parameters at hand using the notation $̃(·). When specified, we may use the same
notation to hide poly-logarithmic factors. Similarly, we hide absolute constant multiplicative
factors using the standard notations ., $(·), ⌦(·) and ⇥(·). Often we use the letter ⇠ do
denote universal constants independent of the parameters at play. We write >=(1), $=(1)
for functions tending to zero (resp. infinity) as = grows. We drop the subscript when the
context is clear. We say that an event happens with high probability if this probability is at
least 1 � >(1). Throughout this thesis, when we say "an algorithm runs in time $(@)" we
mean that the number of basic arithmetic operations involved is $(@). That is, we ignore
bit complexity issues. For sets (, (0 we denote by (⇥ (0 their Cartesian product.

Matrix and vector notations. We say that a unit vector E 2 í3 is flat if its entries are inn
± 1p

C

, 0
o

for some C. We use 1 to denote the all 1’s vector and � to denote the all 1’s matrix,
i.e. � = 1 1>. For a vector D, we use D8 to denote its 8-th entry. We use Id= to denote the
=-by-= dimensional matrix and 0 to denote the zero matrix. For a matrix ", we use "89 to
denote the (8 , 9)-th entry of ", " ⌫ 0 to denote that " is positive semidefinite, Tr(") to
denote the trace of ". Similarly, for matrices �, ⌫ 2 í=⇥= we write � ⌫ ⌫ if ��⌫ is positive
semidefinite. For a matrix " 2 í=⇥3 we denote with k"k or k"kop its spectral norm and
with k"kF its Frobenius norm. For a matrix " 2 í=⇥= , we denote by ⌫1(") > . . . > ⌫=(")
its eigenvalues. Then ⌧(") := max8 |⌫8(")| is the spectral radius of ". W When the context
is clear we simply write ⌫1, . . . ,⌫= . The spectral radius of a matrix satisfies the following

26

inequality.

Fact 2.1 (Gelfand’s Formula). Let " 2 í=⇥= and let k·k⇤ be a norm. Then for any positive integer
I

⌧(") 6 k"I k1/I⇤ .

For two matrices - and . of the same size, we use � to denote the Hadamard product
and we define their inner product by h- ,.i = Õ

=

8 , 9=0 -89.89 = Tr(->.). We introduce here
several additional matrix norms.

Definition 2.2 (!1 norm). For a matrix " 2 í=⇥3 we denote with k"k1 its !1 norm:

k"k1 =
’

82[=], 92[3]

��
"89

��
.

Definition 2.3 (Infinity norm). For a matrix " 2 í=⇥3 we denote with k"k1 its infinity
norm:

k"k1 = max
82[=], 92[3]

��
"89

��
.

We also use the notation k"kmax.

Definition 2.4 (Nuclear norm). For a matrix " 2 í=⇥= we denote with k"knuc its nuclear
norm:

k"knuc =
’
82[=]

|⌫8(")| .

where ⌫8(") is the 8-th eigenvalue of matrix ".

Definition 2.5 (Schatten norm). For a matrix " 2 í=⇥= and C > 1 we denote by k"k
C

its
C-Schatten norm:

k"k
C
=

�
Tr

�
"

C
� �1/C

.

Notice that for C = 1we recover the spectral norm of ".

Graphs. We denote graphs with the notation ⌧(+ , ⇢). We use +(⌧) to denote the set of
vertices in ⌧ and similarly ⇢(⌧) to denote its set of edges. When the context is clear we
simply write + and ⇢. We denote by = be the complete graph on = vertices.

Definition 2.6 (Walk). A walk, in a graph ⌧ is a sequence of vertices (E1, . . . , EI+1). We
say, is a self-avoiding walk if no vertex is visited twice.

For a graph⌧with+(⌧) ✓ [=] and vertices 8 , 9 2 +(⌧), we let SAWB

89
(⌧) be the set of self-

avoiding walks between 8 and 9 in ⌧ of length B. For 8 , 9 2 [=], B > 1, we use SAWB

89
to denote

the set of self-avoiding walks between 8 and 9 in = . We let SAWB

8
(⌧) :=

–
92[=]

SAWB

89
(⌧).

27

2.2 Sum-of-squares
We introduce here of pseudo-distributions and sum-of-squares proofs (see the lecture notes
[BS16] for more details and the appendix in [MSS16] for proofs of some the propositions
appearing here).

Let G = (G1, G2, . . . , G=) be a tuple of = indeterminates and let í[G] be the set of
polynomials with real coefficients and indeterminates G1, . . . , G= . We say that a polynomial
? 2 í[G] is a sum-of-squares (sos) if there are polynomials @1, . . . , @A such that ? = @

2
1+· · ·+@2

A
.

2.2.1 Pseudo-distributions
Pseudo-distributions are generalizations of probability distributions. We can represent a
discrete (i.e., finitely supported) probability distribution over í= by its probability mass
function ⇡ : í= ! í such that ⇡ > 0 and

Õ
G2supp(⇡)⇡(G) = 1. Similarly, we can describe a

pseudo-distribution by its mass function. Here, we relax the constraint ⇡ > 0 and only
require that ⇡ passes certain low-degree non-negativity tests.

Concretely, a level-✓ pseudo-distribution is a finitely-supported function ⇡ : í= ! í such
that

Õ
G
⇡(G) = 1 and

Õ
G
⇡(G) 5 (G)2 > 0 for every polynomial 5 of degree at most ✓/2. (Here,

the summations are over the support of ⇡.) A straightforward polynomial-interpolation
argument shows that every level-1-pseudo distribution satisfies ⇡ > 0 and is thus an
actual probability distribution. We define the pseudo-expectation of a function 5 on í3 with
respect to a pseudo-distribution ⇡, denoted Ö̃

⇡(G) 5 (G), as

Ö̃
⇡(G) 5 (G) =

’
G

⇡(G) 5 (G) . (2.2.1)

The degree-✓ moment tensor of a pseudo-distribution ⇡ is the tensor
Ö
⇡(G)(1, G1, G2, . . . , G=)⌦✓ . In particular, the moment tensor has an entry corresponding to

the pseudo-expectation of all monomials of degree at most ✓ in G. The set of all degree-✓
moment tensors of probability distribution is a convex set. Similarly, the set of all degree-✓
moment tensors of degree 3 pseudo-distributions is also convex. Key to the algorithmic
utility of pseudo-distributions is the fact that while there can be no efficient separation
oracle for the convex set of all degree-✓ moment tensors of an actual probability distribution,
there’s a separation oracle running in time =$(✓) for the convex set of the degree-✓ moment
tensors of all level-✓ pseudodistributions.

Fact 2.7 ([Sho87, Par00, Nes00, Las01]). For any = , ✓ 2 é, the following set has a =$(✓)-time
weak separation oracle (in the sense of [GLS81]1):

�
Ö̃
⇡(G)(1, G1, G2, . . . , G=)⌦3 | degree-d pseudo-distribution ⇡ over í=

. (2.2.2)

1Note that in general there may be bit complexity issues for running sum-of-squares algorithms, see
[O’D17].

28

This fact, together with the equivalence of weak separation and optimization [GLS81]
allows us to efficiently optimize over pseudo-distributions (approximately)—this algorithm
is referred to as the sum-of-squares algorithm.

The level-✓ sum-of-squares algorithm optimizes over the space of all level-✓ pseudo-
distributions that satisfy a given set of polynomial constraints—we formally define this
next.

Definition 2.8 (Constrained pseudo-distributions). Let ⇡ be a level-✓ pseudo-distribution
over í= . Let A = { 51 > 0, 52 > 0, . . . , 5< > 0} be a system of < polynomial inequality
constraints. We say that⇡ satisfies the system of constraintsA at degree A, denoted⇡

A
A, if for

every (✓ [<] and every sum-of-squares polynomial ⌘with deg ⌘+Õ
82(max{deg 58 , A} 6 ✓ ,

Ö̃⇡⌘ ·
÷
82(

58 > 0 .

We write ⇡ A (without specifying the degree) if ⇡ 0 A holds. Furthermore, we
say that ⇡

A
A holds approximately if the above inequalities are satisfied up to an error

of 2�=✓ · k⌘k · Œ
82(k 58 k, where k·k denotes the Euclidean norm2 of the cofficients of a

polynomial in the monomial basis.

We remark that if ⇡ is an actual (discrete) probability distribution, then we have⇡ A
if and only if ⇡ is supported on solutions to the constraintsA.

We say that a systemA of polynomial constraints is explicitly bounded if it contains a
constraint of the form {kGk2 6 "}. The following fact is a consequence of Fact 2.7 and
[GLS81],

Fact 2.9 (Efficient Optimization over Pseudo-distributions). There exists an (= + <)$(✓)-time
algorithm that, given any explicitly bounded and satisfiable system3 A of < polynomial constraints
in = variables, outputs a level-✓ pseudo-distribution that satisfiesA approximately.

2.2.2 Sum-of-squares proofs
Let 51, 52, . . . , 5A and , be multivariate polynomials in G. A sum-of-squares proof that the
constraints { 51 > 0, . . . , 5< > 0} imply the constraint {, > 0} consists of sum-of-squares
polynomials (?()(✓[<] such that

, =
’
(✓[<]

?(·⇧82(58 . (2.2.3)

2The choice of norm is not important here because the factor 2�=✓ swamps the effects of choosing another
norm.

3Here, we assume that the bitcomplexity of the constraints inA is (= + <)$(1).

29

We say that this proof has degree ✓ if for every set (✓ [<], the polynomial ?(⇧82(58 has
degree at most ✓ . If there is a degree ✓ SoS proof that { 58 > 0 | 8 6 A} implies {, > 0}, we
write:

{ 58 > 0 | 8 6 A}
✓
{, > 0} . (2.2.4)

Sum-of-squares proofs satisfy the following inference rules. For all polynomials
5 , , : í= ! í and for all functions � : í= ! í< , ⌧ : í= ! í: , � : í? ! í= such
that each of the coordinates of the outputs are polynomials of the inputs, we have:

A
✓
{ 5 > 0, , > 0}

A
✓
{ 5 + , > 0}

,

A
✓
{ 5 > 0},A

✓
0 {, > 0}

A
✓+✓ 0 { 5 · , > 0}

(addition and multiplication)

A
✓
B ,B

✓
0 ⇠

A
✓ ·✓ 0 ⇠

(transitivity)

{� > 0}
✓
{⌧ > 0}

{�(�) > 0}
✓ ·deg(�) {⌧(�) > 0}

. (substitution)

Low-degree sum-of-squares proofs are sound and complete if we take low-level pseudo-
distributions as models.

Concretely, sum-of-squares proofs allow us to deduce properties of pseudo-distributions
that satisfy some constraints.

Fact 2.10 (Soundness). If ⇡
A
A for a level-✓ pseudo-distribution ⇡ and there exists a sum-of-

squares proofA
A
0 B, then ⇡

A·A0+A0 B.

If the pseudo-distribution ⇡ satisfiesA only approximately, soundness continues to
hold if we require an upper bound on the bit-complexity of the sum-of-squares A

A
0 ⌫

(number of bits required to write down the proof).
In our applications, the bit complexity of all sum of squares proofs will be =$(✓) (assuming

that all numbers in the input have bit complexity =$(1)). This bound suffices in order to
argue about pseudo-distributions that satisfy polynomial constraints approximately.

The following fact shows that every property of low-level pseudo-distributions can be
derived by low-degree sum-of-squares proofs.

Fact 2.11 (Completeness). Suppose 3 > A0 > A andA is a collection of polynomial constraints
with degree at most A, andA ` {Õ=

8=1 G
2
8
6 ⌫} for some finite ⌫.

Let {, > 0} be a polynomial constraint. If every degree-3 pseudo-distribution that satisfies
⇡

A
A also satisfies ⇡

A
0 {, > 0}, then for every ⌘ > 0, there is a sum-of-squares proof

A
3
{, > �⌘}.

30

2.2.3 Sum-of-squares toolkit
We introduce here several statements involving sum of squares that will be used throughout
the Thesis. We start with a Cauchy-Schwarz inequality for pseudo-distributions.

Fact 2.12 (Cauchy-Schwarz for pseudo-distributions [BBH+12]). Let 5 , , be vector polynomials
of degree at most 3 in indeterminate G 2 í= . Then, for any degree 23 pseudo-distribution ⇡,

Ö̃⇡
⇥
h 5 , ,i

⇤
6

q
Ö̃⇡[k 5 k2] ·

q
Ö̃⇡[k,k2] .

We will also repeatedly use the following SoS version of Cauchy-Schwarz inequality
and its generalization, Hölder’s inequality:

Fact 2.13 (Sum-of-Squares Cauchy-Schwarz). Let G , H 2 í3 be indeterminites. Then,

4
G ,H

8>><
>>:

 ’
8

G8 H8

!2

6

 ’
8

G
2
8

! ’
8

H
2
8

!9>>=
>>;

We will use the following fact that shows how spectral certificates are captured within
the SoS proof system.

Fact 2.14 (Spectral Certificates). For any < ⇥ < matrix �,

2
D

n
hD ,�Di 6 k�kkDk22

o
.

The next fact establishes a certificate on the infinity-to-one norm of a matrix.

Fact 2.15 ([AN04]). There exists an absolute constant ⌧ (Grothendieck’s constant) and a
polynomial time algorithm (based on sum-of-squares) that, for every � 2 í=⇥< , certifies an upper
bound to k�k1!1 tight up to a factor ⌧. More specifically, for any degree-2 pseudo-distribution
⇡ : {±1}= ⇥ {±1}< ! í

Ö̃
⇡(G ,H)h�, GHTi 6 ⌧ · k�k1!1 .

We will use the notions of pseudo-covariance and conditional pseudo-distributions.

Definition 2.16 (Pseudo-covariance). Let �, � be multi-indices over [=]. Let 3/2 > |� | + |� |.
Let ⇡ be a degree-3 pseudo-distribution in indeterminates G1, . . . , G= . . Then we write

Cov⇡
�
G
�
, G

�� = Ö̃⇡[G�G�] � Ö̃⇡[G�]Ö̃⇡[G�] .
Similarly, we defineñ⇡(G�) = Cov⇡(G� , G�) .

31

Definition 2.17 (Conditional pseudo-distribution). Let⇡ be a degree-3 pseudo-distribution
in indeterminates G1, . . . , G= . Let C > 0. Suppose ⇡ satisfies

�
G

2
8
= 1 ,88 2 [=]

. Then for

any � 2 [=]C such that Ö̃[1+G�
2] > 0 we may define the conditional pseudo-distribution of

degree 3 � C as:

Ö̃⇡[?(G) | G� = 1] =
Ö̃⇡[?(G)1+G�

2]
Ö̃⇡[1+G�

2]
.

Similarly, if Ö̃[1+G�
2] < 1, we may define the conditional pseudo-distribution of degree 3 � C

as:

Ö̃⇡[?(G) | G� = �1] =
Ö̃⇡[?(G)1�G�

2]
Ö̃⇡[1�G�

2]
.

It is straightforward to see that, after conditioning, the result is a valid pseudo-
distribution of degree 3 � C. Notice also that, when ⇡ is an actual distribution, then we
simply recover the corresponding conditional distribution.

Last, we introduce the following crucial observation about pseudo-distributions.

Lemma 2.18 (E.g. see [Sch22]). Let ⇡ be a degree 3 pseudo-distribution over indeterminates
G1, . . . , G= satisfying

�
G

2 = 1 ,88 2 [=]

. Then, for any (✓ [=] with |(| 6 3, there exists a

distribution ⇡0 over {±1}= such that, for all multi-indices � over (,

⇢̃⇡[G�] = ⇢̃⇡0[G�]

In other words, Lemma 2.18 states that, for any degree-3 pseudo-distribution ⇡ over
the hypercube and any subset (of 3 indeterminates, there exists an actual distribution
⇡
0 over the hypercube matching its first 3 moments on (. Notably, combining this results

with Definition 2.17, one gets that these low-degree moments of ⇡ and ⇡0match even after
conditioning.

32

Part I

The price of robustness

33

Chapter 3

Sparse PCA with adversarial
perturbations

In this opening technical chapter we prove the results outlined in Section 1.1.1 and
Section 1.1.2 in the context of sparse principal component analysis (sparse PCA). The content of
the chapter is mostly based on [dKNS20]. We consider the following model:

Problem 3.1 (Robust sparse PCA). Given a matrix of the form

. =, +
p
�D0E0

T + ⇢, where (3.0.1)

• E0 2 í3 is a unit :-sparse vector,

• D0 ⇠ #(0, Id=) is a standard Gaussian vector,

• , ⇠ #(0, 1)=⇥3 is a Gaussian matrix and, , D0, E0 are distributionally independent,

• ⇢ 2 í=⇥3 is an arbitrary perturbation matrix satisfying

k⇢k1 .
q
�/: · min{

p
�, 1} . (3.0.2)

Return a unit vector Ê having non-vanishing correlation with E0.

Non-robust settings can be recovered enforcing the constraint k⇢k1 = 0. To get
an intuition why bound Eq. (3.0.2) is canonical, observe that for � > ⌦(1) adversarial
perturbations of magnitude $̃(

p
�/:) could remove all information about E0 (see Section 3.1).

In other words, the definition of Problem 3.1 allows us to properly define robust algorithms
(in the context of sparse PCA) rather than base our notion of robustness on a relative
comparison between different algorithms.

We say that an algorithm is robust for a specific signal-to-noise ratio and sample
complexity, if in such settings it achieves correlation with E0 bounded away from zero, as
long as E0 remains the principal sparse component. Specifically, we say that an algorithm is

34

(= , 3, : , �, ⇣, ?)–robust if, for parameters (= , 3, : , �), with probability at least ? it outputs a
unit vector Ê such that 1 � hÊ , E0i2 6 ⇣.

To better keep track of the multiple results presented in this chapter, we provide three
tables summarizing the main results.

Strong Signal Regime

Algorithm Succeeds if Running
Time Robust

SVD with thresholding � &
q

3

=
+ : log 3

=

$

�
=3 log =

�
No

Sum of squares, Theorem 3.2 � & :·C
=

�
3

:

�1/C for 3 & (=C log1+1/C
=)C 3

$(C) Yes
Spectral algorithm, Theo-
rem 9.2 � & :

=

�
3

:

�1/3 for 3 & =3 log 3 log = $

⇣
=3 log =

⌘
*1

Table 3.1: Algorithmic landscape in the strong signal regime. The spectral algorithm is
provably resilient to the adversary used to fool SVD with thresholding but we do not expect
it to be robust to arbitrary adversaries. See Chapter 9.

Weak Signal Regime

Algorithm Succeeds if Running
Time Robust

(Generalized) diagonal
thresholding � & :p

=·C

p
log 3 for C 6 1

ln 3 min{3, =} =
$(1)

3
$(C) No

Covariance thresholding � & :p
=

q
log 3

:
2 for : .

p
3 and : .

p
= =

$(1)
3
$(1) No

Low-degree polynomials,
[dKNS20]

� & :p
=

q
log 3

:
2 +

log 3
log = for 31�>(1) . :2 .

3 and = & log5
3

=
$(1)

3
$(1) No

Sum of squares, Theo-
rem 3.6 � & :p

=·C

p
log 3 for C 6 1

ln 3 min{3, =} =
$(1)

3
$(C)

Yes

Basic SDP, Theorem 3.5 � & :p
=

q
log 3

:
2 for : .

p
3 and : .

p
=

=
$(1)

3
$(1)

Yes

Table 3.2: Algorithmic landscape in the weak signal regime.

1Robust to the distribution of Theorem 3.42.

35

Computational Lower Bounds for Polynomials
Settings Work Polynomials of degree ⇡ cannot distinguish if Up to degree

Fragile [dKNS20] � .

(q
3

=
,

: log
⇣
2+⇡3

:
2

⌘
p
⇡=

)
⇡ 6 =

log2
=

Robust Theorem 3.3 � 6 $

⇣
:p
=

�
3

:

�1/C⌘ for �=/: 6 =
0.49 and

3 6 =0.99C�1
⇡ 6 =0.001

Table 3.3: Computational landscape for low-degree polynomials.

Robust algorithms in the strong signal regime. Without adversarial perturbations, in
the strong-signal regime = & 3

�2 , the following spectral algorithm (SVD with thresholding)
matches the optimal statistical guarantees of exhaustive search (introduced in Section 1.1.1):
compute the top right singular vector of . and restrict it to the : largest entries [BBAP05,
KNV13]. Since adversarial perturbations of the order $̃(1/

p
=) can change the top eigenvalue

of the covariance matrix, PCA arguments cannot be used to obtain resilient algorithms.
Different kinds of certificates are needed.

We provide a Sum-of-Squares algorithm that recovers in time 3$(C) the sparse vector
whenever = & :

� · C
�
3

:

�1/C and 3
1/C > ⌦̃(=). The key contribution is indeed an efficient

algorithm to certify upper bounds on random quadratic forms. For subgaussian2 low-rank
quadratic forms, these upper bounds approach information-theoretically optimal bounds.

Concretely, for an =-by-3 matrix, with i.i.d. Gaussian entries, with high probability
the degree-C sum-of-squares algorithm (with running time 3$(C)) certifies an upper bound
of $(: · (:/3)�1/C · C) on the quadratic form &(G) = k,Gk2 over all :-sparse unit vectors G
if 31/C > ⌦̃(=). With these certificates, a robust algorithm for sparse PCA follows then as a
specific corollary.

It is also important to notice how this result for sparse PCA is interesting regardless of its
robustness properties. As C approaches log(3/:), the algorithm approaches the information

theoretic optimal bound $(:� · log(3/:)). For example, consider the case = = 2⇥
⇣p

log 3
⌘
.

If also 3

:
= 2⇥

⇣p
log 3

⌘
, the Sum of Squares algorithm works in time 3$

⇣p
log 3

⌘
= =

$(log2
=)

with information theoretically optimal guarantees, while exhaustive search takes time
exponential in =.

The specific algorithmic result is shown in the following theorem.

Theorem 3.2 (Robust algorithm in the strong signal regime). Given an =-by-3 matrix . of
the form,

. =
p
� · D0E0

T +, + ⇢ ,

2Formally we require a stronger property, we need matrices to be certifiably subgaussian.

36

for � > 0, a unit :-sparse vector E0 2 í3, a Gaussian matrix , ⇠ #(0, 1)=⇥3, a vector
D0 2 í= independent of , with kD0k2 = ⇥(=), and a matrix ⇢ 2 í=⇥3 satisfying k⇢k1 .p
�/: · min{

p
�, 1}.

For C 2 é suppose that 3 & =C logC+1 (=)CC and

� &
:

=

· C ·
�
3

:

�1/C
.

Then, there exists an algorithm that computes in time 3$(C) a unit vector Ê 2 í3 such that

1 � hÊ , E0i2 6 0.01

with probability at least 0.99.

In any case, the fundamental limitation of the above algorithm is the requirement 31/C >
⌦̃(=). This constraint makes it impossible to match the guarantees of SVD+ thresholding
in most regimes. Theorem 1.1, which we restate here, shows evidence that this limitation
is inherent by providing a lower bound against the restricted computational model of
low-degree polynomials [BHK+19, HS17, HKP+17, Hop18] This hardness results suggests
the aforementioned fundamental separation between fragile and robust algorithms: an inherent
cost to pay in exchange for robustness.

Theorem 3.3 (Restatement of Theorem 1.1). Let C be a constant and let 3 6 =0.99C�1. Suppose
that

� 6 $
✓
:

=

· C · (3/:)1/C
◆
.

and3 �=/: 6 =
0.49. Then, there exists a distribution ⇠ over = ⇥ 3 matrices . of the form

. =
p
�D0E

)

0 +, + ⇢ where k⇢k1 6 $̃
�
1/
p
=

�
, with the following properties:

• ⇠ is indistinguishable from the Gaussian distribution#(0, 1)3⇥= with respect to all multilinear
polynomials of degree at most =0.001 in the sense described in Section 3.4.1.2,

• the jointly-distributed random variables, , D0, E0 are independent,

• the marginal distribution of E0 is supported on unit vectors with entries in
n
�1/
p
: , 0, 1/

p
:

o
,

• the marginal distribution of D0 is uniform over {�1, 1}= ,

• the marginal distribution of, is #(0, 1)=⇥3.
3This constraint is used to ensure that inequalities of the form � & :p

=·⇡ for any ⇡ 6 =0.001 are never
satisfied. Informally speaking, we restrict our statement to the settings where algorithms with guarantees
similar to diagonal thresholding do not work.

37

Remark 3.4 (Sparse PCA and Gaussian mixtures). Sparse principal component analysis is
intimately related to the problem of learning Gaussian mixtures. Indeed, for a vector E0
with entries in {±1/

p
: , 0}, sparse PCA can be rephrased as the problem of learning a non-

uniform mixture " of three subgaussian distributions, one centered at zero, one centered
at

p
�/: · D0 and the last at �

p
�/: · D0. As we will see, this is true even for the distribution ⇠

used in Theorem 3.3 Thus, from this perspective the result also provides interesting insight
on the complexity of this problem. The theorem suggests that to distinguish between "
and a standard Gaussian, ⇠ #(0, 1)=⇥3, an algorithm would either need 3 & =C samples
or should not be computable by polynomials of degree at most =0.001.

Robust algorithms in the weak signal regime. Without adversarial corruptions, the
algorithmic landscape in the weak-signal regime is more nuanced. One of the best known
polynomial-time algorithms is diagonal thresholding [JL09]: restrict the empirical covariance
matrix to the principal submatrix that contains the : largest diagonal entries and output the
top eigenvector of this submatrix. This algorithm succeeds with high probability whenever
= & :

2

�2 log 3

:
— almost quadratically worse than exhaustive search.

Similar guarantees were shown to be achievable in polynomial time through a semidefi-
nite relaxation [dGJL04, AW08] (which we refer to as the basic SDP, see Section 3.2 for a
precise formulation). Remarkably, more refined algorithms, such as covariance thresholding
[DM14] and the low-degree polynomial estimator in [dKNS20], where shown to achieve a
logarithmic improvement for 31�>(1) 6 :2 6 >(3), recovering the sparse vector whenever
� & :p

=

q
log 3

:
2 .

All aforementioned algorithms except the basic SDP can be fooled into outputting vectors
uncorrelated with E0 upon introducing entry-wise adaptive corruptions of magnitude
$(1/

p
=) (see Appendix A.1).4 As the basic SDP was not known to match the guaranteed

of Covariance Thresholding and the low-degree polynomial algorithm in [dKNS20], this
picture left a logarithmic gap between fragile and robust algorithms. Our first contribution
to this regime consists of showing that the basic SDP can actually certify tighter bounds.
Hence, it can match the guarantees of these apparently more refined, but fragile, algorithms.

Theorem 3.5 (Robust algorithm in the weak signal regime). Given an =-by-3 matrix . of the
form,

. =
p
� · D0E0

T +, + ⇢ ,

for � > 0, a unit :-sparse vector E0 2 í3, a Gaussian matrix , ⇠ #(0, 1)=⇥3, a vector
D0 2 í= independent of , with kD0k2 = ⇥(=), and a matrix ⇢ 2 í=⇥3 satisfying k⇢k1 .p
�/: · min{

p
�, 1}.

4We remark that a certain informal notion of robustness to entry-wise perturbations of the basic SDP
program was already argued in [dGJL04]. Additionally, in [BR13] the authors observed that the algorithm is
robust to small perturbations of the empirical covariance matrix. We allow here substantially more general
perturbations.

38

Suppose that

� & min
8><
>:
:p
=

s
log

✓
2 + 3

:
2 + 3

=

◆
,

3

=

+
r
3

=

9>=
>; .

Then, there exists an algorithm that uses the basic SDP program for sparse PCA, and computes
in polynomial time a unit vector Ê 2 í3 such that

1 � hÊ , E0i2 6 0.01

with probability at least 0.99.

High degree certificates in the weak signal regime. [DKWB23] and [Cd21] generalized
the idea behind Diagonal Threhsolding, providing algorithms that interpolates between
Diagonal Thresholding and brute force search. Concretely, given any natural number
C 6 =/log 3, these algorithms recover the sparse vector in time 3$(C) if � & :p

C=

p
log 3. Hence

offering a smooth trade-off between sample complexity and running time.5 Naturally, these
algorithms are also fragile. Our second contribution to the weak signal regime is a family
of robust Sum-of-Squares algorithms which match the guarantees in [DKWB23, Cd21]
in terms of error convergence, sample complexity and running time. The key insight is a
novel degree-$(C) Sum-of-Squares certificates of the bound k,Gk2 6 = + :

p
(=/C) log 3.

Theorem 3.6 (Robust algorithm via limited exhaustive search). Given an =-by-3 matrix . of
the form,

. =
p
� · D0E0

T +, + ⇢ ,

for � > 0, a unit :-sparse vector E0 2 í3, a Gaussian matrix , ⇠ #(0, 1)=⇥3, a vector
D0 2 í= independent of , with kD0k2 = ⇥(=) and a matrix ⇢ 2 í=⇥3 satisfying k⇢k1 .p
�/: · min{

p
�, 1}.

Suppose that for some positive integer C 6 1
ln 3 min{3, =},

� &
:p
=C

p
log 3 .

Then, there exists an algorithm that computes in time =$(1)
3
$(C) a unit vector Ê 2 í3 such that

1 � hÊ , E0i2 6 0.01

with probability 0.99.

Whenever :2 6 31�⌦(1), Theorem 3.6 provides better guarantees than Theorem 3.5 (with
worse running time).

It is also interesting to compare this result with the bound of Theorem 3.2. For some C, we
can determine the parameter regimes when one theorem provides better guarantees then
the other for running time 3$(C). Assume that (C + 1)C+1

=
C+1 �log =

�
C+2 & 3 & CC=C

�
log =

�
C+1.

Then there exist constants 0 < ⇠ < ⇠
0 such that:

5This approach can be generalized to sparse tensors, see [Cd21].

39

• If :2 6 3 · (⇠C)C , we get C ·
�
3

:

�1/C
>

p
=

C
log 3, so in this case the guarantees in

Theorem 3.6 are better.

• If :2 > 3 ·
⇣
= log2

=

⌘2
· (⇠0C)C , we get C ·

�
3

:

�1/C
<

p
=

C
log 3, so in this case the guarantees

in Theorem 3.2 are better.

Informally speaking, these conditions show that the guarantees in Theorem 3.2 are better
when the vector is only mildly sparse: :2 � 3, and the number of samples = is very small.

Outline and notation
We conclude the section with an outline of the structure of the chapter and some notation.

In Section 3.1 we give an overview of the techniques and the ideas required to obtain the
results. We use the prelminary notions introduced in Section 2.2. Section 3.2 and Section 3.3
contains the results for the basic SDP and the Sum-of-Squares algorithms. In Section 3.4
we show our lower bounds on polynomials. Additionally, Appendix A.1 contains formal
proofs that thresholding algorithms are not robust.

Notation. We use the notation in Chapter 2. For a matrix " 2 í=⇥3, we will denote
its entry 8 9 with "89 . Depending on the context we may refer to the 8-th row or the 8-th
column of " with "8 or <8 , we will specify it each time to avoid ambiguity. We call
k"k1 =

Õ
8 , 92[3]

��
"89

�� the "absolute norm" of ". For a Gaussian matrix , ⇠ #(0, 1)=⇥3, we

denote with F1, . . . ,F3 its columns. We hide absolute constant multiplicative factors using
the standard notations ., $(·), ⌦(·) and ⇥(·), we hide multiplicative factors logarithmic
in 3 using the notation $̃(·). For a set (✓ [3] ⇥ [3], and a matrix " 2 í3⇥3, we denote by
"[(] the matrix with entries "[(]

8 9
= "89 if (8 , 9) 2 (, and "[(]

8 9
= 0 otherwise. For a

matrix " 2 í3⇥3 and � 2 í, we define ◆�(") 2 í3⇥3 to be the matrix with entries

◆�(")
8 9
=

(
"89 if

��
"89

�� > �

0 otherwise.

Furthermore, we define ✓�(") 2 í3⇥3 to be the matrix with entries

✓�(")
8 9
=

(
"89 � sign

�
"89

�
· � if

��
"89

�� > �

0 otherwise.

Additional notation will be introduced when needed.
Remark 3.7 (Strong and weak signal regimes in robust settings). The attentive reader may
have noticed how the notions of strong and weak signal regime should differ in the robust
settings. Indeed there is no easy algorithm that looks at the spectrum of . and begins to

40

work as � approaches
q

3

=
. In this sense, in the presence of an adversary the bound � .

q
3

=

looses significance. However we will continue using these terms to orientate ourselves and
implicitly describe which are the desirable guarantees an algorithm should possess in a
given regime. For this reason, when talking about weak-signal regime, our discussion will
implicitly revolve around settings in which � & :p

=

q
log 3

:
2 .

3.1 Techniques
Here we outline the main ideas used to design the algorithm and lower bounds behind
the results in the chapter. We assume the reader to be familiar with the knowledge in
Section 2.2.

3.1.1 Robustness from sparse eigenvalue certificates
How robust should an algorithm be? In light of our discussion, we would like efficient
algorithms to be as resilient6 as exhaustive search. In order for such brute-force algorithm
to recover the sparse vector E0, there must be no other sparse vector G far from E0 such
that k.Gk ⇡ k.Ek. This also means that the adversary should not be able to plant a
:-sparse vector I far from E0 such that k.Gk & k.E0k. To see what bound to enforce on the
adversarial matrix, first observe that if ⇢ were the zero matrix then

k.E0k =
���,E0 +

p
�D0

��� & p
= + �=.

Now consider the following adversarial matrix, let G be a :-sparse unit vector with entries
in

n
0,±1/

p
:

o
and such that the intersection between supp{G} and supp{E0} is the empty

set. With high probability k,Gk ⇡
p
=. So let I = 1

k,Gk,G and define ⇢ as the matrix with
entries ⇢89 = 1 · I8 · sign(G9), where 1 > 0 is some parameter that we will choose later. Then

k.Gk = k(, + ⇢)Gk =
���⇣k,Gk + 1

p
:

⌘
I

��� ⇡ p= + 1
p
:.

Consequently, k.Gk > k.E0k whenever
p
= + 1

p
: >

p
= + �=. The inequality is true for

1 &
q

�=
:
· min

�p
�, 1

. In other words, the perturbation matrix must satisfy the bound:

k⇢k1 6 ⌦̃
 r

�

:

· min
np

�, 1
o!

. (Bound-1)

For a set of parameters 3, = , : , �, we call an algorithm perturbation resilient if it can
successfully recover the sparse vector for any adversarial perturbation satisfying bound
Bound-1.

6We interchangeably use the terms robust and resilient.

41

Remark 3.8. In the proofs presented here, we will measure adversarial corruptions with the
norm k⇢k1!2, which denotes the largest norm of a column of ⇢. Clearly this choice allows
for a larger class of adversaries. There are a two main reasons behind our choice. The first
one being that the adversarial matrices we consider are more naturally described using
such norm. Furthermore, this norm has a direct correspondence with the infinity norm of
the adversarial perturbation in the covariance matrix. Indeed,

��
⇢

T
⇢

��
1 = k⇢k21!2. This also

allows one to draw a better comparison between the Wishart and the Wigner model. We
remark that the reasoning above can be used as well to show the bound:

k⇢k1!2 . min

(r
�=

:

· min
np

�, 1
o)

. (Bound-2)

Algorithms that certify sparse eigenvalues. For simplicity of the discussion we illustrate
the idea of sparse eigenvaluex certificates for the Wigner model: . = ✏E0E0T +, + ⇢,
where ✏ > 0, E0 2 í3 is a :-sparse unit vector,, ⇠ #(0, 1)3⇥3 and ⇢ is some matrix with
small entries. Denote the set of :-sparse unit vectors by (: . The starting idea is to turn the
following intuition into an identifiability proof and then a Sum of Squares program: if Ê
is a :-sparse unit vector which maximizes ET

.E over (: and ✏ is large enough, then with
high probability hÊ , E0i2 > 0.99.

Concretely, observe that

on one side E0
T
.E0 = ✏ + E0

T
,E0 + E0

T
⇢E0,

on the other Ê
T
.Ê = ✏hÊ , E0i2 + ÊT

,Ê + ÊT
⇢Ê.

Combining the two and rearranging we obtain the inequality

hÊ , E0i2 > 1 � 1
✏
$

✓
max
E2(:

E
T
,E + max

E2(:
E

T
⇢E

◆
.

Now, this is where certified upper bounds come in to the picture. There is an easy certificate
(capture by SoS and the basic SDP) of the fact that for any matrix ", maxE2(: ET

"E 6
k"k1: Using such bound we get

hÊ , E0i2 > 1 � 1
✏
$

✓
max
E2(:

E
T
,E + :k⇢k1

◆
. (3.1.1)

Eq. (3.1.1) already shows how an algorithm that can certify sparse eigenvalues is pertur-
bation resilient (in the sense of the previous paragraph). Indeed for k⇢k1 = ⌘ · ✏/:, the
inequality becomes

hÊ , E0i2 > 1 � $(⌘) � 1
✏
$

✓
max
E2(:

E
T
,E

◆
. (3.1.2)

At this point, the guarantees of the algorithm depend only on the specific certified upper
bound on maxE2(: ET

,E it can obtain.

42

For the Wishart Model . =
p
�D0E0T +, + ⇢, the reasoning is essentially the same.

However we need to work with .T
. � =Id and carefully bound the cross terms. Similar to

the Wigner model, the guarantees of the algorithm depend only on the certified upper
bound on maxE2(: ET �

,
T
, � =Id

�
E it can obtain. For the rest of our preliminary discussion

we go back to the Wishart model.

Refined certificates via basic SDP. For a matrix " 2 í3⇥3, the basic SDP program7

argmax
�
h.T

. ,-i
��
- ⌫ 0, Tr- = 1, k-k1 6 :

(3.1.3)

can certify two types of upper bound:

h" ,-i 6 k"k1 · : (3.1.4)
h" ,-i 6 k"k . (3.1.5)

The first follows using k-k1 6 : and the second applying - ⌫ 0, Tr- = 1. These are
enough to capture standard principal component analysis as well as diagonal and covariance
thresholding.

Specifically, Eq. (3.1.5) can be used to certify the upper bound h,T
, � =Id,-i 6

$

⇣
3 +
p
3=

⌘
– obtaining the guarantees of PCA – and Eq. (3.1.4) the bound h,T

, �

=Id,-i 6 $
⇣
: ·

p
= log 3

⌘
, as in diagonal thresholding8. Now these results were already

known, but surprisingly a combination of the two bounds can also be used to show
h,T

, �=Id,-i 6 : ·
p
= log(3/:2). Thus allowing us to match the guarantees of covariance

thresholding.
Concretely, using the notation from the introduction,

h,T
, � =Id,-i = h◆�

�
,

T
, � =Id

�
,-i+

h,T
, � ◆C

�
,

T
,

�
,-i.

Here ,T
, � ◆C

�
,

T
,

�
is a matrix with entries bounded (in absolute value) by � for

which we can plug in Eq. (3.1.4) and get

h,T
, � ◆C

�
,

T
,

�
,-i 6 � · :

The same argument cannot be used for◆�
�
,

T
,

�
, but note that this matrix is suspiciously

close (up to an addition of = ·Id) to the thresholded covariance matrix obtained in covariance
thresholding. Hence, taking � =

p
= log(3/:2) and using Eq. (3.1.5), we get

h◆�
�
,

T
, � =Id

�
,-i 6 $

:

r
= log 3

:
2

!
,

where we get the spectral bound (almost) for free by the analysis in [DM14].

7Recall k-k1 =
Õ

8 , 92[3]

��
-89

�� is the "absolute norm".

8A more careful analysis can get : ·
p
= log(3/:), but we ignore it here.

43

3.1.1.1 Refined certificates via higher-level Sum-of-Squares
Refined certificates via Certifiable Subgaussianity. The Sum-of-Squares algorithm can
certify more refined bounds on sparse eigenvalues of, ⇠ #(0, 1)=⇥3. In particular we can
exploit Gaussian moments bound Öh,8 , Di2C 6 CC · kDk2C for all C 2 é, D 2 í3.

Concretely let’s see how to use such property to obtain an identifiability proof of a
bound on the :-sparse norm of, . To this end let E be a :-sparse vector and let B 2 {0, 1}3
be the indicator vector of its support (here we drop the subscript E0 to ease the notation).
Using Cauchy-Schwarz,

k,Ek4 =

 ’
863

E8 h,8 ,,Ei
!2

6

 ’
863

E
2
8

! ’
863

B
2
8
h,8 ,,Ei2

!
6

 ’
863

B
2
8
h,8 ,,Ei2

!
.

Then applying Holder’s inequality with 1/? + 1/C = 1, and using the fact that B is binary
with norm :,
 ’
863

B
2
8
h,8 ,,Ei2

!
6

 ’
863

B
2?
8

!1/? ’
863

h,8 ,,Ei2C
!1/C

6 k,Ek2 · :1�1/C
 ’
863

h,8 ,

1
k,Ek,Ei2C

!1/C

.

This gets us to,

k,Ek2 6 :1�1/C ·
 ’
863

h,8 ,

1
k,Ek,Ei2C

!1/C

. (3.1.6)

Now, whenever 3 & =CCC logC = , the C-moment of the column vectors,1 . . . ,,3 converges
with high probability. That is, for any unit vector D,

1
3

’
863

h,8 , Di2C 6 $(CC) . (3.1.7)

Thus, combining Eq. (3.1.6) and Eq. (3.1.7) we can conclude

k,Ek2 . :1�1/C · 31/C · C .

The catch is that all the steps taken can be written as polynomial inequalities of degree
at most $(C). So we can certify the same bound through the Sum-of-Squares proof system.

Certificates via limited brute force. Whenever the sparse vector E0 is almost flat, that is
when for all 8 2 supp{E0}we have |E08 | 2

h
1

⇠

p
:

,
⇠p
:

i
, the guarantees of diagonal thresholding

can be improved at the cost of increasing its running time (see [DKWB23, Cd21]).
Diagonal thresholding can be viewed as selecting the : vectors of the standard basis

41, . . . , 43 maximizing k.48 k2, and then returning a top eigenvector of the covariance

44

matrix projected onto the span of such vectors. Indeed this formulation has an intuitive
generalization, namely instead of looking at 1-sparse vectors, the algorithm could look into
C-sparse vectors D with entries in

�
±1/
p
C , 0

, pick the top

�
:

C

�
and use them to recover E0.

This idea can be translated into a certified upper bound for the sparse eigenvalues of
, ⇠ #(0, 1)=⇥3. Although we will be able to recover general sparse vectors, for the sake of
this discussion we assume E0 is flat.9 Let’s denote the set of C-sparse flat vectors byNC . Let
E0 2 í3 be a :-sparse vector and denote with ⇡ the uniform distribution over the vectors
inNC such that hD , E0i =

p
C/:. That is, the set of vectors D such that supp{D} ✓ supp{E0}

and with sign pattern matching the sign pattern of E restricted to supp{D}.
Note that for any matrix " 2 í3⇥3,

E0
T
"E0 =

:

C

Ö
D⇠⇡

Ö
D
0⇠⇡

D
T
"D

0
.

This equality per se is not interesting, but for a Gaussian matrix, ⇠ #(0, 1)=⇥3, with high
probability,

max
D ,D
02NC

��
D

T �
,

T
, � =Id

�
D
0�� 6 $ ⇣p

=C log 3
⌘
.

Thus, combining the two we get

E0
T �
,

T
, � =Id

�
E0 =

:

C

Ö
⇡

D
T �
,

T
, � =Id

�
D
0

6
:

C

max
D ,D
02NC

��
D

T �
,

T
, � =Id

�
D
0��

6
:p
C

p
= log 3 ,

which allows us to conclude that k,E0k2 6 = + :p
C

p
= log 3. This certificates can be proved

using Sum-of-Squares, hence allowing us to improve over the basic SDP by a factor C in the
settings :2 6 31�⌦(1).

3.1.2 Concrete lower bounds for robust algorithms
Sparse principal component analysis is what we often call a planted problem. These are
problems that ask to recover some signal hidden by random or adversarial noise. The
easiest way one could formulate a planted problem is its distinguishing version: where
given two distributions, a null distribution without structure and a planted distribution
containing the hidden signal, the objective is to determine with high probability whether a
given instance was sampled from one distribution or the other.

A common strategy to provide evidence for information-computation gap in a certain
planted problem is to prove that powerful classes of efficient algorithms are unable to

9So the Sum-of-Squares algorithm works in more general settings than the algorithm from [DKWB23].

45

solve it in the (conjecturally) hard regime. Indeed our goal here will be that of constructing
two distributions under which low-degree polynomials take roughly the same values
and hence cannot distinguish (in the sense of Section 3.4.1) from which distribution the
instance . was sampled. Since low-degree polynomials cannot tell if . has indeed the form
, +

p
�D0E0T + ⇢ (and therefore cannot solve the problem), this would mean they cannot

be used to improve over the guarantees of Theorem 3.2.
Our null distribution ⇡ will be the standard Gaussian #(0, 1)=⇥3. However, the main

question is how to design the planted distribution⇠. Recall. takes the form,+
p
�D0E0T+⇢.

If we set ⇢ = 0, then our planted distribution corresponds to the single spike covariance
model. We could get a lower bound for such problem (see [dKNS20]) but this would not
help us in showing that the guarantees of Theorem 3.2 are tight. On the other hand, if
for example we choose ⇢ with the goal of planting a large eigenvalue, then the problem
of distinguishing between ⇡ and ⇠ may become even easier than without adversarial
perturbations.

This suggests that we should choose ⇢ very carefully, in particular we should design ⇢
so that . =, +

p
�D0E0T + ⇢ appears – to the eyes of a low-degree polynomial estimator –

as a Gaussian distribution. Our approach will be that of constructing ⇢ so that the first
few moments of ⇠ will be Gaussian. This will lead us to Theorem 3.3 through two basic
observations: first, given two distributions with same first 2C moments, computing those
first 2C moments won’t help distinguishing between the two distributions. Second, for
a Gaussian distribution #(0, Id=), at least =C samples are required in order for the 2C-th
moment of the empirical distribution to converge to Ö

⇥
F
⌦2C ⇤ .

Concretely, we consider the following model: we choose iid gaussian vectors
I1, . . . , I=�1 ⇠ #(0, 1)3, and a random vector I0 2 í3 with iid symmetric (about zero)
coordinates that satisfies the following properties:

1. I0 has approximately : large coordinates (larger than ⌫ ⇡
p
�=/: by absolute value).

2. For any coordinate of I0 its first 2C � 2 moments coincide with moments of #(0, 1),
and its higher A-moments (for even A) are close to :

3
⌫A .

Then we obtain the matrix . 2 í=⇥3 applying a random rotation ' 2 í=⇥= to the = ⇥ 3
matrix with rows I>0 , I

>
1 , . . . , I

>
=�1. It is not difficult to see that indeed such . can be written

as . =, +
p
�D0E0T + ⇢, as in the model of Problem 3.1.

Now, assume for simplicity that C is constant and denote the distribution of . de-
scribed above by ⇠ and the standard Gaussian distribution #(0, 1)=⇥3 by ⇡. An immediate
consequence of our construction is that for any polynomial ? of degree at most 2C � 2,
Ö.⇠⇠

⇥
?(.)

⇤
= Ö.⇠⇡

⇥
?(.)

⇤
. Furthermore, in order to reliably tell the difference between

Ö⇠
⇥
?
0(.)

⇤
and Ö⇡

⇥
?
0(,)

⇤
for a polynomial of even degree A > 2C (say up to A = =

0.001),
we will need a precise estimate of such A-th moments and hence at least =A/2>C samples.
This effect is then shown by proving that for multilinear polynomials ?(.) of degree
⇡ 6 =0.001, if 3 6 =0.99C�1 and �=/: 6 =0.49, then the low-degree analogue of "2-divergence

46

max
?(.) of degree 6⇡

(Ö⇡ ?(.)�Ö⇠ ?(.))2

ñ⇡ %(.) is close to zero. Note that for technical reasons our analysis

is restricted to the multilinear polynomials. As shown in [BHK+19, HS17, Hop18], this
restricted model of computation captures the best known algorithms for many planted
problems.

3.2 Robustness of the basic SDP and certified up-
per bounds

In this section we show the guarantees of the basic SDP algorithm [dGJL04, AW08], thus
proving Theorem 3.5.

We will first prove that for any matrix " 2 í3⇥3 the basic SDP can certify an upper
bound k"Gk2 6 : · k"k21 on :-sparse quadratic forms over ". Furthermore we will
show that for random Gaussian matrices, ⇠ #(0, 1)=⇥3 this bound can be significantly
improved in various ways, depending on the regime. Most notably, we will show that
the basic SDP can certify a bound k,Gk2 6 = + :

p
= log(3/min{:2

, =}), thus matching
the guarantees of Covariance Thresholding. As a corollary, we also get that for � < 1 the
algorithm achieves the best known guarantees among polynomial time algorithms in both
the fragile and the robust settings.

Formally the Sparse PCA problem can be defined as follows.

Problem 3.9. Given an instance . of 3.1 let ⌃̂ = .
T
.. Then the Sparse PCA problem is

defined by

argmax
n
E

T⌃̂E
��� kEk2 = 1, kEk0 6 :

o

where kEk0 is the number of non-zero entries in E.

Solving Problem 3.9 is NP-hard in general [MWA06, Nat95, KNV13], however the
following concrete SDP relaxation [dGJL04] can be efficiently solved

argmax
n
h⌃̂,-i

��� - ⌫ 0, Tr- = 1, k-k1 6 :
o

(SDP-1)

where k-k1 =
Õ

8 , 92[3]

��
-89

�� is the "absolute norm". We will show how to recover E0 using such

program.
We start by restating some of the notation from the introduction. For a set (✓ [3] ⇥ [3],

and a matrix" 2 í3⇥3, we denote by"[(] the matrix with entries"[(]
8 9
= "89 if (8 , 9) 2 (,

and "[(]
8 9
= 0 otherwise. For a matrix " 2 í3⇥3 and � 2 í, we define ◆�(") 2 í3⇥3 to

be the matrix with entries

◆�(") =
(
"89 if

��
"89

�� > �

0 otherwise.

47

Furthermore, we define ✓�(") 2 í3⇥3 to be the matrix with entries

✓�(") =
(
"89 � sign

�
"89

�
· � if

��
"89

�� > �

0 otherwise.

3.2.1 Basic certificates for sparse quadratic forms
We show here what certificates over sparse quadratic forms SDP-1 can provide. These
certificates are already enough to match the best known guarantees in the weak signal
regime. The first observation is that it is straightforward to bound the product between -
and matrices with small infinity norm. By construction of - this is indeed a certificate of
an upper bound over :-sparse quadratic forms.

Lemma 3.10. For : 2 é, let - 2 í3⇥3 such that k-k1 6 :. Then for any matrix " 2 í3⇥3

|h" ,-i | 6 : · k"k1.

Proof. The Lemma follows immediately by choice of -,

|h- ,"i | =

������
’
8 , 92[3]

"89-89

������ 6
’
8 , 92[3]

��
"89-89

�� 6 k"k1 ’
8 , 92[3]

��
-89

�� 6 : · k"k1.
⇤

Now we improve this bound for random matrices. In particular we look into the
Hilbert-Schmidt inner product h◆�

�
,

T
, � =Id

�
,-i.

Lemma 3.11. Let - 2 í3⇥3 be a positive semidefinite matrix such that Tr- = 1 and k-k1 6 :.
Let, ⇠ #(0, 1)=⇥3, then with probability 1 � >(1)

��h,T
, � =Id,-i

�� 6 $

min

(
:

s
= log

✓
1 + 3

:
2 + 3

= + :
p
=

◆
, 3 +

p
3=

)!
.

Proof. By Theorem A.20, k,T
, � =Idk 6 $

⇣
3 +
p
3=

⌘
with probability 1 � 3�10, so by

Lemma A.31 ��h,T
, � =Id,-i

�� 6 $ ⇣
3 +
p
3=

⌘
.

Let ⇡ ✓ [3] ⇥ [3] be the set of diagonal entries of
�
,

T
, � =Id

�
and ⇡̄ its complement.

For any � > 0 we can rewrite the matrix
�
,

T
, � =Id

�
as

,
T
, � =Id =

�
,

T
, � =Id

�
[⇡] + ◆�

�
,

T
, � =Id

� ⇥
⇡̄

⇤
+

�
,

T
, � =Id � ◆�

�
,

T
, � =Id

� � ⇥
⇡̄

⇤
.

Now, by Fact A.18 with probability 1� >(1),
���
,

T
, � =Id

�
[⇡]

�� 6 10
p
= log 3. Furthermore,

◆�
�
,

T
, � =Id

�
[⇡̄] = ✓�

�
,

T
, � =Id

�
[⇡̄] +" ,

48

where " 2 í3⇥3 is a matrix with k"k1 6 � and by Theorem A.26 there is a constant
⇠ > 1 such that

��✓� �,T
, � =Id

�
[⇡̄]

�� 6 ⇠ ⇣
3 +
p
3=

⌘
exp

h
� �2

⇠=

i
with probability 1 � >(1).

Let � = 10⇠ ·
r
= log

⇣
1 + 3

:
2 + 3

=+:
p
=

⌘
. If 3 6 =,

��✓� �,T
, � =Id

�
[⇡̄]

�� 6 3⇠:
q
= + :

p
= ·

2
p
3=

:

p
= + : +

p
3(= + :) + :

p
3

!
6 10⇠:

p
= .

If :2 6 = 6 3, ��✓� �,T
, � =Id

�
[⇡̄]

�� 6 ⇠:2 ·
✓

23
:

2 + 3

◆
6 2⇠:

p
= .

And if = 6 max{:2
, 3},

��✓� �,T
, � =Id

�
[⇡̄]

�� 6 ⇠(= + :
p
=) ·

✓
23

= + :
p
= + 3

◆
6 4⇠:

p
= .

So, applying Lemma A.31, we get��h◆� �,T
, � =Id

� ⇥
⇡̄

⇤
,-i

�� 6 ��✓� �,T
, � =Id

� ⇥
⇡̄

⇤�� + |h" ,-i | 6 2:�.

Since - is :-bounded,��h�,T
, � =Id � ◆�

�
,

T
, � =Id

� � ⇥
⇡̄

⇤
,-i

�� 6 :�.
Hence with probability 1 � >(1)

��h,T
, � =Id,-i

�� 6 30⇠:

s
= log

✓
2 + 3

:
2 + 3

= + :
p
=

◆
+ 10

p
= log 3

6 100⇠:

s
= log

✓
2 + 3

:
2 + 3

= + :
p
=

◆
,

since if : 6 log 3, log
⇣
2 + 3

:
2

⌘
> 1

2 log 3. ⇤

3.2.2 The basic SDP algorithm
Having providing certificates on sparse quadratic form, we can now use Eq. (SDP-1) to
obtain a robust algorithm for Sparse PCA.

Algorithm 3.12 (SDP-based Algorithm).

Input: Sample matrix . =
p
� · D0E

)

0 +, + ⇢ 2 í=⇥3 from 3.1.

Estimate: The sparse vector E0.

Operation:

49

1. Compute matrix - 2 í3⇥3 solving program SDP-1.
2. Output top eigenvector Ê of -.

Indeed we will show that Algorithm 3.12 is perturbation resilient (in the sense of
Appendix A.1) and its guarantees matches those of the state-of-the-art fragile algorithms
such as SVD, Diagonal Thresholding and Covariance Thresholding. The following theorem
formalize this result.

Theorem 3.13. Let . be a =-by-3 matrix of the form,

. =
p
� · D0E0

T +, + ⇢ ,

for a unit :-sparse vector E0 2 í3, a standard Gaussian vector D0 ⇠ #(0, Id=), an arbitrary
matrix ⇢ 2 í=⇥3 and a Gaussian matrix , ⇠ #(0, 1)=⇥3 such that , , D0, are distributionally
independent. Then algorithm 3.12 outputs a unit vector Ê 2 í3 such that with probability 1 � >(1),

1 � hE0, Êi2 .
:

�=
· @ +

s
:

�=

 r
log 3

:

+ k⇢k1!2

!
·

1 + 1p

�

!
.

where @ := min
⇢r

= log
⇣
2 + 3

:
2 + 3

=+:
p
=

⌘
,
3+
p
3=

:

�
and k⇢k1!2 denotes the largest norm of a

column of ⇢. Furthermore, the same kind of guarantees hold if D0 is a vector with kD0k2 = ⇥(=)
independent of, .

We prove Theorem 3.13 through the result below, which will be useful in the Sum-of-
Squares proofs as well.

Theorem 3.14 (Meta-theorem). Let . be a =-by-3 matrix of the form,

. =
p
� · D0E0

T +, + ⇢ ,

for a unit :-sparse vector E0 2 í3, a standard Gaussian vector D0 ⇠ #(0, Id=), an arbitrary
matrix ⇢ 2 í=⇥3 and a Gaussian matrix, ⇠ #(0, 1)=⇥3 such that, , D0, E0 are distributionally
independent. Let - be a feasible solution of SDP-1 satisfying h⌃̂,-i > h⌃̂, E0E0Ti. Then with
probability 1 � >(1),

1 � hE0E0
T
,-i . 1

�=
·
��h,T

, � =Id,-i
�� +

s
:

�=

 r
log 3

:

+ k⇢k1!2

!
·

1 + 1p

�

!
,

where k⇢k1!2 denotes the largest norm of a column of ⇢. Furthermore, the same kind of guarantees
hold if D0 is a vector with kD0k2 = ⇥(=) independent of, .

Indeed Theorem 3.14 immediately implies Theorem 3.13.

50

Proof of Theorem 3.13. Assume Theorem 3.14 is true. By definition - satisfies its premises.
By Lemma 3.11

��h,T
, � =Id,-i

�� 6 $

min

(
:

s
= log

✓
1 + 3

:
2 + 3

= + :
p
=

◆
, 3 +

p
3=

)!
.

Applying Lemma A.29 the result follows. ⇤

Now let’s prove Theorem 3.14. First we look into cross-terms containing the signal.

Lemma 3.15. Let. be as in Theorem 3.14 and suppose ⇢ 2 í=⇥3 is a matrix with maximal column
norm k⇢k1!2 6 1. Let - be a feasible solution to SDP-1. Then with probability 1 � >(1),

���h,Tp�D0E0
T
,-i

��� 6 $
 r

�=: log 3
:

!
.

Proof. With probability 1 � >(1), kD0k 6 $(
p
=). Let , = 1

kD0k,
T
D0. Since D0 and , are

independent, , ⇠ #(0, 1). Let (be the set of : largest coordinates in ,, and let ,0 = ,[(]. Then

, = ,0 + ,00, where vector ,00 has entries bounded by $
✓q

log 3

:

◆
and k,0k 6 $

✓q
: log 3

:

◆
with probability 1 � >(1) (by Lemma A.24). Hence by Lemma A.31,���h,Tp�D0E0

T
,-i

��� 6 $ ⇣p
=�

��h,0E0
T
,-i

�� +p
=�

��h,00E0
T
,-i

��⌘

6 $

 r
�=: log 3

:

!
+ $

⇣p
=�

��h,00E0
T
,-i

��⌘
.

By Lemma A.32 and Lemma A.31,
��h,00E0

T
,-i

�� 6 q
h,00

�
,00

�T
,-i · hE0E0T

,-i 6
q
h,00

�
,00

�T
,-i .

The desired bound follows from Lemma 3.10, since the entries of ,00
�
,00

�T are bounded by
$(log 3

:
) with probability 1 � >(1). ⇤

Lemma 3.16. Let. be as in Theorem 3.14 and suppose ⇢ 2 í=⇥3 is a matrix with maximal column
norm k⇢k1!2 6 1. Let - be a feasible solution to SDP-1. Then with probability 1 � >(1),���h⇢Tp�D0E0

T
,-i

��� 6 $ ⇣
1

p
�=:

⌘
.

Proof. With probability 1 � >(1), kD0k 6 $(
p
=). Let I = ⇢T

D0. With probability 1 � >(1) the
entries of I are bounded by $

�
1

p
=

�
. By Lemma A.32 and Lemma A.31,

��hIE0
T
,-i

�� 6 p
hIIT

,-i · hE0E0T
,-i 6

p
hIIT

,-i 6 $
⇣
1

p
=:

⌘
.

⇤

51

The following lemma shows how to bound the remaining cross-terms.

Lemma 3.17. Let. be as in Theorem 3.14 and suppose ⇢ 2 í=⇥3 is a matrix with maximal column
norm k⇢k1!2 6 1. Let - be a feasible solution to SDP-1. Then

��h⇢T
, +,T

⇢,-i
�� 6 21

p
:= + 12

: +
��h,T

, � =Id,-i
��
.

Proof. Applying Fact A.30 with setting � = (, � 2 · ⇢)T(, � 2 · ⇢) for some 2 > 0 and
⌫ = - we immediately get

2

��h⇢T
, +,T

⇢,-i
�� 6h,T

, ,-i + 22h⇢T
⇢,-i = = + h,T

, � =Id,-i + 22h⇢T
⇢,-i .

By Lemma 3.10

��h⇢T
, +,T

⇢,-i
�� 6 1

2

�
= +

��h,T
, � =Id,-i

��� + 2 · 12
: .

Minimizing over 2, we get
��h⇢T

, +,T
⇢,-i

�� 6 21
p
:= + : · |h,T

, � =Id,-i |
6 21
p
:= + 21

p
: · |h,T

, � =Id,-i |
6 21
p
:= + 12

: +
��h,T

, � =Id,-i
��
.

⇤

We are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. Opening up the product,

h⌃̂,-i =h⌃̂ � =Id + =Id,-i
=�kD0k2hE0E0

T
,-i + =

+ h,T
, � =Id,-i

+ h⇢T
⇢,-i

+ h⇢T
, +,T

⇢,-i
+

p
�hE0D0

T
, +,T

D0E0
T + E0D0

T
⇢ + ⇢T

D0E0
T
,-i.

Applying Lemmata 3.10, 3.11, 3.17, 3.16, 3.15 and we get

h⌃̂,-i 6 �kD0k2hE0E0
T
,-i + = + 2

��h,T
, � =Id,-i

�� + 212
: + 21

p
:= + $

 r
log 3

:

+ 1
!p

�=:

!
.

Furthermore, by choice of -,

h⌃̂,-i >h⌃̂, E0E0
Ti

52

=h⌃̂ + =Id � =Id, E0E0
Ti

>�kD0k2 + =
�

��h,T
, � =Id, E0E0

Ti
��

�
��h⇢T

⇢, E0E0
Ti

��
�

��h⇢T
, +,T

⇢, E0E0
Ti

��
�

���p�hE0D0
T
, +,T

D0E0
T + E0D0

T
⇢ + ⇢T

D0E0
T
, E0E0

Ti
���

>�kD0k2 + = � 2
��h,T

, � =Id, E0E0
Ti

�� � 212
: � 21

p
:= � $

 r
log 3

:

+ 1
!p

�=:

!

>�kD0k2 + = � $
 ��h,T

, � =Id, E0E0
Ti

�� � 12
: � 1
p
:= �

 r
log 3

:

+ 1
!p

�=:

!
.

Now by Theorem A.23
��h,T

, � =Id, E0E0Ti
�� 6 10: log(3/:) + 20

p
=: log(3/:) with prob-

ability 1 � >(1). Let < =
��h,T

, � =Id,-i
�� + ��h,T

, � =Id, E0E0Ti
��. Combining the two

inequalities and rearranging, we get

�kD0k2 ·
�
1 � hE0E0

T
,-i

�
6 $

< + 12

: + 1
p
:= +

 r
log 3

:

+ 1
!p

�=:

!
.

With probability 1 � >(1), kD0k2 > =/2. Recall that 1 6
q

�=
:

. Hence

1 � hE0E0
T
,-i 6 1

�=
$

< +

r
�=: log 3

:

+
�
1 + �

�
1

p
:=

!
.

The result follows rearranging and observing that with probability 1 � >(1),��h,T
, � =Id, E0E0Ti

�� . : log(3/:) +
p
:= log(3/:) by Lemma A.23. ⇤

3.3 Robustness of SoS and stronger certified up-
per bounds

In this section we prove Theorem 3.2 and Theorem 3.6. We will show that the Sum-of-
Squares algorithm can certify various upper bounds on sparse eigenvalues. In Section 3.3.1
we will prove increasingly stronger certified upper bounds on sparse eigenvalues of
subgaussian matrices. These certified upper bounds will require increasingly stronger
assumptions on 3 and =, but for degree log(3/:) will approach information theoretic
guarantees. In Section 3.3.2 we will prove alternative certified upper bounds fo sparse
eigenvalues of Gaussian matrices. These bounds will not require any additional assumption
on 3 and =. We will then use these bounds in Section 3.3.3 to obtain maximally robust
algorithms for Sparse PCA.

53

3.3.1 SoS certificates for sparse eigenvalues via certifiable
subgaussianity

LetAB ,E be the following system of quadratic constraints. Observe for any (B , E) satisfying
AB ,E , E is a :-sparse unit vector supported on coordinates 8 such that B8 = 1.

AB ,E :

8>>>>>>>>><
>>>>>>>>>:

Õ
3

8=1 B8 = :

88 2 [3]. B
2
8
= B8

88 2 [3]. B8 · E8 = E8
3’
8=1

E
2
8
= 1

9>>>>>>>>>=
>>>>>>>>>;

(3.3.1)

We prove a certified upper bound for sparse eigenvalues of random rectangular matrices
, 2 í=⇥3 with independent subgaussian entries. This upper bound differs considerably
from the one obtained using SDP-1. Let us recall the definition of subgaussian random
variables before proceeding.

Definition 3.18 (⇠-Subgaussian Random Variables). Aí-valued random variable G is said
to be ⇠-subgaussian if for every C, Ö|G |C 6 ⇠C/2

C
C/2.

Let,1,,2, . . . ,,3 be the columns of, . We will use the following lemma:

Lemma 3.19. Let,1,,2, . . . ,,3 2 í= be independently drawn from a product distribution with
each 1-subgaussian coordinates with mean 0 and variance 1. Then, with probability at least 0.99
over the draw of,1,,2, . . . ,,3,

2C
D

(
1
3

’
863

h,8 , Di2C 6 kDk2C2

C
C +

=
C/2 log(C+1)/2 (=)(⇠0C)C

p
3

!)
.

for some absolute constant ⇠0 > 0.

We will prove the lemma whenever the columns of , are certifiably subgaussian.
Informally, certifiably subgaussianity means that a random variable has its moments
upper-bounded as in the the definition above and that this bound has a SoS proof. Formally,
we have:

Definition 3.20 (Certifiable Subgaussianity). A í=-valued random variable . is said to
be C-certifiably ⇠-subgaussian if for all C0 6 C, 2C

D

n
Öh. , Di2C 6 ⇠CCC

�
Öh. , Di2

�
C

o
. A matrix

, 2 í=⇥3 is said to be C-certifiably ⇠-subgaussian if the uniform distribution on the
columns of, is C-certifiably ⇠-subgaussian.

Certifiable subgaussianity has, by now, appeared in several works [KSS18, KS17, HL18,
KKM18] that employ the sum-of-squares method for statistical estimation problems.

Given the above lemma, to prove Lemma 3.19, we need to show certified subgaussianity
of, when, is a random matrix in í=⇥3. To show this, we will use the following fact:

54

Fact 3.21 (Certifiable Subgaussianity of Product Subgaussians, Lemma 5.9, Page 25
of [KSS18]). Let . be a í3-valued random variable with independent, ⇠-subgaussian coordinates
of mean 0 and variance 1. Then, . is C-certifiably ⇠-subgaussian for every C.

We are now ready to prove Lemma 3.19.

Proof of Lemma 3.19. We have:

2C
D

(
1
3

 ’
863

h,8 , Di2C �Öh,8 , Di2C
!
=

*
D
⌦C
,

1
3

’
863

�
,
⌦C
8

� �
,
⌦C
8

�> �Ö�
,
⌦C
8

� �
,
⌦C
8

�>!
D
⌦C

+)
.

Using Fact 2.14 and
��
D
⌦C��2

2 = kDk2C2 , we have:

2C
D

(
1
3

’
863

h,8 , Di2C �Öh,8 , Di2C 6 kDk2C2 ·
����
✓
1
3

�
,
⌦C
8

� �
,
⌦C
8

�> �Ö�
,
⌦C
8

� �
,
⌦C
8

�>◆����
)
.

(3.3.2)
From Lemma A.17, we know that with probability at least 0.99 over the draw of
,1,,2, . . . ,,3, it holds that:

����
✓
1
3

�
,
⌦C
8

� �
,
⌦C
8

�> �Ö�
,
⌦C
8

� �
,
⌦C
8

�>◆���� 6 =
C/2 log(C+1)/2 (=)(⇠0C)C

p
3

. (3.3.3)

Using Fact 3.21,

2C
D

n
Öh,8 , Di2C 6 CC kDk2C2

o
. (3.3.4)

Combining (3.3.2), (3.3.3) and (3.3.4), we have:

2C
D

(
1
3

’
863

h,8 , Di2C 6 kDk2C2

C
C +

=
C/2 log(C+1)/2 (=)(⇠0C)C

p
3

!)
.

⇤

Lemma 3.19 implies the following lemma:

Lemma 3.22. Let , satisfy the assumptions of Lemma 3.19. Suppose that 3 > CC=C log(C+1)(=).
Then with probability at least 0.99,

AB ,E 2C
B ,E

n
k,Ek4C2 6 3:C�1(⇠0C)C k,Ek2C2

o
.

for some absolute constant ⇠0 > 0.

Proof. For D =,E, usingAB ,E 2C
B {B8E8 = E8 | 88} and Cauchy-Schwarz inequality, we have:

AB ,E 2C
B ,E ,D

8>><
>>:

 ’
863

B8E8 h,8 , Di
!2C

6

 ’
863

E
2
8

!
C
 ’
863

B
2
8
h,8 , Di2

!
C9>>=
>>;

55

UsingAB ,E 2C
B {BC�1

8
= B

2
8
| 88}, we have:

AB ,E C

B ,E ,D

8>><
>>:

 ’
863

B8E8 h,8 , Di
!2C

6

 ’
863

E
2
8

!
C
 ’
863

B
2
8
h,8 , Di2

!
C9>>=
>>;

Now, usingAB ,E 2
B ,E {Õ

8
B8 = :} and Lemma 3.19, we have:

AB ,E C

B ,E ,D

n ’
863

B8 h,8 , Di2
!
C

=

 ’
863

B
C�1
8
h,8 , Di2

!
C

6

 ’
863

B
C

8

!
C�1 ’

863

h,8 , Di2C
!

6 :C�1
3kDk2C2

C
C +

=
C/2 log(C+1)/2 (=)(⇠0C)C

p
3

!o
(3.3.5)

Plugging back D =,E, we get the desired bound. ⇤

Now we are ready to derive the certified upper bound on k,Ek22.

Lemma 3.23. Suppose that 3 > ⇠⇤CC=C logC(=) for large enough absolute constant ⇠⇤. Let ⇡ be a
pesudo-distribution satisfyingAB ,E . Let, 2 í=⇥3 with i.i.d. 1-subgaussian entries with mean 0
and variance 1. Then, with probability at least 0.99 over the draw of,1,,2, . . . ,,3,

Ö̃⇡ k,Ek22 6 ⇠0 · 31/C
:

1� 1
C C ,

for some absolute constant ⇠0 > 0.

Proof. Using Lemma 3.22 and taking pseudo-expectations with respect to ⇡ that satisfies
AB ,E , we have:

Ö̃⇡ k,Ek4C2 6 3:C�1(⇠0C)CÖ̃⇡ k,Ek2C2 .

By Cauchy-Schwarz inequality for pseudo-distributions, Ö̃⇡ k,Ek2C2 6
⇣
Ö̃⇡ k,Ek4C2

⌘1/2
,

and by Hölder’s indequality
⇣
Ö̃⇡ k,Ek22

⌘2C
6 Ö̃⇡ k,Ek4C2 . Thus, we have:

⇣
Ö̃⇡ k,Ek22

⌘
C

6 3:C�1(⇠0C)C .

Taking C-th roots gives: Ö̃⇡ k,Ek22 6 ⇠0 · 31/C
:

1� 1
C C. ⇤

3.3.2 SoS certificates for sparse eigenvalues via limited
brute force

We show here that, using additional constraints over the system AB ,E , we can provide
different certified upper bounds on the sparse eigenvalues of Gaussian matrices, .

Let SC be a set of all vectors with values in {0, 1} that have exactly C nonzero coordinates.
We start with a definition.

56

Definition 3.24. For any D 2 SC we define a polynomial in variables B1, . . . , B3 =: B

?D(B) =
✓
:

C

◆�1
·

÷
82supp{D}

B8 .

Note that if E denotes a :-sparse vector and B is the indicator of its support, then for
any D 2 SC ,

?D(B) =
(�

:

C

��1 if supp{D} ✓ supp{E}
0 otherwise

Now consider the following system BB ,E of polynomial constraints.

BB ,E :

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

88 2 [3], B
2
8
= B8Õ

82[3]
B8 = :

88 2 [3], B8 · E8 = E8Õ
82[3]

E
2
8
= 1

’
D2SC

?D(B) = 1

88 2 [3],
’
D2SC

D8?D(B) =
C

:

· B8

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(3.3.6)

We will use the following preliminary fact.

Fact 3.25. Let, ⇠ #(0, 1)=⇥3, let = > log 3 and let C 6 1
log 3 min{3, =}. Then with probability

1 � >(1) all principle submatrices of ,T
, � =Id of size C ⇥ C have spectral norm bounded by

$

⇣p
=C log 3

⌘
.

Proof. Fix a C ⇥ C principal submatrix # . By Theorem A.20 there exists a constant ⇠ > 0,
such that k# k 6 ⇠

p
=C log 3 with probability at least 1 � 310C . The fact follows taking a

union bound over all possible
�
3

C

�
submatrices. ⇤

We are now ready to show the upper bound on quadratic forms of sparse vectors.

Theorem 3.26. Let, ⇠ #(0, 1)=⇥3. Then there exists a constant ⇠ > 0 such that with probability
at least 1 � >(1),

BB ,E 4C
B ,E

⇢
�⇠ · :p

C

p
= log 3 6 ET �

,
T
, � =Id

�
E 6 ⇠ · :p

C

p
= log 3

�
.

57

Proof. Note that

BB ,E 2C
B ,E

8><
>:BB

T =
:

2

C
2

’
D ,D
02SC

D
0
D

T
?D0(B)?D(B)

9>=
>; .

For vectors G , H 2 í3 we denote the vector with entries G8 · H8 by
�
GH

�
. It follows that

BB ,E 4C
B ,E �

EE
T = (EB)(EB)T

BB ,E 4C
B ,E

8><
>:EE

T =
:

2

C
2

’
D ,D
02SC

(ED0)(ED)T?D0(B)?D(B)
9>=
>; .

Let " =
�
,

T
, � =Id

�
. Then

BB ,E 4C
B ,E �

E
T
"E = h" , EE

Ti

4C
B ,E

8><
>:E

T
"E = h" ,

:
2

C
2

’
D ,D
02SC

(ED0)(ED)T?D0(B)?D(B)i
9>=
>;

4C
B ,E

8><
>:E

T
"E =

:
2

C
2

’
D ,D
02SC

(ED)T"(ED0)?D0(B)?D(B)
9>=
>;

Now for any D , D0 2 SC ,

BB ,E 2
B ,E �

(ED)T"(ED0) = (ED)T,T
,(ED0) � =(ED)T(ED0)

2
B ,E �

2(ED)T"(ED0) 6 (ED)T,T
,(ED) + (ED0)T,T

,(ED0) � 2=(ED)T(ED0)

2
B ,E �

2(ED)T"(ED0) 6 (ED)T"(ED) + (ED0)T"(ED0) + = ·
�
k(ED)k2 + k(ED0)k2 � 2(ED)T(ED0)

�
2
B ,E �

2(ED)T"(ED0) 6 (ED)T"(ED) + (ED0)T"(ED0)

.

where the first equality follows by definition, the second using the fact that
for any # ⌫ 0, and 0 , 1 2 í3, 2

B ,E �
h(0 � 1)(0 � 1)T ,#i > 0

. The last follows

from the fact that 2
B ,E

n
k0 � 1k2 > 0

o
. Similar derivation shows that BB ,E 4C

B ,E

�
�2(ED)T"(ED0) 6 �(ED)T"(ED) � (ED0)T"(ED0)

.

Now let @ be the maximal norm of any C ⇥ C principal submatrices of ". Note that for
any D 2 SC , |supp{(ED)}| 6 C. Since BB ,E 4C

B ,E {B8 > 0}, BB ,E 4C
B ,E �

?D(B) > 0

,

BB ,E 4C
B ,E

8><
>:E

T
"E 6

:
2

2C2
’

D ,D
02SC

�
(ED)T"(ED) + (ED0)T"(ED0)

�
?D0(B)?D(B)

9>=
>;

4C
B ,E

8><
>:E

T
"E 6

:
2

2C2
’

D ,D
02SC

�
@ · k(ED)k2 + @ · k(ED0)k2

�
?D0(B)?D(B)

9>=
>;

4C
B ,E

8>><
>>:
E

T
"E 6 @

:
2

2C2
©≠
´
’
D2SC
k(ED)k2?D(B)

©≠
´
’
D
02SC

?D0(B)™Æ
¨
+

’
D
02SC
k(ED0)k2?D0(B)

©≠
´
’
D2SC

?D(B)™Æ
¨
™Æ
¨
9>>=
>>;

58

4C
B ,E

8>><
>>:
E

T
"E 6 @

:
2

2C2
©≠
´
’
D2SC
k(ED)k2?D(B) +

’
D
02SC
k(ED0)k2?D0(B)™Æ

¨
9>>=
>>;

4C
B ,E

8><
>:E

T
"E 6 @

:
2

C
2

’
D2SC
k(ED)k2?D(B).

9>=
>;

Here the second inequality follows from choice of @, the third uses the fact that BB ,E 4C
B ,E(Õ

D2SC
?D(B)

!
= 1

)
. Finally observe that

BB ,E 4C
B ,E

8><
>:
’
D2SC
k(ED)k2?D(B) =

’
D2SC

3’
8=1

E
2
8
D

2
8
· ?D(B)

9>=
>;

4C
B ,E

8><
>:
’
D2SC
k(ED)k2?D(B) =

3’
8=1

E
2
8

’
D2SC

D8 · ?D(B)
9>=
>;

4C
B ,E

8><
>:
’
D2SC
k(ED)k2?D(B) =

C

:

3’
8=1

E
2
8
B8

9>=
>;

4C
B ,E

8><
>:
’
D2SC
k(ED)k2?D(B) =

C

:

9>=
>; ,

where we used the facts 2⌫B ,E 2
B ,E {E8 = E8 · B8} and 2⌫B ,E 4C

B ,E

(Õ
D2SC

D8?D(B) = C

:
· B8

)
. By

Fact 3.25, there exists an absolute constant ⇠ > 0 such that with probability 1 � >(1),
@ 6 ⇠

p
=C log C. Hence with probability 1 � >(1),

BB ,E 4C
B ,E

⇢
E

T
"E 6 ⇠

:p
C

p
= log 3

�
.

Similar derivation shows that

BB ,E 4C
B ,E

⇢
�ET

"E 6 ⇠
:p
C

p
= log 3

�
.

⇤

3.3.3 SoS algorithms
We now use the certified upper bounds from the previous sections to obtain efficient algo-
rithms for Sparse PCA with adversarial errors, thus proving Theorem 3.2 and Theorem 3.6
which we formally restate.

59

Theorem 3.27. Suppose 3 & =C logC (=)CC for C 2 é. Let . be an =-by-3 matrix of the form,

. =
p
� · D0E0

T +, + ⇢ ,

for a unit :-sparse vector E0 2 í3, a standard Gaussian vector D0 ⇠ #(0, Id=), an arbitrary
matrix ⇢ 2 í=⇥3 and a Gaussian matrix , ⇠ #(0, 1)=⇥3 such that , , D0 are distributionally
independent. Then we can compute in time 3$(C) a unit vector Ê 2 í3 such that with probability at
least 0.99,

1 � hÊ , E0i2 .
:

�=
· C ·

�
3

:

�1/C + 1
�
+

s
:

�=

 r
log 3

:

+ k⇢k1!2

!
·

1 + 1p

�

!
,

where k⇢k1!2 denotes the largest norm of a column of ⇢. Furthermore, the same kind of guarantees
hold if D0 is a vector with kD0k2 = ⇥(=) independent of, .

Theorem 3.28. Suppose = & log 3 and C 6 :. Let . be an =-by-3 matrix of the form,

. =
p
� · D0E0

T +, + ⇢ ,

for a unit :-sparse vector E0 2 í3, a standard Gaussian vector D0 ⇠ #(0, Id=), an arbitrary matrix
⇢ 2 í=⇥3 and a Gaussian matrix, ⇠ #(0, 1)=⇥3 such that, , D0 are distributionally independent.
Then we can compute in time =$(1)

3
$(C) a unit vector Ê 2 í3 such that with probability 1 � >(1),

1 � hÊ , E0i2 .
:

�
·
r

log 3
=C

+
s

:

�=

 r
log 3

:

+ k⇢k1!2

!
·

1 + 1p

�

!
,

where k⇢k1!2 denotes the largest norm of a column of ⇢. Furthermore, the same kind of guarantees
hold if D0 is a vector with kD0k2 = ⇥(=) independent of, .

We will prove Theorem 3.27 and Theorem 3.28 using Algorithm 3.29.

Algorithm 3.29 (Algorithm for Sparse PCA with Adversarial Corruptions).

Given: Sample matrix . =
p
� · D0E

)

0 +, + ⇢ 2 í=⇥3 from model 3.1, system CBE 2
{AB ,E ,BB ,E}

Estimate: The sparse vector E0.

Operation:

1. find a level-4C pseudo-distribution ⇡ that satisfies CB ,E and maximizes
Ö̃k.Ek22.

2. Output a top eigenvector Ê of Ö̃EET.

60

Let us analyze the algorithm. The first observation is that any pseudo-distribution
satisfying BB ,E also satisfiesAB ,E . Next we show that any pseudo-distribution satisfying
AB ,E is a feasible solution to SDP-1. This will allows us to use Theorem 3.14 and conclude
the proofs of Theorem 3.27 and Theorem 3.28.
Lemma 3.30. Let ⇡ be any pseudo-distribution of degree > 4 satisfyingAB ,E . Then Ö̃⇡EET is a
feasible solution to SDP-1.

Proof. Since ⇡ satisfiesAB ,E , Tr Ö̃⇡EET = Ö̃⇡
Õ
863 E

2
8
= 1. Now, there exists a vector G 2 í3

with entries in {�1,+1} such that
��Ö̃⇡EET

��
1 = hGGT

, Ö̃⇡EETi. By Cauchy-Schwarz inequality
for pseudo-distributions,

hGGT
, Ö̃⇡EETi =Ö̃⇡

’
8 , 963

G8 B8E8G9 B9E9

6
s
Ö̃⇡

’
8 , 963

G
2
8
G

2
9
B

2
8
B

2
9
·
s
Ö̃⇡

’
8 , 963

E
2
8
E

2
9

=Ö̃⇡
’
863

B
2
8

=: .

The result follows as Ö̃EET ⌫ 0. ⇤

We can now finish the analyses using the certified upper bounds from the previous
sections.

Proof of Theorem 3.27. Let ⇡ be the pseudo-distribution in Algorithm 3.29. By Lemma 3.23,
with probability at least 0.99, Ö̃⇡ k,Ek22 6 $

⇣
3

1/C
:

1� 1
C C

⌘
. Note that since the pseudo-

distribution that outputs E0 satisfiesAB ,E , by Lemma 3.30, Ö̃⇡EET satisfies the premises of
Theorem 3.14. Then we immediately get,

1 � Ö̃⇡ hE , E0i2 .
:

�=
· C ·

�
3

:

�1/C + 1
�
+

s
:

�=

 r
log 3

:

+ k⇢k1!2

!
·

1 + 1p

�

!
.

The result follows applying Lemma A.29. ⇤

Similarly,

Proof of Theorem 3.28. Let ⇡ be the pseudo-distribution in Algorithm 3.29. By Theorem
3.26, with probability 1 � >(1),

��Ö̃⇡ET �
,

T
, � =Id

�
E

�� 6 $ ⇣
:p
C

p
= log 3

⌘
. Note that since the

pseudo-distribution that outputs E0 with probability 1 satisfies BB ,E , by Lemma 3.30, Ö̃⇡EET

satisfies the premises of Theorem 3.14. Then we immediately get,

1 � Ö̃⇡ hE , E0i2 .
:

�
p
=C

log 3 +
s

:

�=

 r
log 3

:

+ k⇢k1!2

!
·

1 + 1p

�

!
.

The result follows applying Lemma A.29. ⇤

61

3.4 Unconditional lower bound in the presence
of adversarial perturbations

The goal of this section is to formalize Theorem 3.3. We do so first providing an overview
of the low-degree likelihood ratio and low-degree polynomials and their role in our proof.
Then we obtain the Theorem.

3.4.1 Low-degree likelihood ratio
The low-degree likelihood ratio is a proxy to model efficiently computable functions. It is
closely related to the pseudo-calibration technique and it has been developed in a recent
line of work on the Sum-of-Squares hierarchy [BHK+19, HS17, HKP+17, Hop18]. Our
description is also based on [BKW20].

The objects of study are distinguishing versions of planted problems, in which given
two distributions and an instance, the goal is to decide from which distribution the instance
was sampled. For example, in the context of Sparse PCA, the distinguishing formulation
takes the form of deciding whether the matrix . was sampled according to the (planted)
distribution as described in 3.1, or if it was sampled from the (null) Gaussian distribution
#(0, 1)=⇥3. In general, we denote with ⇡ the null distribution and with ⇠ the planted
distribution with the hidden structure.

3.4.1.1 Background on classical decision theory
From the point of view of classical Decision Theory, the optimal algorithm to distinguish
between two distribution is well-understood. Given distributions ⇡ and ⇠ on a measurable
space S, the likelihood ratio !(.) := 3ê⇠(.)/3ê⇡(.)10 is the optimal function to distinguish
whether . ⇠ ⇡ or . ⇠ ⇠ in the following sense.

Proposition 3.31. [NP33] If ⇠ is absolutely continuous with respect to ⇡, then the unique solution
of the optimization problem

maxÖ
⇠

⇥
5 (.)

⇤
subject to Ö

⇡

⇥
5 (.)2

⇤
= 1

is the normalized likelihood ratio !(.)/Ö⇡
⇥
!(.)2

⇤
and the value of the optimization problem is

Ö⇡
⇥
!(.)2

⇤
.

Similarly, arguments about statistical distinguishability are known as well. Unsurpris-
ingly, the likelihood ratio plays a major role here as well. The key concept is the Le Cam’s
contiguity.

10The Radon-Nikodym derivative

62

Definition 3.32. [LCY90] Let ⇠ =
�
⇠=

�
=2é and ⇡ = (⇡=)=2é be sequences of probability

measures on a common probability space S= . Then ⇠ and ⇡ are contiguous, written ⇠ 4 ⇡, if
as = !1, whenever for �= 2 S= , ê⇠(�=)! 0 then ê⇡(�=)! 0.

Contiguity allows us to capture the idea of indistinguishability of probability measures.
Indeed two contiguous sequences ⇠, ⇡ of probability measures are indistinguishable in the
sense than there is no function 5 : S= ! {0, 1} such that 5 (.) = 1 with high probability
whenever . ⇠ ⇠ and 5 (.) = 0 with high probability whenever . ⇠ ⇡. The key tool now is
the so called Second Moment Method, which allows us to establish contiguity through the
likelihood ratio.

Proposition 3.33. If Ö⇡
⇥
!=(.)2

⇤
remains bounded as = !1, then ⇠ 4 ⇡.

This discussion allows us to argue whether a given function can be used to distinguish
between our planted and null distributions.

3.4.1.2 Background on the low-degree method
The main problem with the likelihood ratio is that it is in general hard to compute,
thus we need to restrict these classical analysis to the space of efficiently computable
functions. Concretely, we use low-degree multivariate polynomials in the entries of the
observation . as a proxy for efficiently computable functions. Denoting with í6⇡[.] the
space of polynomials in . of degree at most ⇡ we can establish a low-degree version of the
Neyman-Pearson lemma.

Proposition 3.34 (e.g. [Hop18]). The unique solution of the optimization problem

max
5 2í6⇡[.]

Ö
⇠

⇥
5 (.)

⇤
subject to Ö

⇡

⇥
5 (.)2

⇤
= 1

is the normalized orthogonal projection !6⇡(.)/Ö⇡
⇥
!
6⇡(.)2

⇤
of the likelihood ratio !(.) onto

í6⇡[.] and the value of the optimization problem is Ö⇡
⇥
!
6⇡(.)2

⇤
.

It is important to remark that at the heart of our discussion, there is the belief that in
the study of planted problems, low-degree polynomials capture the computational power
of efficiently computable functions. This can be phrased as the following conjecture.

Conjecture 3.35 (Informal). [BHK+19, HS17, HKP+17, Hop18] For "nice" sequences of prob-
ability measures ⇠ and ⇡, if there exists ⇡ = ⇡(3) > $

�
log 3

�
for which Ö⇡

⇥
!
6⇡(.)2

⇤
remains

bounded as 3 ! 1, then there is no polynomial-time algorithm that distinguishes in the sense
described in 3.4.1.1.11

A large body of work provide support for this conjecture (see any of the citations above),
mostly in the form of evidence of an intimate relation between polynomials and Sum
of Squares algorithms and lower bounds. For a more in detail discussion we point the
interested reader to [HKP+17, Hop18].

11We do not explain what "nice" means and direct the reader to [Hop18].

63

3.4.1.3 Low-degree polynomials
In light of the discussions in Section 3.1.2 and Section 3.4.1 we study a distinguishing
problems between two distributions over matrices: the null distribution ⇡, which in our
case is a standard Gaussian, and the planted distribution ⇠ that contains some sparse signal
hidden in random (and adversarial) noise. That is, given an instance . sampled either from
the null or from the planted distribution, the goal is to determine whether . contains a
planted signal. We will show that a large class of polynomial time algorithms (capturing
the best known algorithms) cannot distinguish between the null and the planted case
even when information-theoretically possible. Specifically, we will show that low degree
polynomial estimators cannot solve these problem. Similarly to [HKP+17, HS17, DKWB23],
we study the low degree analogue of the "2-divergence between probability measures.

Definition 3.36. Let ⇠ and ⇡ be probability distributions overí=⇥3, and denote by � the set
of all functions 5 : í=⇥3 ! í such that

��Ö⇠ 5
�� < 1 and 0 < ñ⇡ 5 < 1. The "2-divergence of

⇠ with respect to ⇡ is defined as

"2(⇠ k ⇡) = sup
5 2�

�
Ö⇠ 5 �Ö⇡ 5

�2

ñ⇡ 5
.

Note that this value is related to the likelihood ratio ! described in Section 3.4.1: the
fraction in the right hand side is maximized for 5 = !, and "2(⇠ k ⇡) = Ö⇡ !

2 � 1.
Recall that, if "2(⇠ k ⇡) is bounded, then ⇠ and ⇡ are information-theoretically indis-

tinguishable in the sense of Section 3.4.1.1. The low-degree analogue of "2-divergence is
defined similarly. Denote by í[.]6⇡ the set of polynomials of degree at most ⇡ in í[.]
(where í[.] is the space of polynomials of = · 3 variables corresponding to the entries of
.).

Definition 3.37. Let ⇡ > 0 and let ⇠ and ⇡ be probability distributions overí=⇥3 such that
⇡ is absolutely continious and for all ? 2 í[.]6⇡ ,

��Ö⇠ ?
�� < 1 andñ⇡ ? < 1. The degree-⇡

"2-divergence of ⇠ with respect to ⇡ is defined as

"2
6⇡(⇠ k ⇡) = sup

?2í[.]6⇡

�
Ö⇠ ? �Ö⇡ ?

�2

ñ⇡ ?
,

where we assume that 0/0 = 0.

Note that since ⇡ is absolutely continuous, the denominatorñ⇡ ? is zero if and only if ?
is constant (and in this case the numerator is also zero).

64

3.4.1.4 Chi-squared-divergence and orthogonal polynomials
Recall that given a hypothesis testing problem with null distribution ⇡ and planted
distribution ⇠, we say a polynomial ?(.) 2 í[.]6⇡ cannot distinguish between ⇠ and ⇡ if��Ö⇠ ?(.) �Ö⇡ ?(.)

��p
ñ⇡ ?(.)

6 >(1) . (3.4.1)

So, if for some distinguishing problem this ratio is small for all ? 2 í[.]6⇡ , then poly-
nomial estimators of degree at most ⇡ cannot solve this distinguishing problem. The
key observation used to prove bounds for low degree polynomials is the fact that the
polynomial which maximizes the ratio (3.4.1) has a convenient characterization in terms of
orthogonal polynomials with respect to the null distribution.

Formally, for any linear subspace of polynomials S6⇡ ✓ í[.]6⇡ and any absolutely
continuous probability distribution ⇡ such that all polynomials of degree at most 2⇡ are
⇡-integrable, one can define an inner product in the space S6⇡ as follows

8? , @ 2 S6⇡
⌦
? , @

↵
= Ö
.⇠⇡

?(.)@(.) .

Hence we can talk about orthonormal basis in S6⇡ with respect to this inner product.

Proposition 3.38. Let S6⇡ ✓ í[.]6⇡ be a linear subspace of polynomials of dimension # .
Suppose that ⇡ and ⇠ are probability distributions over . 2 í=⇥3 such that any polynomial of
degree at most ⇡ is ⇠-integrable and any polynomial of degree at most 2⇡ is ⇡-integrable. Suppose
also that ⇡ is absolutely continuous. Let {#8(.)}#

8=1 be an orthonormal basis in S6⇡[.] with respect
to ⇡. Then

max
?2S6⇡

�
Ö⇠ ?(.)

�2

Ö⇡ ?
2(.) =

#’
8=1

✓
Ö
⇠
#8

◆2
.

Proof. For any ? 2 S6⇡

Ö
⇠
?(.) = Ö

⇠

#’
8=1

?8#8(.) =
#’
8=1

?8 Ö
⇠
#8(.) 6

#’
8=1

?
2
8

!1/2
#’
8=1

✓
Ö
⇠
#8(.)

◆2
!1/2

.

Since the system {#8(.)}#
8=1 is orthonormal with respect to ⇡,

Ö
⇡
?

2(.) =
#’
8=1

?
2
8
.

Hence we get
Ö⇠ ?(.)�
Ö⇡ ?

2(.)
� 1

2
6

"
#’
8=1

✓
Ö
⇠
#8

◆2
#1/2

.

Note that the polynomial
Õ
#

8=1Ö.0⇠⇠
⇥
#8(.0)

⇤
#8(.) maximizes the ratio. ⇤

65

From now on we assume that the distribution ⇡ is Gaussian. In this case a useful
orthonormal basis in í[.]6⇡ is the system of Hermite polynomials.

To work with Hermite polynomials we introduce some useful notation. For a multi-
index � over [=] ⇥ [3], let �� := {8 2 [=] : (8 , 9) 2 � for some 9 2 [3]} and similarly
�� := { 9 2 [3] : (8 , 9) 2 � for some 8 2 [=]}. For 9 2 [3], let ��, 9 := {8 2 [=] : (8 , 9) 2 �}, and
similarly let ��,8 := { 9 2 [3] : (8 , 9) 2 �}. We will use the notation �! :=

Œ
(8 , 9)2� �8 9! and for

a matrix - 2 í=⇥3, -� :=
Œ

(8 , 9)2� -
�8 9
8 9

. Note that every multi-index � over [=] ⇥ [3] can
be represented as a bipartite multigraph ⌧� = (��

–
�� , ⇢�) such that each edge {8 , 9} has

multiplicity �8 9 . In this representation the set ��,8 corresponds to the neighborhood of the
vertex 8 and the set ��, 9 corresponds to the neighborhood of 9. If � is multilinear, ⌧� is just
a graph (i.e. multiplicity of each edge is 1).

For a multi-index � over [=] ⇥ [3] the corresponding Hermite polynomial is

��(.) =
÷
92��

÷
82��, 9

��8 9 (.89) ,

where �; for ; 2 ö is a degree ; one variable Hermite polynomial, defined as follows

�;(G) =
’

06A6;
; � A is even

✓
�1

2

◆ ;�A
2 1
A!

�
;�A
2

�
!
G
A
.

Note that �;(.) = 1. Hence by applying Proposition 3.38 to the subspace of polynomials
such that Ö⇡ ?(.) = 0, we get

Corollary 3.39. Let ⇡ be Gaussian. Suppose that the distribution ⇠ is so that any polynomial of
degree at most ⇡ is ⇠-integrable. Then

max
?2í[.]6⇡

�
Ö⇠ ?(.) �Ö⇡ ?(.)

�2

ñ⇡ ?(.)
=

’
0<|� |6⇡

✓
Ö
⇠
��(.)

◆2
.

Denote byM6⇡ the space of multilinear polynomials of degree at most ⇡ (we do not
include constant polynomials inM6⇡). Note that multilinear Hermite polynomials ��

(which correspond to multilinear multiindices �) are exactly

��(.) =
÷
92��

÷
82��, 9

H89 .

They form a basis in the spaceM6⇡ (for 0 < |� | 6 ⇡). Let’s denoteHM6⇡ := H6⇡
—M6⇡ .

Applying Proposition 3.38 to the spaceM6⇡ we get

Corollary 3.40. Let ⇡ be Gaussian. Suppose that the distribution ⇠ is so that any polynomial of
degree at most ⇡ is ⇠-integrable. Then

max
?2M6⇡

�
Ö⇠ ?(.) �Ö⇡ ?(.)

�2

ñ⇡ ?(.)
= max
?2M6⇡

�
Ö⇠ ?(.)

�2

Ö⇡ ?
2(.) =

’
��(.)2HM6⇡

✓
Ö
⇠
��(.)

◆2
.

66

Hence the key part of proving lower bounds for low degree polynomial estimators is
bounding Ö⇠��(.).

3.4.2 Almost Gaussian vector in random subspace
We can now tackle Theorem 3.3. To prove the Theorem, we will show that in the presence
of adversarial corruptions, whenever C ·

�
3

:

�1/C
& =0.499 and 3 > ⌦̃

�
=
C
C
C
�
„ so that the degree

C SoS Algorithm 3.29 outperforms other known algorithms, no multilinear polynomial of

degree . =0.001 can obtain similar guarantees unless 3 & ⌦̃
⇣
=

ln2
C

⌘
C

.
As outlined above, we design a specific distinguishing problem. In order to prove a

lower bound in the presence of adversarial corruptions, we need to carefully chose the
adversarial matrix.

Problem 3.41. (Almost-Gaussian vector in a random subspace) Given a matrix Y in í=⇥3,
decide whether:

�0: . =, where, ⇠ #(0, 1)=⇥3 is a standard Gaussian matrix.

�1: . = ⌫DẼT +, + ⇢, where, ⇠ #(0, 1)=⇥3 is a standard Gaussian matrix, D 2 í= is a
unit vector with i.i.d. coordinates that take values ±1/

p
= with probability 1/2 each,

and Ẽ 2 í3 is a vector with i.i.d. coordinates that take values

E8 =

8>>><
>>>:

�1 with probability ⇣/2 ,

1 with probability ⇣/2 ,

0 otherwise,

for some ⇣ 2 [0, 1]. Furthermore ⇢ = D
�
E
0 �,T

D

�T, where E0 is sampled according to
the following distribution. Let B > 0 be the largest even number such that ⇣⌫B 6 2�10B .
For all 9 2 [3],

– if Ẽ 9 < 0, then E0
9
= 0 ;

– otherwise E0
9
is sampled from the distribution ◆ that has finite support supp

�
◆
�
✓

[�10B , 10B] and moments:

Ö
G⇠◆

G
A =

8>>><
>>>:

(A�1)!!�⌫A⇣
1�⇣ if 0 6 A 6 B and even

6 (10B)A if A > B + 2 and even
0 if A is odd.

Proposition A.14 shows that if ⇣⌫B 6 2�10B , then such ◆ exists. Note that for B = 0 the
condition ⇣⌫B 6 2�10B is always satisfied, so B in the problem description is well-defined.
Also note that if B = 0, E0 is just a zero vector.

67

If ⇣3!1, then with high probability Ẽ is ⇣3(1 � >(1))-sparse. So ⌫DẼT =
p
�D0E0T for

:-sparse unit vector E0 = 1
kẼk Ẽ (where : := ⇣3(1 � >(1))), � = :⌫2

=
(1 + >(1)) and D0 =

p
=D.

We will use the notation E = ⌫Ẽ + E0. Note that the coordinates of E are independent,
have Gaussian moments up to B, and with high probability E has at least ⇣3(1 � >(1))
coordinates E9 2 {±⌫}.

Geometric description. The planted distribution can be also described in geometric
terms, where the problem becomes that of distinguishing between a subspace spanned by
independent Gaussian vectors or a subspace spanned by independent Gaussian vectors
and the planted vector E.

The construction is the following: at first we sample a signal vector E 2 í3 that has
at least ⇣3(1 � >(1)) coordinates with absolute values at least ⌫ (using the construction
described above). Then we sample = � 1 i.i.d. standard Gaussian vectors F̃1, . . . , F̃=�1 2 í3,
and perform a random rotation * 2 í=⇥= with first column vector D (such that * is
independent of E , F̃1, . . . , F̃=�1) on E , F̃1, . . . , F̃=�1. That is,

. = * ·
©≠≠≠≠
´

E
)

F̃
)

1
.
.
.

F̃
)

=�1

™ÆÆÆÆ
¨
.

This formulation is equivalent to the one described above. Indeed,

. = DE) +
=�1’
8=1

D8F̃
)

8
,

where D , D1, . . . , D=�1 are the columns of* . Note that
Õ
=�1
8=1 D8F̃

)

8
is distributed as a standard

(singular) Gaussian supported in the hyperplane orthogonal to D, and (Id � DD)), is also
a standard Gaussian supported in the same hyperplane.

The theorem below provides a lower bound for the Problem 3.41. The proof is in section
3.4.2.1.

Theorem 3.42. Suppose that = 6 3, 1 6 ⇡ 6 =
0.33, 0 < ⇣ < 1, : = ⇣3, ⌫ > 2, and let

B > 2 be the maximal even number such that ⇣⌫B 6 2�10B , and C = B/2 + 1. Let ⇡ and ⇠ denote
respectively the null and planted distribution (with parameters ⇣,⌫, B) of Problem 3.41. Suppose
that ⌫ > 1000

p
C ln C and that ⌫4

⇡C
2 ln2

C = >

⇣
= ·

⇣
log2

⇣
3

:
2

⌘
+ 1

⌘⌘
as = !1. If

3 = >

1
⌫4 ·

✓
=

⇠ · ln2
C · ⇡

◆
C

!

68

as = ! 1 (for some constant ⇠ that does not depend on =, 3, ⇣, ⌫, B and ⇡), then for any
non-constant multilinear polynomial ? : í=⇥3 ! í of degree at most ⇡,

�
Ö⇠ ?(.) �Ö⇡ ?(.)

�2

ñ⇡ ?(.)
! 0 ,

as = !1.

Let’s try to illustrate the meaning of Theorem 3.42. If ⌫ > ⌫
p

log 3 for sufficiently large
⌫, then ⇣ is so that ⇣⌫B = 2�10B for an even constant B and ⇣3!1. Here Algorithm 3.29 can
distinguish between the null and the planted distribution if 3 & =C logC(=)CC in polynomial
time. Indeed, in this case with probability at least 0.99 the algorithm 3.29 outputs Ê such
that

1 � hÊ , E0i2 .
1
⌫2

C ·

✓
1
⇣

◆1/C
+ k⇢k21!2

!
6 C ·

✓
1

⌫B+1⇣

◆1/C
+

✓
k⇢k1!2

⌫

◆2
=

220
C

⌫1/C +
✓
k⇢k1!2

⌫

◆2
.

The first term tends to 0 and k⇢k1!2 can be bounded as follows:

k⇢k1!2 6 kD(E0)Tk1!2 + kDDT
, k1!2 6 max

16863
E
0
8
+ max

16863

�
D

T
,

�
8
. B +

p
log 3 ,

since DT
, is a standard Gaussian vector. Hence for sufficiently large ⌫, hÊ , E0i > 0.99.

If in addition ⇡ 6 =0.001 and ⌫ 6 =0.24, then the conditions of Theorem 3.42 are satisfied.
Hence in this case for 3 6 =0.999C�1 no multilinear polynomial of degree at most =0.001 can
distinguish between the planted and the null distribution as = ! 1. Furthermore note
that if ⌫4 & = log 3, then Diagonal thresholding can distinguish between the planted and
the null distribution in polynomial time (even if 3 ⌧ =

0.999C�1). Finally, it easy to see that
exhaustive search works as long as ⌫ &

p
log 3/:.

3.4.2.1 Proof of indistinguishability
The proof of Theorem 3.42 relies on key lemmata which we provide below. The proof itself
is then presented at the end of the section.

Lemma 3.43. Let � be a multiindex over [=] ⇥ [3] such that ��(.) 2 HM6⇡ . Then

Ö
⇠
��(.) = Ö

✓ Œ
82��

� |��,8 |
8

◆ Œ
92��
Ö

266664
Œ
82��, 9

©≠
´
I89 + 1p

=

(E9 � 1p
=

’
;2[=]

I; 9)
™Æ
¨
377775
,

where 9 2 [3], 8 2 [=], �8 :=
p
=D8 and I89 := �8F89 .

Proof. We drop the subscript � for the exposition of the proof.

Ö
⇠
��(.) = Ö

⇠

Œ
92�

Œ
82�9
H89

69

= Ö
Œ
92�

Œ
82�

⇥
F89 + D8

�
E9 � hD ,F9i

� ⇤

= Ö
Œ
92�

Œ
82�9

266664
F89 + �8

©≠
´

1p
=

E9 � 1
=

’
;2[=]

I; 9

™Æ
¨
377775

= Ö
Œ
92�

Œ
82�9

�8
©≠
´
I89 + 1p

=

E9 � 1
=

’
;2[=]

I; 9

™Æ
¨

(as �8F89 =
F89

�8
)

= Ö
266664

 Œ
92�

Œ
82�9

�8

!Œ
92�

Œ
82�9

©≠
´
I89 + 1p

=

E9 � 1
=

’
;2[=]

I; 9

™Æ
¨
377775

= Ö

 Œ
92�

Œ
82�9

�8

!
Ö

266664
Œ
92�

Œ
82�9

©≠
´
I89 + 1p

=

(E9 � 1p
=

’
;2[=]

I; 9)
™Æ
¨
377775

= Ö
✓Œ
82�

� |�8 |
8

◆Œ
92�
Ö

266664
Œ
82�9

©≠
´
I89 + 1p

=

(E9 � 1p
=

’
;2[=]

I; 9)
™Æ
¨
377775
.

⇤

An immediate consequence of Lemma 3.43 is the following statement:

Corollary 3.44. Let � be a multiindex over [=] ⇥ [3] such that ��(.) 2 H6⇡ . If there exists
9 2 �� (or 8 2 ��) such that |��, 9 | (respectively, |��,8 |) is odd, then Ö⇠��(.) = 0.

In the following lemma we use the fact that first B moments of coordinates of E coincide
with Gaussian moments.

Lemma 3.45. Let B be the parameter of the planted distribution, let � be a multiindex over [=]⇥ [3].
Suppose that there exists 90 2 �� such that |�90 | 6 B. Then Ö⇠��(.) = 0.

Proof. For simplicity we will the subscript �. If Ö
✓Œ
82�

� |�8 |
8

◆
= 0, the statement is obviously

true. Assume that Ö
✓Œ
82�

� |�8 |
8

◆
= 1 (notice that this expectation can be only 0 or 1). Thus

Ö
⇠
��(.) =

÷
92�
Ö

Œ
82�9

©≠
´
I89 + 1p

=

(E9 � 1p
=

’
;2[=]

I; 9)
™Æ
¨

= Ö
Œ
82�90

©≠
´
I890 + 1p

=

(E90 � 1p
=

’
;2[=]

I; 90)
™Æ
¨
·

÷
92�\{ 90}

Ö
Œ
82�9

©≠
´
I89 + 1p

=

(E9 � 1p
=

’
;2[=]

I; 9)
™Æ
¨
.

70

Since first B moments of E90 coincide with Gaussian moments,

Ö
Œ
82�90

©≠
´
I890 + 1p

=

(E90 � 1p
=

’
;2[=]

I; 90)
™Æ
¨
= Ö

Œ
82�90

©≠
´
I890 + 1p

=

(✓ � 1p
=

’
;2[=]

I; 90)
™Æ
¨
,

where ✓ is a standard Gaussian variable that is independent from all I890 . Let ⇢8 =
I890 + 1p

=

(✓ � 1p
=

Õ
;2[=]

I; 90). Let’s show that ⇢ ⇠ #(0, Id=). ⇢ 2 í= is a linear transformation of

✓, I190 , . . . , I=90 :

⇢ = �

©≠≠≠≠
´

✓
I190
.
.
.

I=90

™ÆÆÆÆ
¨
,

where � is an = ⇥ (= + 1) matrix with rows �8T = (1p
=

,
1
=
, . . . ,

1
=
, (1 � 1

=

)| {z }
8+1

,
1
=
, . . . ,

1
=
). The rows

of � are orthonormal: for all 8 2 [=]

(��T)88 =
1
=

+ (1 � 1
=

)2 + = � 1
=

2 = 1 � 2
=

+ 1
=

2 + 1
=

+ 1
=

� 1
=

2 = 1 ,

and for all different 8 , ; 2 [=]

(��T)8; =
1
=

� 2
=

(1 � 1
=

) + = � 2
=

2 =
1
=

� 2
=

+ 2
=

2 + 1
=

� 2
=

2 = 0 .

Hence ��T = Id= and ⇢ ⇠ #(0, Id=). Therefore,

Ö
Œ
82�90

©≠
´
I890 + 1p

=

(E90 � 1p
=

’
;2[=]

I; 90)
™Æ
¨
= Ö

Œ
82�90

⇢8 = 0 .

⇤

Lemma 3.46. Let B , ⇣,⌫ be the same as in the statement of Theorem 3.42. Let 9 2 [3], �9 ✓ [=]
with even cardinality |�9 | > B. Then, if |�9 | 6 ⌫2

100 ,

Ö
266664
Œ
82�9

©≠
´
I89 + 1p

=

(E9 � 1p
=

’
;2[=]

I;)
™Æ
¨
377775
6 ⇣

✓
220 · B · ⌫p

=

◆ |�9 |
,

and if |�9 | > ⌫2

100 ,

Ö
266664
Œ
82�9

©≠
´
I89 + 1p

=

(E9 � 1p
=

’
;2[=]

I;)
™Æ
¨
377775
6

100

p
|�9 |p
=

! |�9 |
.

71

Proof. We drop the subscript 9 to simplify the notation (in particular, in this proof we
denote E9 by E). By symmetry of the Gaussian distribution, opening up the product we see
that in order for a monomial to have non-zero expectation, for any left end term I8 there
must be a corresponding right term 1p

=

(E � 1p
=

Õ
;2[=]

I;). Hence:

Ö
266664
Œ
82�

©≠
´
I8 + 1p

=

(E � 1p
=

’
;2[=]

I;)
™Æ
¨
377775
=

|� |/2’
A=0

✓
|� |
2A

◆ ✓
2A
A

◆
Ö

2666664

 Œ
82[A]

I8

!
1

=
|� |/2�A/2

©≠
´
E � 1p

=

’
;2[=]

I;

™Æ
¨

|� |�A3777775
=

1
=
|� |/2

|� |/2’
A=0

✓
|� |
2A

◆ ✓
2A
A

◆
Ö

2666664

 Œ
82[A]

I
2
8

!©≠
´
E � 1p

=

’
;2[=]

I;

™Æ
¨

|� |�2A3777775
.

Since E is symmetric:

Ö

2666664

 Œ
82[A]

I
2
8

!©≠
´
E � 1p

=

’
;2[=]

I;

™Æ
¨

|� |�2A3777775
=

|� |/2�A’
<=0

Ö[E |� |�2A�2<]Ö
266664

 Œ
82[A]

I
2
8

!
· ©≠
´

1p
=

’
;2[=]

I;

™Æ
¨

2<377775
.

By Cauchy–Schwarz:

Ö
266664

 Œ
82[A]

I
2
8

!©≠
´

1p
=

’
;2[=]

I;

™Æ
¨

2<377775
6

Ö

Œ
82[A]

I
4
8

!1/2©≠≠
´
Ö ©≠

´
1p
=

’
;2[=]

I;

™Æ
¨

4<™ÆÆ
¨

1/2

6 3A/2 · (2<)< .

Hence,

Ö

2666664

 Œ
82[A]

I
2
8

!©≠
´
E � 1p

=

’
;2[=]

I;

™Æ
¨

|� |�2A3777775
6

|� |/2�A’
<=0

Ö[E |� |�2A�2:] · 3A/2 · (2<)<

6 3A/2
|� |/2�A’
<=0

⇣
⇣⌫|� |�2A�2< + (10

p
B ln B)|� |�2A�2<

⌘
· (2<)<

6 3|� |/4
|� |/2’
<=0

⇣
⇣⌫|� |�2< + (10

p
B ln B)|� |�2<

⌘
· (2<)< .

Let " = max{⇣⌫|� |
, |� | |� |/2

, (10
p
B ln B)|� | }. Thus 2" >

⇣
⇣⌫|� |�2< + (10

p
B ln B)|� |�2<

⌘
·

(2<)< . We get:

Ö
266664
Œ
82�

©≠
´
I8 + 1p

=

(E � 1p
=

’
;2[=]

I;)
™Æ
¨
377775
6

1
=
|� |/2

|� |/2’
A=0

✓
|� |
2A

◆ ✓
2A
A

◆
3|� |/4 · |� | · 2"

72

6
1

=
|� |/2 · 2|� | · 2|� | · 3|� |/4 · 2|� |/2 ·"

6
✓

10p
=

◆ |� |
·"

Consider the case |� | > ⌫2

100 . In this case, " 6 10|� | · |� | |� |/2. Hence

Ö
266664
Œ
82�

©≠
´
I8 + 1p

=

(E � 1p
=

’
;2[=]

I;)
™Æ
¨
377775
6

100

p
|� |

p
=

! |� |
.

Now consider the case |� | 6 ⌫2

100 . If |� | > 10B, then ⇣⌫|� | > (⌫/2)|� |�B > |� | |� |/2. Indeed, the
inequality holds if |� | 6 (⌫/2)1.8, and if |� | > (⌫/2)1.8, then (⌫/2)B/|� |

p
|� | is monotone in �, so

(⌫/2)B/|� |
p
|� | 6 0.1 · ⌫ · (⌫/2)100B/⌫2

6 0.1 · ⌫ · (⌫/2)1/ln⌫ 6
1
2⌫ ,

since ⌫2 > 10000B ln B. If |� | < 10B, then |� | |� |/2 < (10
p
B ln B)|� |. Therefore,

Ö
266664
Œ
82�

©≠
´
I8 + 1p

=

(E � 1p
=

’
;2[=]

I;)
™Æ
¨
377775
6

✓
10p
=

◆ |� |
· max{⇣⌫|� |

, (10
p
B ln B)|� | }

6
✓

10p
=

◆ |� |
⇣⌫B+2 max{⌫|� |�(B+2)

,

1
⇣⌫B+2 (10

p
B ln B)|� | }

6
✓

10p
=

◆ |� |
⇣⌫B+2 max{⌫|� |�(B+2)

, 210B(10
p
B ln B)|� | }

6 ⇣

220 ·
p
B ln B · ⌫p
=

! |� |
.

⇤

We are now ready to prove Theorem 3.42.

Proof of Theorem 3.42. For all positive integers �, ⌫, ⌫0, ⇢ and ⇢
0 consider the set

GB(�, ⌫, ⌫0, ⇢, ⇢0) of bipartite graphs ⌧� such that |�� | = �, |�� | = ⌫ and |� | = ⇢,
⌫
0 =

���{ 9 2 �� | |�9 | 6 ⌫2

100}
���, ⇢0 is a number of edges adjacent to { 9 2 �� | |�9 | 6 ⌫2

100}, and all
vertices of ⌧� have even degree strictly greater than B. Let ⌫00 = ⌫ � ⌫0 and ⇢00 = ⇢ � ⇢0.

By lemma 3.46,

’
��(.)2HM6⇡

✓
Ö
⇠
��(.)

◆2
6

’
2(B+2)6⇢6⇡

’
�,⌫,⌫

0
,⇢
0

GB(�,⌫,⌫0,⇢,⇢0)<;

✓
=

�

◆ ✓
3

⌫

◆
(�⌫)⇢
⇢!

· ⇣2⌫0

220 ·
p
B ln B · ⌫p
=

!2⇢0 ✓
100
p
⇢p

=

◆2⇢00

73

6
’

2(B+2)6⇢6⇡

’
�,⌫,⌫

0
,⇢
0

GB(�,⌫,⌫0,⇢,⇢0)<;

⇣
4=

�

⌘
�

✓
4�⌫

⇢

◆
⇢

· 3⌫
�
⇣2�⌫0

220 ·
p
B ln B · ⌫p
=

!2⇢0 ✓
100
p
⇢p

=

◆2⇢00

.

Since � 6 ⇡/2 = >(=),
�
4=

�

�
� is monotone in �. Also notice that if GB(�, ⌫, ⌫0, ⇢, ⇢0) < ;,

⌫
0 6 ⇢0/(B + 2) and ⌫

00 6 100 · ⇢00/⌫2 6 ⇢00/(B + 2). Let)(⌫0, ⌫00, ⇢0, ⇢00) be an zero-one
indicator that is one if and only if there exists � such that GB(�, ⌫0 + ⌫00, ⌫0, ⇢0 + ⇢00, ⇢0) < ;.

Consider the case ⇣2
3 > 1. Assume that 3 = >

✓
1
⌫4 ·

⇣
=

2120 ln2
B⇡

⌘ (B+2)/2
◆
. Since ⇡ 6 =0.33

and ⌫2 > 100000B ln B, 3 = >

✓⇣
=

1020
⇡

3

⌘⌫2/200
◆
. Hence

’
��(.)2HM6⇡

✓
Ö
⇠
��(.)

◆2
6

’
06⌫0,⌫006⇡/2

’
06⇢0,⇢006⇡

)(⌫0, ⌫00, ⇢0, ⇢00)
⇣
=

⇢

⌘
⇢/2

✓
⇢

B + 2

◆
⇢

·
�
⇣2
3

�⌫0 230 ·
p
B ln B · ⌫p
=

!2⇢0

3
⌫
00
✓
105
p
⇢p

=

◆2⇢00

6
’

06⌫0,⌫006⇡/2

’
06⇢0,⇢006⇡

)(⌫0, ⌫00, ⇢0, ⇢00)
�
⇣2
3

�⌫0 ✓2120⌫4
⇡ ln2

B

=

◆⇢0/2

· 3⌫00
✓
1020

⇡
3

=

◆
⇢
00/2

6 2
1’
⌫
0=1

⇣2
3

✓
2120⌫4

⇡ ln2
B

=

◆ (B+2)/2!⌫0
+ 2

1’
⌫
00=1

3

✓
1020

⇡
3

=

◆⌫2/200
!⌫00

6 2
1’
⌫
0=1

⌫4
3

✓
2100

⇡ ln2
B

=

◆ (B+2)/2!⌫0
+ >(1)

6 >(1) .

Now condiser the case ⇣2
3 < 1. Since ⌫ > 210, ⌫2B+2 > 1

⇣ and

(2B + 2) ln⌫ > ln
✓
1
⇣

◆
> ln

✓
1
⇣

◆
+ ln

✓
1
⇣3

◆
= ln

✓
1
⇣2
3

◆
.

Since ⌫2 > 100000B ln B, ⌫2/100 > ln
⇣

1
⇣2
3

⌘
and ⌫

00 6 ⇢/|ln
�
⇣2
3

�
|. Let " = max{⌫0, ⌫00}.

74

Recall that ⌫4
⇡B

2 ln2
B = >

⇣
= log2 �⇣2

3

� ⌘
. It follows that

’
��(.)2HM6⇡

✓
Ö
⇠
��(.)

◆2
6

’
06⌫0,⌫006⇡/2

’
06⇢0,⇢006⇡

)(⌫0, ⌫00, ⇢0, ⇢00)
⇣
=

⇢

⌘
⇢/2
"

⇢

·
�
⇣2
3

�⌫0 230 ·
p
B ln B · ⌫p
=

!2⇢0

3
⌫
00
✓
105
p
⇢p

=

◆2⇢00

6
’

06⌫0,⌫006⇡/2

’
06⇢0,⇢006⇡

)(⌫0, ⌫00, ⇢0, ⇢00)
✓ �
⇣2
3

� 2⌫0
⇢
0
" · 2120⌫4

B
2 ln2

B

=

◆⇢0/2

· 3⌫00
✓
1020

⇡
3

=

◆
⇢
00/2

6
’

06⌫006⇡/2

’
06⇢0,⇢006⇡

’
06⌫06⇢0

)(⌫0, ⌫00, ⇢0, ⇢00)
✓
2120⌫4

⇡B
2 ln2

B

ln2(⇣2
3)=

◆⇢0/2

· 3⌫00
✓
1020

⇡
3

=

◆
⇢
00/2

6
1’
⇢
0=1

✓
2130⌫4

⇡B
2 ln2

B

ln2(⇣2
3)=

◆⇢0/2

+ 2
1’

⌫
00=1

3

✓
1020

⇡
3

=

◆⌫2/200
!⌫00

6 >(1) .

By Corollary 3.39, we get the desired conclusion. ⇤

75

Chapter 4

Stochastic block models with edge
corruptions

In tis chapter we prove Theorem 1.2, showing that by using sophisticated algorithmic
techniques it is possible to approach the Kesten-Stigum threshold even in the presence of
malicious corruptions. Consistently with the discussion in Section 1.1.2, the underlying
robust algorithm boils down to certifying bounds the Schatten norm of certain matrices
associated with the input. We start by restating the model. The notation of the chapter is
optimized for its proofs and differs from Chapter 1.

Definition 4.1 (Restatement of the model introduced in Section 1.1.3). The stochastic block
model describes the following joint distribution (x,G) ⇠ SBM=(3, ⌘) between a vector G of
= binary labels and an =-vertex graph G:

• draw a vector x 2 {±1}= uniformly at random,

• for every pair of distinct vertices 8 , 9 2 [=], independently create an edge {8 , 9} in the
graph G with probability (1 + ⌘

2 · x8 · x9) · 3
=
.

Given a graph G sampled according to this model, the goal is to recover the (unknown)
underlying vector of labels as well as possible.

For distinct vertices 8 , 9 2 [=], the edge {8 , 9} is present in G with probability (1 + ⌘
2) · 3=

if the vertices have the same label x8 = x9 and with probability (1� ⌘
2) · 3= if the vertices have

different labels x8 < x9 .
Recall we say that an algorithm achieves (weak) recovery for the stochastic block model

{SBM=(3, ⌘)}=2é if the correlation of the algorithm’s output Ĝ(G) 2 {±1}= and the under-
lying vector x of labels is bounded away from zero as = grows

Ö
(x,G)⇠SBM=(3,⌘)

h
1
=
|hG , Ĝ(G)i |

i
> ⌦⌘,3(1) . (4.0.1)

(Here, ⌦⌘,3(1) hides a positive number depending on ⌘ and 3 but independent of =). As
already discussed in the opening chapter, weak recovery is possible (also computationally

76

efficiently) if and only if 3 > 4/⌘2. Similarly, we say that an algorithm that given a graph G
outputs an estimate Ĝ(G) for the community labels of G achieves ⌧-robust weak recovery
for {SBM=(3, ⌘)}=2é if

Ö
(x,G)⇠SBM=(3,⌘)

min
⌧
�2#⌧(G)

h
1
=
|hx, Ĝ(⌧�)i |

i
> ⌦3,⌘(1) , (4.0.2)

where #⌧(G) is the set of graphs ⌧� that can be obtained from G by changing at most a
⌧-fraction of its edges1 (so that |⇢(G)4 ⇢(⌧�)| 6 ⌧ · (|⇢(G)| + |⇢(⌧�)|)).

The main theorem of the chapter is shown next.

Theorem 4.2 (Restatement of Theorem 1.2). For every ⌘, 3 with 3 > 4/⌘2, there exists ⌧ > 0
such that ⌧-robust weak recovery for {SBM=(3, ⌘)}=2é is possible. Moreover, the underlying
algorithm runs in polynomial time.

We present a formal statement in Corollary 4.24.

Organization
The rest of the chapter is organized as follows. In Section 4.1 we introduce the main ideas
and techniques developed to prove Theorem 4.2, while also describing the shortcomings of
previous approaches. Preliminary notions are discussed in Section 4.2. In Section 4.3 we
present our general framework for robust algorithms, we then apply it to the stochastic
block model in Section 4.4. In Section 4.5 we prove the probabilistic results needed for the
algorithm to succeed. We present most of the technical probabilistic and combinatorial
details through Appendix B.1, Appendix B.2, Appendix B.3 and Appendix B.4.

4.1 Techniques
To start explaining the ideas required to prove Theorem 4.2, we briefly discuss related prior
approaches for weak-recovery in stochastic block models.

Basic semidefinite programming approach and robust recovery away from the Kesten-
Stigum threshold. The following approach based on semidefinite programming is known
to have strong robustness properties when the degree parameter 3 exceeds the KS threshold
by a large enough constant factor [GV16].2

1That is, each ⌧� can be obtained from G through a sequence of ⌧ · |⇢(G)| edits, each consisting of an
addition or deletion.

2As discussed earlier, in the asymptotic regime 3 ! 1 better guarantees for this approach are known
[MS16]. However, these results have no bearing on constant degree parameters.

77

Let (x,G) ⇠ SBM=(3, ⌘) with ⌘ > 03 and let Y be its centered adjacency matrix, so that
Y8 9 = 1 � 3/= if 8 9 2 ⇢(G), Y88 = 0, and Y8 9 = �3/= otherwise. This matrix satisfies ÖY = 0
and, up to a scaling factor, its conditional expectation agrees with xxT on all off-diagonal
entries,

Ȳ := Ö[Y | x] = ⌘3
2= · (xxT � Id=) . (4.1.1)

This property gives us hope that the maximizer x̂ of hY, GG
Ti over all G 2 {±1}= is correlated

with the underlying labeling x.4 Concretely, the optimal value of this optimization problem
is at least the value achieved by the planted labeling x, which is >(=)-close to its expectation
hȲ, xxTi = ⌘3

2 · (= � 1). Hence, the maximizer x̂ satisfies the inequality

⌘3
2 · = � >(=) 6 hY, x̂x̂Ti = ⌘3

2 · = ·
⇣

1
=

2 hx, x̂i2 � 1
=

⌘
+ hY � Ȳ, x̂x̂Ti .

This inequality allows us to conclude that x̂ achieves the desired correlation 1
=

2 hx, x̂i2 > ⌦(1)
as long as we have an upper bound on hY � Ȳ, x̂x̂Ti smaller than ⌘3

2 · = by a constant factor.
This approach is pursued by [GV16], who proved that with high probability, for some
constant factor ⇠ > 1,

max
G2{±1}=

|hY � Ȳ, GG
Ti | 6 ⇠ ·

p
3 · = . (4.1.2)

It follows that this estimator achieves weak recovery if ⌘
p
3

2⇠ exceeds 1 by a constant. (Since
⇠ > 1, this bound fails to approach the Kesten-Stigum threshold.5)

So far, the discussed approach is not computationally efficient (the underlying optimiza-
tion problem is NP-hard). To remedy this issue, we consider the following semidefinite
programming relaxation of the problem,

maximize hY,-i subject to - ⌫ 0 , 88 . -88 = 1 . (4.1.3)

We refer to this relaxation as basic SDP (which should not be confused with the basic
SDP in Chapter 36).7 To show that its optimal solution X̂ achieves constant correlation
1
=

2 hX̂, xxTi > ⌦(1), we can imitate the previous analysis (as done in [GV16]). The main
difference is that we need to upper bound the deviation term |hY� Ȳ,-i | uniformly over all
feasible solutions - to the basic SDP (instead of just over all cut matrices GGT for G 2 {±1}=).

3We remark that it also makes sense to consider stochastic block models with negative bias parameter ⌘
(sometimes called the anti-ferromagnetic case).

4This optimization problem is closely related to the likelihood maximization problem for the stochastic
block model.

5We remark that an exact analysis of the maximum value of |hY � Ȳ, GG
Ti | 6 ⇠

p
3 · = over all G 2 {±1}= is

very challenging. This maximum value is related to the coefficient of the second-order term of the maximum
cut in an Erdős–Rényi graph with degree parameter 3. This coefficient has been analyzed only in the
asymptotic regime 3!1 [DMS17]. Even in this simplified setting, the coefficient corresponds to ⇠ > 1.

6In fact, throughout the thesis the term basic SDP will be used to refer to the most "basic" semidefinite relaxation
of the problem.

7We remark that the famous Goemans–Williamson approximation algorithm for the max-cut problem
[GW95] uses essentially the same basic SDP relaxation.

78

Here, Grothendieck’s inequality [KN11, AN04] turns out to imply a bound that is at most
a constant factor worse than the bound we had before (for cut matrices).

A key benefit of this kind of analysis (observed in early works on semirandom graph
problems [FK01]; see also [MPW16]) is that it directly implies strong robustness guarantees.
The reason is that we used only one property of the estimator X̂ (or x̂): it is a feasible
solution to our optimization problem with objective value at least as high as the planted
solution xxT (up to potentially a small fudge factor). In other words, if ⌘

p
3/2 is a large

enough constant for the above analysis of the basic SDP to succeed, then there exists some
⌧ > 0 (independent of =) such that with high probability (over Y), every solution - to the
basic SDP with objective value

hY,-i > hY, xxTi � ⌧ · = (4.1.4)

achieves constant correlation h- , xxTi > ⌦(1) · =2.
Why does this property imply robustness? Suppose that .0 is the centered adjacency matrix

of some corrupted versions ⌧0 of G (according to some adversarial model). Let -̂0 be
the optimal solution to the basic SDP with Y replaced by .0 in the objective function.
Since the planted solution xxT cannot have a higher objective value than -̂

0, it holds
h.0, -̂0i > h.0, xxTi. Hence, it suffices to verify that for the adversarial model of interest, the
inequality h.0,-i > h.0, xxTi for a feasible solution - to the basic SDP implies the previous
inequality Eq. (4.1.4). For monotone adversaries, this implication holds (even without
the fudge term ⌧ · =) because for every monotone edge alteration,8 the objective function
increases for the planted solution by at least as much as for -. Even in the non-monotone
case, every edge alteration (insertion or deletion) can change the objective function by at
most 2 for the planted solution or for -. Hence, if we allow up to ⌧ · =/4 edge alterations in
our adversarial model, the desired implication holds.

Fragile recovery up to the Kesten–Stigum threshold using convex optimization. In the
non-robust setting, several algorithms are known to achieve weak-recovery all the way up
to the Kesten-Stigum threshold [MNS18, Mas14, BLM15, AS16, HS17]. The analyses of all
these algorithms involve statistics of certain kinds of walks in graphs (e.g., self-avoiding,
non-backtracking, or shortest walks). Among these algorithms, the technniques in this
chapter are most closely related to the algorithm in [HS17], which combines walk-statistics
and convex-optimization techniques similar to those discussed earlier in the context of
robustness. For a parameter B 2 é, this algorithm considers a random =-by-= matrix Q(B)

such that each off-diagonal entry is obtained by evaluating a (deterministic) multivariate
degree-B polynomial at the centered adjacency matrix Y of G. Concretely, up to a scaling

8A monotone edge alteration consists of either adding an edge between vertices with the same planted
label or deleting an edge between vertices with different planted labels.

79

factor depending only on = , 3, ⌘, B,

Q(B)
8 9
/

’
,2SAWB

89

Y, where Y, :=
÷
DE2,

YDE .

Here, SAWB

89
consists of all length-B self-avoiding walks between 8 and 9 in the complete

graph on = vertices. Since the entries of Y are independent when conditioned on x, by our
earlier observation Eq. (4.1.1) we have for all, 2 SAWB

89
with 8 < 9,

Ö[Y, | x] =
÷
DE2,

Ö[YDE | x] = (⌘32=)
B · x8x9 .

Hence, if we choose the diagonal entries of Q(B) to be 0 (like for Y) and the aforementioned
scaling factor to be (2=

⌘3)B/|SAWB

89
|, then Q(B) is an unbiased estimator similar to Y,

Ö[Q(B) | x] = xxT � Id= .

Note that Q(1) is up to a scaling factor equal to Y.
What can we gain from Q(B) for B > 1? Here, it is instructive to compare the variance of

entries of the matrices (conditioned on x). In Q(1) each entry has conditional variance about
(2=
⌘3)2 · 3= = 4

3⌘2 · =, substantially larger than the magnitude of its conditional expectation,
which is 1. Now suppose we are barely above the Kesten–Stigum threshold so that ⌘2

3

4 = 1+⇣
for some ⇣ > 0 independent of =. Then, as we increase B, the conditional variance decreases9

(roughly like (4⌘2

3
)B ·= = =/(1+⇣)B) while the conditional expectation stays the same. Indeed,

it turns out that we can choose B 6 $⇣(log =) such that the conditional variance of an
entry of Q(B) is bounded by a constant $⇣(1) and thus has the same order as its conditional
expectation.

This property implies the following inequality for a small enough ⇣0 > ⌦⇣(1),

ÖkQ(B) � xxTk2
�
6 (1 � ⇣0) · kQ(B)k2

�
. (4.1.5)

Based on this notion of correlation, the algorithm10 in [HS17] considers the following
(tractable) convex optimization problem for a regularization parameter ⌫ > 0 (together
with a simple rounding algorithm),

maximize hQ(B)
,-i � ⌫ · k-k2

�
subject to - ⌫ 0 , 88 . -88 = 1 . (4.1.6)

It is usedul to remark that this algorithm is an instance of a meta-algorithm for estimation
problems that is based on sum-of-squares and specified in terms of low-degree polynomials

9The proof that the variance decreases argues that the unbiased estimators summed in an entry of Q(B)

behave similarly to pairwise independent estimators [MNS18, HS17].
10The description of the algorithm in [HS17] is slightly different from our description in that part of the

objective function we stated appears as a constraint in [HS17]. For an appropriate choice of ⌫ both versions
are equivalent.

80

in two kinds of variables, “instance variables” for the input and “solution variables” for
the desired output [HKP+17, HS17, RSS18].

Could this algorithm be robust? A key property of the basic SDP Eq. (4.1.3) for its robustness
analysis is that every edge alteration can change the objective value (for a particular feasible
solution) by at most $⌘,3(1/=) times the original objective value of the planted solution. In
contrast, a single edge alteration can change the objective value11 of a feasible solution in
Eq. (4.1.6) by as much as about = · (2/⌘)B . Since the original objective value of the planted
solution is close to its expectation ÖhQ(B)

, xxTi = = · (= � 1), we can afford this sensitivity of
the objective function only for constant B 6 $⌘,3(1). Unfortunately, the correlation Eq. (4.1.5)
required for the analysis of Eq. (4.1.6) can only be achieved for B logarithmic in = (this is
related to the well-known fact that constant-degree graphs have at least logarithmic mixing
time).

Robust distinguishing up to the Kesten–Stigum threshold. Our discussion so far sug-
gests a natural starting point for designing a robust algorithm that works up to the
Kesten–Stigum threshold: matrices defined in terms of constant-length walks, e.g., the
matrix Q(B) for constant B 6 $⌘,3(1).

Indeed, [BMR21] takes this approach in order to robustly solve the related distinguishing
problem. The goal is to distinguish between an Erdős–Rényi random graph G0 ⇠ G(= , 3

=
)

and the stochastic block model G1 ⇠ SBM=(3, ⌘) up to the Kesten–Stigum threshold
3 > 4/⌘2. Recall that Q(B) corresponds to the polynomial &(B)(.) := (2=)B

(⌘3)B |SAWB

89
|
Õ
,2SAWB

89

., .
Let Y0,Y1 be the respective centered adjacency matrices of G0,G1. In order to distinguish
G0 and G1, we seek an (efficiently computable) matrix norm that with high probability
is much smaller for &(B)(Y0) than for &(B)(Y1). Both matrix norms discussed so far (the
Frobenius norm in Eq. (4.1.5) and the cut norm in Eq. (4.1.2)) appear to be poor choices:
The Frobenius norm of&(B)(·) cannot distinguish between G0 and G1 for constant B. A tight
analysis of the cut-norm of &(B)(·) appears to be challenging due to the high amount of
dependencies between the entries of the matrix. A natural alternative (actually related to
the cut norm) is the spectral norm combined with some truncation step.12 Concretely, the
analysis in [BMR21] boils down13 to showing that with high probability the spectral norm
satisfies the inequality, ��

&̄
(B)(Y0)

�� 6 >(��&̄(B)(Y1)
��) . (4.1.7)

11For the purposes of this argument, we can think of Q(B)
8 9

as = · (2/⌘)B times the average of Y, over all
self-avoiding walks, between 8 and 9 in G (as opposed to walks in the complete graph).

12The truncation step refers to removing vertices with unusually large degree. This truncation step is
necessary because with high probability (non-regular) constant-degree random graphs have a small number
of vertices with logarithmic degree that skew the spectral norm of the centered adjacency matrix in an
undesirable way. This issue persists also for the matrices &(B)(·) when B is constant.

13We remark that the presentation of the algorithm and the choice of the function &̄(B)(·) in [BMR21] is
slightly different from what’s described here. For example, they use non-backtracking walks instead of
self-avoiding walks. However, the same proof strategy works for both versions.

81

Here, &̄(B)(.) is a matrix-valued function obtained by composing the polynomial &(B)(.)
together with a truncation step (we omit the details here). In order to prove this inequality,
the authors upper-bound (the expectation of) the left-hand side using the trace-method for
a parameter C logarithmic in =,

Ö
��
&̄

(B)(Y0)
�� 6 ⇣

Ö
��
&̄

(B)(Y0)
��C⌘1/C

6
⇣
TrÖ &̄(B)(Y0)C

⌘1/C
,

and then lower-bound (the expectation of) the right-hand side using the planted labeling x
as a test vector,

Ö
��
&̄

(B)(Y1)
�� > 1

=
Öhx, &̄(B)(Y1) xi ⇡ 1

=
Öhx,&(B)(Y1) xi = = � 1 .

In order to make their distinguishing algorithm robust, the authors consider the following
related semidefinite program,

maximize h&̄(B)(.),-i subject to - ⌫ 0 , 88 . -88 = 1 . (4.1.8)

The optimal value for . = Y0 is upper bounded by = ·
��
&̄

(B)(Y0)
��. At the same time, the

optimal value for . = Y1 is lower bounded by the value of planted solution - = xxT, which
is close to = · (= � 1). This algorithm is robust because the objective function in Eq. (4.1.8)
has low sensitivity to edge alterations for constant B, every edge alteration changes the
objective value by at most = · (2/⌘)B , which is a $⌘,B(1/=) fraction of the objective value of
the planted solution (also see our discussion of the sensitivity of Eq. (4.1.6)).

The push out effect and the challenges for weak-recovery using constant-length walks.
Can we use the matrix &̄(B)(Y) (with constant B) also for weak-recovery? Ignoring the issue of
robustness for now, the fact that, for the stochastic block model, the spectral norm of &̄(B)(Y)
is substantially larger than for the corresponding Erdős–Rényi random graph suggests that
the top eigenvector of this matrix carries useful information about the planted labeling.
Its top eigenvector can be characterized in terms of the optimal solution to the following
semidefinite program,

maximize h&̄(B)(Y), /i subject to / ⌫ 0 , Tr/ = 1 . (4.1.9)

In order to prove that the optimal solution is correlated with the planted labeling, we could
try to mimic the analysis of the basic SDP. To this end, we would have to prove that the
spectral norm k&̄(B)(Y) � xxTk is smaller than the objective value of the planted solution
1
=
xxT. However, this turns out to be false for 3 close to the Kesten–Stigum threshold, i.e.
h&̄(B)(Y), 1

=
xxTi < k&̄(B)(Y) � xxTk. Another ramification of the phenomenon is that for

constant B, the optimal value of Eq. (4.1.9) is substantially larger than the objective value of
the planted solution with high probability.

Nevertheless, it is still possible to weakly recover the hidden communities. To understand
how one could overcome this challenge, suppose that we could show the following

82

inequality for the spectral norm (similar to the inequality Eq. (4.1.5) for the Frobenius norm,
for which however this bound does not hold),

k&̄(B)(Y) � xxTk 6 (1 � ⇣0)k&̄(B)(Y)k , (4.1.10)

for some small enough ⇣0 > ⌦⇣(1). Then, even though xxT would still be far from being the
optimal solution to the program, the communities vector would partially align with the
leading eigenvector of &̄(B)(Y) and thus we would still be able to weakly recover it. (This
phenomenon is closely related to the push-out effect in the context of principal component
analysis).

In order to actually prove Eq. (4.1.10), one needs to upper bound the spectral norm
of &̄(B)(Y) � xxT and lower bound the spectral norm of &̄(B)(Y). As in [BMR21], a natural
approach is that of using the trace method. Notice however that by our discussion above,
compared to [BMR21], in order to achieve weak recovery the required bounds need to be
significantly sharper. Furthermore, an additional technical difference is that one needs to
carry out the trace method in the planted distribution SBM=(3, ⌘) (and after an additional
truncation step!). Indeed there are only few instances where the trace method is carried
out on the planted distribution [BLM15, GLM16] (and [DdNS22] on which this chapter is
based).

For several technical reasons we will only show

k&̄(B)(Y) � xxTkC 6 (1 � ⇣0)k&̄(B)(Y)kC , (4.1.11)

for some Schatten norm ⌦(log =) 6 C < log =. While for C & log =, the Schatten norm is
within a constant factor of the spectral norm, in the delicate context of Eq. (4.1.11) this
difference is not negligible as it might result in losing the correlation with the communities
vector. A similar reasoning as the one outlined for the spectral norm carries over to the
context of Schatten norm. Using the dual definition of Schatten norm we consider the
following optimization problem:

maximize h&̄(B)(Y)2, /i subject to / ⌫ 0 , Tr/
C

C�1 = 1 , (4.1.12)

(Note that we squared the matrix polynomial here since otherwise its trace may not contain
meaningful information). The bound Eq. (4.1.11) implies that we can weakly recover the
planted solution from the optimal solution to Eq. (4.1.12).

Achieving robustness. It is by now clear that, to enable robustness, a key property is
low sensitivity of the objective function to edge alterations. For Eq. (4.1.12), however, the
sensitivity of the objective function may be high because the program allows solutions that
are spiky (in the sense that there could be some 8 , 9 2 [=] such that

��
/89

�� > $(1)
=

2
Õ

8 , 92[=]

��
/89

��).
In the context of the basic SDP, we could fix the sensitivity of the objective function by
adding a constraint on the diagonal entries (and hence, by semidefiniteness, on all entries).

83

The reason we could add this constraint was because the communities matrix xxT –which
satisfied the constraint– was close to the optimal solution. However, as we approach the KS
threshold this is no longer true and thus it remains unclear whether this approach could
work. Indeed, the recovery analysis outlined above did not compare arbitrary solutions to
the communities matrix xxT, but to an a-priori unknown optimal solution!

How can we fix the sensitivity? While, with high probability, &̄(B)(Y) is not positive
semidefinite, its second power &̄(B)(Y)2 clearly is. A crucial consequence of this property is
that the optimal solution to Eq. (4.1.12) actually has a nice analytical expression: &̄(B)(Y)2(C�1).
Due to the truncation, &̄(B)(Y) is approximately flat and thus, using calculations similar
to the trace method, we are able to show that &̄(B)(Y)2(C�1) is also approximately flat. This
implies that we can control the sensitivity of the objective function by replacing the program
in Eq. (4.1.12) with

maximize h&̄(B)(Y)2, /i subject to / ⌫ 0 , Tr/
C

C+1 = 1 ,88 , /88 6 $(1)
=

, (4.1.13)

which immediately yields a robust algorithm.

From the Schatten norm to graph counting. Proving the bound Eq. (4.1.11) turns out
to be the main technical challenge behind Theorem 4.2. We outline here the main ideas.
For simplicity we limit the current discussion to showing that the inequality holds in
expectation (see Section 4.5). By definition

Ö
(x,G)⇠SBM=(3,⌘)

h��
&̄

(B)(Y)
��C
C

i
= Ö

(x,G)⇠SBM=(3,⌘)

Tr

⇣
&̄

(B)(Y)
⌘
C

�
, (4.1.14)

Ö
(x,G)⇠SBM=(3,⌘)

h��
&̄

(B)(Y) � xxT��C
C

i
= Ö

(x,G)⇠SBM=(3,⌘)

Tr

⇣
&̄

(B)(Y) � xxT
⌘
C

�
(4.1.15)

Our approach to obtain Eq. (4.1.11) will be to reduce both trace computations to a graph
counting problem. Consider Eq. (4.1.14), each element corresponds to a walk of the
following form:

Definition (Block self-avoiding walk). A closed walk of length BC is a (B , C)-block self-avoiding
walk if it can be split into C self-avoiding walks of length B.

For a (B , C)-block self avoiding walk �, we call its C self-avoiding walks {,1, . . . ,,C},
the generating walks of �.14 With this definition, Eq. (4.1.14) amount to computing the
expected number of copies in the instance graph G of any (B , C)-block self-avoiding walk.

To see how to carry out this computation, and for simplicity, consider the non-truncated
graph G with its centered adjacency matrix Y. While this simplification will make it
impossible to get a good bound, it will be useful to build some intuition. For a (B , C)-block

14It is possible that there are multiple choices for the set {,1 , . . . ,,C}, at the granularity of this discussion
we may assume such set to be given.

84

self avoiding walk �, let Y� =
Œ
82[C]

Y,8
where ,1, . . . ,,C are the self-avoiding walks

generating �. It is easy to see that

Ö
(x,G)⇠SBM=(3,⌘)

[Y� | x] = Ö
(x,G)⇠SBM=(3,⌘)

266664
÷

8 92⇢(�)
.
<(8 9)
8 9

������ x
377775

=
÷

8 92⇢(�)
Ö

(x,G)⇠SBM=(3,⌘)

h
.
<(8 9)
8 9

��� x
i

⇡
266664

÷
8 92⇢1(�)

✓
⌘ · 3
2= x8x9

◆377775
·
266664

÷
8 92⇢>2(�)

⇣
1 + ⌘

2x8x9
⌘
· 3
=

377775
=

✓
3

=

◆ |⇢(�)|
·
266664

÷
8 92⇢1(�)

⇣ ⌘
2x8x9

⌘377775
·
266664

÷
8 92⇢>2(�)

⇣
1 + ⌘

2x8x9
⌘377775

, (4.1.16)

where <(8 9) is the number of times the edge 8 9 appears in the walk �, ⇢1(�) is the set of
edges with multiplicity <(8 9) = 1 and ⇢>2(�) = ⇢(�) \ ⇢1(�). The main burden is then to
count for each <1,<2 > 0 how many (B , C)-block self-avoiding walks we may have with <1
edges with multiplicity one and <2 edges of multiplicity at least 2.

The effect of centering. To understand why xxT correlates with &̄
(B)(Y), we need to

observe what is the effect of subtracting the communities from &̄
(B)(Y). Consider Eq. (4.1.15)

and again, for simplicity, let us simply use the non-truncated adjacency matrix and the
corresponding polynomial &(B)(Y).

For any (B , C)-block self-avoiding walk �, let ,E1E2 , . . . ,,ECE1 be its C self-avoiding
walks so that for each ,E8E8+1 the vertices E8 , E8+1 correspond to its endpoint.15 For
every block self-avoiding walk �, there is a polynomial in Eq. (4.1.15) of the formŒ
82[C]

⇣
Y,E

8
E
8+1
�

� ⌘·3
2=

� B · x8 · x8+1

⌘
. The catch is that if one of the walks ,E1E2 , . . . ,,ECE1 –for

example,ECE1– has all edges with multiplicity one in �, then by Eq. (4.1.1)

0 = Ö
(x,G)⇠SBM=(3,⌘)

266664
÷
82[C�1]

✓
Y,E

8
E
8+1
�

✓
⌘ · 3
2=

◆
B

· x8 · x8+1

◆377775
· Ö
(x,G)⇠SBM=(3,⌘)

Y,E

C
E1
�

✓
⌘ · 3
2=

◆
B

· xECxE1

�

= Ö
(x,G)⇠SBM=(3,⌘)

266664
÷
82[C]

✓
Y,E

8
E
8+1
�

✓
⌘ · 3
2=

◆
B

· x8 · x8+1

◆377775
.

So, all (B , C)-block self-avoiding walks with at least one of the generating walks hav-
ing all edges traversed exactly once in � have expectation 0 and do not contribute to

15To simplify the notation we write EC+1 for E1.

85

Ö
(x,G)⇠SBM=(3,⌘)

h
Tr

�
&

(B)(Y) � xxT� Ci . This effect will approximately carry over the truncated

graph Ḡ (with centered adjacency matrix Ȳ). Since block self-avoiding walks as the one
described above turn out to have a significant contribution to Eq. (4.1.14), this observation
will allow us to show

Ö
(G ,G)⇠SBM=(3,⌘)

h��
&̄

(B)(Y) � xxT��C
C

i
6 (1 + ⇣)�⌦(C) · Ö

(x,G)⇠SBM=(3,⌘)

h��
&̄

(B)(Y)
��C
C

i
. (4.1.17)

Boosting the probability of success. The approach described so far yields an algorithm
that weakly recovers the communities vector with constant probability. The main reason
behind this shortcoming is that we only showed the required structural inequalities hold
with constant probability.16 It turns out, however, that we can exploit robustness to argue
that, indeed, we can weakly recover x with high probability.

This boosting argument relies on a concentration of measure inequality known as
the blowing-up lemma (see e.g., [AGK76, Mar86, Mar96, RS+13]), which is widely used in
information theory to prove strong converse results.17 Roughly speaking, the blowing-up
lemma states that if z1, . . . , z# are # independent random variables taking values in a
finite set, and E# is an event on z1, . . . , z# whose probability does not decay exponentially
in # , i.e., lim

#!1
1
#

log 1
ê[E#]

= 0, then there exists ✓# = >(#) such that, if we "inflate" E#
by adding all the strings (I1, . . . , I#) that are at a Hamming distance of at most ✓# = >(#)
from E# , then the probability of the obtained event becomes 1 � >(1).

In our context of interest, this means that we do not need to directly show that our
graph G ⇠ SBM=(3, ⌘) satisfies the desired structural inequalities (such as Eq. (4.1.11)).
It suffices that some graph ⌧̃ 2 #

>(1)(G) satisfies them. Since our algorithm is robust to a
constant fraction ⌧ of adversarial changes, and since #⌧�>(1)(G) ✓ #⌧(⌧̃), we can see that
by paying a negligible price in the robustness and correlation guarantees, we can use the
blowing-up lemma to boost the probability of success of the algorithm to 1 � >(1).

It is worth noting that the boosting argument can give us exponentially high probability
and not only 1 � >(1). Furthermore, the argument is not unique to the stochastic block
model and can be applied to a wide range of estimation problems.

4.2 Preliminaries
We present here some elementary definitions and results that we will use in the following
sections. We use the notation in Chapter 2.

16In fact, it is possible to prove that the structural inequalities hold with high probability without invoking
the boosting argument. However, the needed calculations are more complicated. In any case, the boosting
argument has the advantage of achieving exponentially high probability.

17A strong converse result in information theory typically has the following form: If the rate of a code is
above the capacity of a channel, then the probability of error of the code goes to 1 as the blocklength becomes
large.

86

For a multigraph � = (+ ,"), we denote by +(�) the set of vertices in �, by "(�)
the multi-set of edges in � and by ⇢(�) the set of distinct edges. For 4 2 ⇢(�), we let
<�(4) be the multiplicity of edge 4 in �. For E 2 +(�) we denote by 3�(E) the number of
distinct edges incident to E in �. Given multi-sets (1, (2 we denote their union by (1 � (2,
similarly for multi-graphs �1,�2 we write �1 � �2 for the multi-graph � with vertex set
+(�1) [+(�2) and edges "(�1) � "(�2). For a set of vertices (or edges) (, we denote by
�(() the subgraph of � induced by the set (. For a graph ⌧ ✓ � we denote by �(⌧) the
multigraph induced by +(⌧). For an edge 4 and a multigraph �, we write � + 4 for the
multigraph obtained adding 4 to �. We denote by = be the complete graph on = vertices.
Remark 4.3. All graphs we consider in the chapter will have vertex sets that are subsets of
[=].

For a walk , over = as defined in Chapter 2, we denote by "(,) the sequence of
edges in, . We write ⇢(,) for the set of distinct edges in, and+(,) for the set of distinct
vertices. For simplicity, we also use, to refer to the multigraph with vertex set +(,) and
edges "(,).

Definition 4.4 (Eulerian multi-graph). We say that a multigraph � is Eulerian if there
exists a closed walk, in � such that for any 4 2 ⇢(�), 4 appears in, exactly <�(4) times.

Definition 4.5 (Cut). For a multi-graph � with vertex set + , a cut (⌫,+ \ ⌫) is a partition
of the vertices into two disjoint subsets. We denote with (⌫,+ \ ⌫) the edges in the cut
and by �(⌫,+ \ ⌫) the multigraphs spanned by those edges in � . A @-multi-way cut is a
partition (⌫1, . . . , ⌫,+ \ (⌫1 [. . . [⌫@)) of the vertices in � in @ disjoint subsets.

Definition 4.6 (Isomorphic graphs). Two graphs ⌧ = (+ , ⇢) and ⌧0 = (+0, ⇢0) are isomor-
phic if there exists a bĳective mapping) : + ! +

0 such that for any D , E 2 + , {D , E} 2 ⇢ if
and only if

�
)(D),)(E)

2 ⇢0.

We formally present here the polynomials used in the subsequent sections. Let . be
the =-by-= adjacency matrix of a graph ⌧ with vertex set [=], centered with respect to the
Erdős-Rényi distribution with parameter 3. That is for 0 , 1 2 [=],

.01(⌧) =
8>>><
>>>:

1 � 3

=
if 01 2 ⇢(⌧),

� 3
=

if 01 8 ⇢(⌧),
0 if 0 = 1 .

(4.2.1)

When the context is clear we write . instead of .(⌧). For simplicity, for a multigraph �
with vertex set +(�) ✓ [=], we write .� for the polynomial

.� :=
÷

012⇢(�)
.
<(01)
01

.

87

For fixed parameters = , 3, B , ⌘ and for 8 , 9 2 [=], we define the polynomial

&
(B)
8 9
(.) =

8>><
>>:

1
|SAWB

89
|
� 2=
⌘·3

�
B Õ
�2SAWB

89

.� if 8 < 9 ,

0 otherwise.
(4.2.2)

&
(B)(.) : í=⇥= ! í=⇥= is then the matrix valued polynomial with entry 8 9 equal to

&
(B)
8 9
(.). Notice that

���SAWB

89

��� = (= � 2)B�1 where (= � 2)B�1 is the falling factorial (= � 2) · (= �
3) · · · (= � 2 � B + 1).

As already mentioned, the polynomial Eq. (4.2.2) is an unbiased estimators of the vector
of communities x with respect to the distribution SBM=(3, ⌘). The following facts formally
show this and other basic properties of the polynomials Eq. (4.2.1) and Eq. (4.2.2).

Fact 4.7. Let G ⇠ SBM=(3, ⌘)(Y|x) and let Y be its centered adjacency matrix. Let � be a simple
graph. Then

Ö
SBM=(3,⌘)

[Y� | x] =
✓
3 · ⌘
2=

◆ |⇢(�)| ÷
012⇢(�)

x0x1 .

Proof.

Ö[Y� | x] =
÷

012⇢(�)
Ö[Y01 | x]

=
÷

012⇢(�)

⇣
1 + ⌘

2x0x1
⌘
3

=

✓
1 � 3

=

◆
�

✓
1 � (1 + ⌘

2x0x1)
3

=

◆
3

=

�

=
÷

012⇢(�)

3

=

✓
1 � 3

=

◆
�

✓
1 � 3

=

◆
+ ⌘

2x0x1
✓
1 � 3

=

+ 3

=

◆�

=
÷

012⇢(�)

3 · ⌘
2= x0x1 .

⇤

Notice that if � is a self-avoiding walk of length-B between vertices 8 , 9 2 [=] then
Ö[Y� | x] =

�
3·⌘
2=

� Bx8x9 . The expectation of small powers of Y01 is also easy to approximate.
We write 5 (=) = (1 ± >(1)),(=) if (1 � >(1)) · ,(=) 6 5 (=) 6 (1 + >(1)) · ,(=).

Fact 4.8. Let 0 , 1 2 [=] and let 2 6 @ . log = be some integer. Then

Ö
SBM=(3,⌘)

⇥
Y@

01

�� x
⇤
=

✓
1 ± >

✓
1

=
0.99

◆◆ ⇣
1 + ⌘

2x0x1
⌘
3

=

.

88

Proof. By choice of @ and since 3 is a constant,

Ö
⇥
Y@

01

�� x
⇤
=

⇣
1 + ⌘

2x0x1
⌘
3

=

✓
1 � 3

=

◆
@

�
✓
1 � (1 + ⌘

2x0x1)
3

=

◆ ✓
3

=

◆
@

=
✓
1 ± >

✓
1

=
0.99

◆◆ ⇣
1 + ⌘

2x0x1
⌘
3

=

.

⇤

4.3 Robust recovery meta-algorithm
In this section we consider a more general problem than the stochastic block model with
constant average degree. We show how to robustly recover the hidden structure even
though it may have a low objective value in our optimization problem. We apply this
algorithm to the stochastic block model in Section 4.4.

Problem 4.9 (Small-Correlation Robust Signal Recovery). Let E 2 {±1/
p
=}= be a unit flat

vector and C = 1
⇠
⇤ · log = for some constant ⇠⇤ > 0. For an unknown matrix& 2 í=⇥= –weakly

correlated with the unknown signal E– and an observed matrix &̃ 2 í=⇥= such that the tuple
(& , &̃ , E) satisfies the conditions Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with parameters �, �, ✏, ⇣⇤, ✓, ⇠⇤ > 0.
The goal is to return a unit vector Ê such that hÊ , Ei2 > ⌦(1).

The set of conditions is:

A�,�,⇣⇤ ,✏,✓,⇠⇤ :

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

correlation: Tr&2C = 1

Tr
�
& � � · EET�2C

6 (1 � ⇣⇤)2C

sensitivity:
’
82[=]

�
&

2C�2�2
88
6

✏
=

·
�
Tr&2C�2�2

max
82[=]

’
92[=]

��
&89

�� 6 ✓

perturbations: 1
=

��
& � &̃

��
1 6 �

max
82[=]

’
92[=]

��
&̃89

�� 6 ✓

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(A�,�,✏,⇣⇤ ,✓,⇠⇤)

The correlation conditions enforce the matrix& to contain non-trivial information about
E. Here ⇣⇤ is the parameter quantifying the correlation between& and the planted solution.18
The sensitivity conditions (with parameters ✏, ✓) are necessary so that perturbations cannot
completely hide the signal. They roughly correspond to the flatness property discussed in

18For the stochastic block model, ⇣⇤ will be a polynomial in ⇣ for 3 > (1 + ⇣) 4
⌘2 .

89

Section 4.1. Finally, the perturbations inequalities dictate how far the original matrix & is
from its corrupted observation &̃.

To solve Problem 4.9, we will use the following algorithm.

Algorithm 4.10 (Scale-free robust recovery).
Settings: Let (& , &̃ , E) be an instance of Problem 4.9 satisfying Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with
parameters �, �, ✏, ⇣⇤, ✓ > 0, ⇠⇤ > 0.
Input: &̃ 2 í=⇥= , ✏ > 0, ⇠⇤ > 0.

1. Let C⇤ = (1 � 1/C)�1. Compute a matrix / 2 í=⇥= solving the program

maximize h/, &̃2i subject to

8>>>><
>>>>:

Tr/C⇤ 6 1
/ ⌫ 0

88 2 [=], /88 6
✏2

=

9>>>>=
>>>>;

(P.1)

2. Return " := /&̃ + &̃/.

Notice that the constraints of program P.1 are convex and can be checked in polynomial
time, hence the whole algorithm runs in polynomial time.

Algorithm 4.10, will allow us to approximately recover the unknown vector E with
constant probability. Concretely, we will use it to prove the central theorem below.

Theorem 4.11. Let & , &̃ 2 í=⇥= , E 2
�
±1/
p
=

= form an instance of Problem 4.9. Suppose that

(& , &̃ , E) satisfies Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with parameters �, �, ✏, ⇣⇤, ✓ > 0, ⇠⇤ > 0 and that

approximability: 4
2⇠⇤ · ✓2
p
✏
6

⇣⇤

4 (4.3.1)

robustness: 8✓ · ✏2 · � 6 ⇣⇤

4 . (4.3.2)

Then, given &̃ , ✏ there exists a polynomial time algorithm (Algorithm 4.10) that computes a matrix
" with k"knuc 6 $(1) such that

h" , EE
Ti >

✓
⇣⇤

2� �
✏2 · �
=

◆
· k"knuc .

Before proving the theorem, let’s try to understand its conditions and meaning. First,
notice that if we had access to & then simply computing the matrix maximizing the
C-Schatten norm of &2 would result in a matrix ⇣-correlated with EET.19 Unfortunately we
only have access to an arbitrarily perturbed version of &, thus the main difficulty is to use
this perturbed matrix &̃ as a proxy for & and still obtain a matrix close to EET. In Eq. (4.3.1),

19We need to use &2 since the matrix & may not be positive semidefinite. See Section 4.1.

90

the exponential term is a residue of the use of schatten norms. One side, large ✏ allows for
stronger approximability inequalities, on the other hand the smaller ✏ is the more resilient
the algorithm is to adversarial perturbations (as seen in Eq. (4.3.2)). On a similar note, small
values ✓ implies the data has low sensitivity and thus one can obtain better guarantees.

The strategy of Algorithm 4.10 to solve Problem 4.9 will be to obtain a matrix / with
small entries that is close to the matrix maximizing the C-Schatten norm of &̃2. By the
sensitivity and perturbation constraints, this will also be close to the matrix maximizing
the C-Schatten norm of &2. The approximability condition Eq. (4.3.1) ensures that the
constraints of P.1 on the entries of feasible solutions are not too strong and so that &̃2C is
close to an optimal solution. On the other hand, the robustness condition ensures that
&̃ and & are not too far from each other and so the optimal solution to P.1 non-trivially
correlates with &2 and thus also with EET.

Weak recovery of E then immediately follows as a corollary of the rounding below.
Lemma 4.12 (Rounding lemma). Let ⇣̂ > 0. Given a matrix " 2 í=⇥= and a unit vector E 2 í=
achieving correlation in the following sense

h" , EE
>i > k"knuc · ⇣⇤ ,

a uniformly at random choice v̂ among the top 2
⇣⇤ unit norm eigenvectors of " can achieve

(⇣⇤)$(1)-correlation with E:

Öhv̂, Ei2 > (⇣⇤)3
8 .

Proof. By performing a spectral decomposition,
"

k"knuc
=

’
8=[=]

⇢8 · I8I>8 ,

where I8 are orthonormal eigenvectors of " and ⇢✓ > ⇢✓+1 for any ✓ 2 [=] are scalars. By
assumption ⇣⇤ =

Õ
8=[=] ⇢8 hI8 , Ei2. Since "

k"knuc
has unit nuclear norm, we have

Õ
8=[=] |⇢8 | = 1.

Thus for : = 2
⇣⇤ , when 8 > :, ⇢8 6 ⇣⇤

2 . It follows that
Õ
82[:] ⇢8 · hI8 , Ei2 > ⇣⇤ � ⇣⇤

2 = ⇣⇤
2 and so

there must be i 2 [:] such that hIi, Ei2 > ⇢8 · hI8 , Ei2 > (⇣⇤)2
4 .

Hence, if we choose i 2 [:] uniformly at random, then with probability at least 1/:, we
get a vector such that hIi, Ei2 > (⇣⇤)2

4 . As : = 2
⇣⇤ , we obtain the claim. ⇤

The rest of the section contains a proof of Theorem 4.11. We split it in two lemmas. The
first lower bounds the optimal value of program P.1, the second uses such lower bound to
show that any nearly optimal solution is non-trivially correlated with EET. Together they
will imply the theorem.
Lemma 4.13 (Lower bound for the Optimum). Let (& , &̃ , E) be an instance of Problem 4.9
satisfyingA�,�,✏,⇣⇤ ,✓,⇠⇤ with parameters �, �, ✏, ⇣⇤, ✓ > 0, ⇠⇤ > 0 and consider the program P.1.
Then

optP.1 > 1 � 42⇠⇤ · ✓2
p
✏
� 4✓ · ✏2 · � .

91

Lemma 4.14 (Correlation of nearly-optimal solutions). Let (& , &̃ , E) be an instance of Prob-
lem 4.9 satisfying Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with parameters �, �, ✏, ⇣⇤, ✓ > 0, ⇠⇤ > 0 and consider the
program P.1. Suppose that

4
2⇠⇤ · ✓2
p
✏
+ 8✓ · ✏2 · � 6 ⇣⇤

2 .

Then any feasible solution / 2 í=⇥= such that h/, &̃2i > 1 � 42⇠⇤ · ✏2
p
✓
� 4✓ · ✏2 · � , satisfies

h/&̃ + &̃/, EETi > ⇣⇤

2� �
✏2 · �
=

.

We are now ready to prove Theorem 4.11.

Proof of Theorem 4.11. By hypothesis, combining Lemma 4.13 and Lemma 4.14 we get

h" , EE
Ti > ⇣⇤

2� �
✏2 · �
=

.

It remains to bound k"knuc. By Holder’s inequality with respect to the spectral norm and the
nuclear norm, we have k/&̃knuc 6 k/knuck&̃k. Since / is a feasible solution to program P.1,
we have k/k

C⇤ 6 1 for C⇤ =
�
1 � 1

C

��1. Again by Holder’s inequality, k/knuc 6 k/kC⇤kId= kC
and for C = log =

⇠
⇤ , kId= kC = $(1). Thus k/knuc = $(1). By the triangle inequality of trace

norm, we have k"knuc 6 k/&knuc + k&/knuc 6 $(1). The result follows. ⇤

The rest of the section will be devoted to and. We prove Lemma 4.13 in Section 4.3.1 and
Lemma 4.14 in Section 4.3.2. The central tool to both results will the following intermediate
lemma, which, informally speaking, states that for any feasible solution / to program P.1
we have h/,&2i ⇡ h/, &̃2i.

Lemma 4.15. Let (& , &̃ , E) be an instance of Problem 4.9 satisfying Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with
parameters �, �, ✏, ⇣⇤, ✓ > 0, ⇠⇤ > 0. Let / 2 í=⇥= be a feasible solution to the program P.1. Then��h/,&2 � &̃2i

�� 6 4✓ · ✏2 · � .

Proof. We may rewrite

&
2 � &̃2 =

1
2

⇣
& � &̃

⌘ ⇣
& + &̃

⌘
+ 1

2

⇣
& + &̃

⌘ ⇣
& � &̃

⌘
.

So let /0 := / ·
⇣
&̃ +&

⌘
and /00 :=

⇣
&̃ +&

⌘
/, then we have

��h/,&2 � &̃2i
�� = ��h/0,& � &̃i + h/00,& � &̃i��
6 (k/0k1 + k/00k1)

��
& � &̃

��
1

6 (k/0k1 + k/00k1) · �= .

92

Since by the perturbation conditions the matrix & � &̃ has bounded ✓1 norm, it suffices to
upper bound k/0k1 and k/00k1. So notice that for any 8 , 9 2 [=]

���/0
8 9

��� =
����h/8 ,

⇣
& + &̃

⌘
9

i
����

6
✏2

=

’
✓2[=]

��
&9✓ � &̃9✓

��

= 2✓
✏2

=

.

Applying the same reasoning to
���/00
8 9

���, the result follows. ⇤

4.3.1 Lower bound for the optimum
Here we prove Lemma 4.13. Throughout the section we assume (& , &̃ , E) to be an instance
of Problem 4.9 satisfying Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with parameters �, �, ✏, ⇣⇤, ✓ > 0, ⇠⇤ > 0. We
also define C⇤ = (1 � 1/C)�1, where C = log =

⇠
⇤ . We will build our solution starting from a

feasible solution to a simpler program than P.1 and then modifying it to satisfy the missing
constraints. To this end consider the semidefinite program:

maximize h/,&2i subject to

(
Tr/C⇤ 6 1

/ ⌫ 0

)
(P.2)

It is easy to compute its optimum.

Lemma 4.16. Consider the program P.2. Then optP.2 = 1.

Proof. Applying Hölder inequality

h/,&2i 6 k/k
C
⇤ ·

��
&

2��
C
6 1 .

To see that optP.2 > 1 instead let / = &
2C�2. Here / is a feasible solution because

Tr/C⇤ = Tr&(2C�2)·C⇤ = Tr&2C = 1 and it is clearly positive semidefinite. We also have

h/,&2i = Tr&2C = 1 .

⇤

We can use Lemma 4.16 to show that, for & = &̃ (that is, � = 0), we can obtain a nearly
solution to program P.1 from a (specific) optimal solution to program P.2. Solutions of
program P.2 may have large entries and so are not feasible solutions to program P.1 in
general. Thus, the plan is to project the optimal solution &2C�2 for program P.2 to the space
spanned by its columns with bounded entries. Since entries of & are also bounded, this

93

projection will not decrease significantly the correlation between our new matrix and &.
Consider the program:

maximize h/,&2i subject to

8>>>><
>>>>:

Tr/C⇤ 6 1
/ ⌫ 0

88 2 [=], /88 6
✏2

=

9>>>>=
>>>>;

(P.3)

Let/⇤ = &2C�2 and let (be the set of large diagonal entries of/⇤, that is (:=
n
8

��� /⇤
88
> ✏2

=

o
.

Denote by ⇧(the projector into the subspace spanned by the columns of /⇤ with index in
(. We first observe a simple fact concerning /⇤,⇧(.

Fact 4.17. Consider the program P.3 and let

/ := (Id �⇧()/⇤(Id �⇧() .

For any integer C > 0 we have
Tr

�
/
⇤C � > Tr

�
/
C
�

Proof. We denote the dimension of space spanned by (as :. Then we denote 8-th smallest
eigenvalue of /⇤ as ⌫8(/⇤) and the 8-th smallest eigenvalue of the matrix / as ⌫8(/). We
note that Tr/C =

Õ
=

8=1 ⌫8(/)C , and Tr/⇤C =
Õ
=

8=1 ⌫8(/⇤)C . Furthermore, since /⇤ is positive
semidefinite, / is also positive semidefinite and the smallest : eigenvalues of / are given
by 0. Thus, it’s sufficient to prove that ⌫:+8(/⇤) > ⌫:+8(/) for any 1 6 8 6 = � :.

To prove this, we denote the space spanned by the top = � : � 8 + 1 eigenvectors of / as
*8 . Applying Courant-Fischer min-max Lemma B.104, we have

⌫:+8(/⇤) > min
G

{í/⇤(G) | G 2 *8 and G < 0}

= min
G

{í/(G) | G 2 *8 and G < 0}

= ⌫8+:(/)

This completes the proof. ⇤

Using this fact, we prove that / is close to an optimal solution for %.3.

Lemma 4.18. Consider the program P.3 and let

/ := (Id �⇧()/⇤(Id �⇧() .

Then

h/,&2i > 1 � 42⇠⇤ · ✓2
p
✏
.

94

Proof. By construction / is the projection of /⇤ into the space orthogonal to the subspace
spanned by columns of /⇤ with index in (. The matrix / is clearly positive semidefinite.
Moreover, as shown in Fact 4.17, since it is a projection fo /⇤ to a subspace, the eigenvalues
of /⇤ dominates the eigenvalues of / and thus Tr/C⇤ 6 Tr/⇤C⇤ . It follows that / is a feasible
solution to Eq. (P.3).

It remains to lower bound its objective value. Now by Lemma 4.16,

h/,&2i > 1 �
��h/ � /⇤,&2i

��
,

hence it suffices to bound
��h/ � /⇤,&2i

��. Then

��h/ � /⇤,&2i
�� 6’

82(

’
92[=]

���/⇤
8 9

��� · ��� �&2�
8 9

���
6
’
82(

’
92[=]

q
/
⇤
88
· /⇤

9 9
·
��� �&2�

8 9

���

6

 ’
82(
/
⇤
88

!1/2

·
©≠≠
´
’
82(

©≠
´
’
92[=]

q
/
⇤
9 9

��� �&2�
8 9

���™Æ
¨

2™ÆÆ
¨

1/2

6

 ’
82(
/
⇤
88

!1/2

·
©≠≠
´
’
82[=]

©≠
´
’
92[=]

q
/
⇤
9 9

��� �&2�
8 9

���™Æ
¨

2™ÆÆ
¨

1/2

6

 ’
82(
/
⇤
88

!1/2

·
��|&2 |

�� · (Tr/⇤)1/2
.

By the second sensitivity condition on &, k |& |k 6 ✓ and thus
��|&2 |

�� 6 ✓2. By the first
sensitivity condition,

’
82(
/
⇤
88
6
=

✏2

’
82[=]

�
/
⇤
88

�2 6
=

✏2 · ✏
=

©≠
´
’
82[=]

/
⇤
88

™Æ
¨

2

6
1
✏
(Tr/⇤)2 .

By Lemma B.103 and choice of C = 1
⇠
⇤ · log =

Tr/⇤ 6 4⇠⇤ · Tr/⇤C⇤ .

It follows that
��h/ � /⇤,&2i

�� 6 4 3
2⇠
⇤ · ✓2
p
✏
,

concluding the proof. ⇤

95

Using Lemma 4.18, we can prove Lemma 4.13. The idea is that since by perturbation
conditions & and &̃ are close in !1-norm, the product h/, &̃2i will not be too far from
h/,&2i.

Proof of Lemma 4.13. Any feasible solution for the program P.3 is a feasible solution for P.1.
Choosing / 2 í=⇥= as constructed in Lemma 4.18 we get

h/, &̃2i > h/,&2i � h/, &̃2 �&2i

> 1 � 42⇠⇤ · ✓2
p
✏
� 4✓ · ✏2 · � ,

where we applied both Lemma 4.15 and Lemma 4.18. ⇤

4.3.2 Correlation of nearly-optimal solutions
We prove here Lemma 4.14. Again, we assume (& , &̃ , E) to be an instance of Problem 4.9
satisfying Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with parameters �, �, ✏, ⇣⇤, ✓ > 0, ⇠⇤ > 0 and we let C⇤ =
(1 � 1/C)�1, where C = log =

⇠
⇤ . We start by showing that any nearly optimal solution to

program P.3 is non trivially correlated with the vector E in the following sense.

Lemma 4.19. Consider the program P.3. Any feasible solution/ 2 í=⇥= such that h/,&2i > 1� ⇣⇤
2

satisfies

h/& +&/, EETi > ⇣⇤

2� .

Proof. Let / be a feasible solution such that h/,&2i > 1 � ⇣⇤
2 . Then

1 � ⇣⇤

2 6 h/,&
2i

= h/,
⇥ �
& � � · EET� + � · EET⇤2i

= h/,
�
& � � · EET�i + �h/,

�
& � � · EET�

EE
T + EET �

& � � · EET�i + �2h/, EETi .

Now since & satisfies the correlation conditions in Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤)

1 � ⇣⇤

2 6 1 � ⇣⇤ + �h/,
�
& � � · EET�

EE
T + EET �

& � � · EET�i + �2h/, EETi

6 1 � ⇣⇤ + �h/& +&/, EETi � �2h/, EETi
6 1 � ⇣⇤ + �h/& +&/, EETi .

Rearranging the result follows. ⇤

While Lemma 4.19 shows how / contains non-trivial information about E, from an
algorithmic point of view the result is of little use since we do not have access to&. However,
as & and &̃ are close, also the matrix /&̃ + &̃/ will be correlated with EET.

96

Lemma 4.20. Let / 2 í=⇥= be a feasible solution to program P.3 such that

h/& +&/, EETi > ⇣⇤

2� .

Then

h/&̃ + &̃/, EETi > ⇣⇤

2� � 2
✏2

=

� .

Proof. We may rewrite the product as,

h/&̃ + &̃/, EETi = h/
⇣
&̃ �& +&

⌘
+

⇣
&̃ �& +&

⌘
/, EE

Ti

= h/
⇣
&̃ �&

⌘
+

⇣
&̃ �&

⌘
/, EE

Ti + h/& +&/, EETi .

Since E is a flat unit vector and using the conditions on & , &̃,

h/
⇣
&̃ �&

⌘
, EE

Ti 6 1
=

’
8 , 92[=]

⌧
/8 ,

⇣
& � &̃

⌘
9

�

6
✏2

=
2

��
& � &̃

��
1

6
✏2

=

� .

An analogous computation for h
⇣
&̃ �&

⌘
/, EE

Ti concludes the proof. ⇤

We can now prove Lemma 4.14.

Proof of Lemma 4.14. Let / 2 í=⇥= be a feasible solution to program P.1 satisfying

h/, &̃2i > 1 � 42⇠⇤ · ✓2
p
✏
� 4✓ · ✏2 · � .

By Lemma 4.15 we have

h/,&2i > 1 � 42⇠⇤ · ✓2
p
✏
� 8✓ · ✏2 · � .

By assumptions on the parameters, and applying Lemma 4.19 and Lemma 4.20 the result
follows. ⇤

97

4.4 Robust recovery for stochastic block model
In this section we show how to use Algorithm 4.10 to obtain a robust algorithm for the
stochastic block model and prove Theorem 4.2. First recall our settings.

Problem 4.21. Let ⇣, ⌧ > 0. For a pair (x,G) ⇠ SBM=(3, ⌘) where 3 = (1 + ⇣) 4
⌘2 we are

given ⇣ and a graph ⌧� obtained from G applying at most ⌧ · = arbitrary edge edits.20 The
goal is then to return a unit vector x̂ 2 í= that is ⇣$(1)-correlated with x in the sense that
hx̂, xi2 > ⇣$(1)kxk2.

Remark 4.22 (Learning the distribution parameters ⇣, 3, ⌘). In principle the parameter 3, ⌘
of the distribution may not be known. However, we can easily learn good bounds on 3, ⌘.
A constant upper bound on 3 can be obtained from ⌧

� with a simple counting argument.
Since 3 · ⌘2 > 1 (as otherwise the problem is impossible to solve), we can lower bound ⌘ by
1/
p
3. These constant approximations are precise enough for our purposes. For this reason,

we will simply assume that 3, ⌘ are known.
We state here the main result of the section. Theorem 4.2 follows as a corollary.

Theorem 4.23. Let (x,G) ⇠ SBM=(3, ⌘) where 3 > (1 + ⇣) 4
⌘2 for some constant ⇣ > 0. Suppose

⌧
� is an arbitrary graph that differs from G in at most ⌧ · = edges for

⌧ 6
✓
1
⇣
· log 1

⌘

◆�$(1/⇣)
.

Then, there exists a =poly(1/⇣,log 3)-time algorithm (Algorithm 4.27) that, given ⌧�, ⇣, computes a
=-by-= matrix M such that

hM, xxTi > kxk2 · kMknuc · ⇣$(1)
,

with probability 1 � >(1).

We split the proof of Theorem 4.23 in two steps. First, we apply the results of section
Section 4.3. That is, we show there are matrix polynomials Q, &̃, computable respectively
from the adjacency matrices Y,.

� of G and ⌧� in polynomial time, such that with constant
probability (Q, &̃ , x) satisfiesA�,�,✏,⇣⇤ ,✓,⇠⇤ for some meaningful set of parameters. Second,
in Section 4.4.2 we show how to turn this into a high probability statement.

Notice that as an immediate consequence of Theorem 4.23, applying the rounding
Lemma 4.12 one gets the following corollary, which is a stronger version of the main
theorem.

Corollary 4.24 (Formal version of the main theorem). For = large enough, let (x,G) ⇠
SBM=(3, ⌘) where 3 > (1 + ⇣) 4

⌘2 for some constant ⇣ > 0. Suppose ⌧� is an arbitrary graph that

20Hence we assume ⌧ · = to be an integer

98

differs from G in at most ⌧ · = edges for ⌧ as in Theorem 4.23. Then, there exists a polynomial-time
algorithm that, given ⌧�, ⇣, computes a =-dimensional unit vector x̂ such that

Ö
x̂
hx̂, xi2 > kxk2 · ⇣$(1)

.

with high probability over (x,G).

4.4.1 Applying the meta-algorithm to the stochastic block
model

In this section we prove the following weaker version of Theorem 4.23.

Theorem 4.25. The result in Theorem 4.23 holds with probability at least 0.99.

For a graph ⌧ on = vertices, recall the definition of the centered adjacency matrix
.(⌧) 2 í=⇥= , where for 8 , 9 2 [=]

.89(⌧) :=

8>>><
>>>:

1 � 3

=
if 8 9 2 ⇢(⌧)

� 3
=

if 8 9 8 ⇢(⌧),
0 if 8 = 9 .

When the context is clear we simply write .. As already discussed in Section 4.1 and as we
will more extensively explain in Section 4.5 and Appendix B.1, we consider the following
truncated version of the adjacency matrix.

Definition 4.26 (�-truncated adjacency matrix). Let ⌧ be a graph over [=] and let � > 0 be
an integer. We define .(⌧) 2

�
� 3
=
, 0, 1 � 3

=

=⇥= to be the matrix with entries

.89(⌧) :=

8>>><
>>>:

1 � 3

=
if 8 9 2 ⇢(⌧) and 3⌧(8) 6 �, 3⌧(9) 6 �

� 3
=

if 8 9 8 ⇢(⌧) and 3⌧(8) 6 �, 3⌧(9) 6 �
0 otherwise.

for any 8 , 9 2 [=]. We we will denote the graph obtained from ⌧ by removing vertices of
degree larger than � by ⌧.

The matrices of interest will be the block self-avoiding walk matrix polynomials as
defined in Eq. (4.2.2). We restate the definition here. For a fixed integer B > 0, and a centered
adjacency matrix . of a graph ⌧, let &(B)(.) : í=⇥= ! í=⇥= be the matrix polynomial with
entries:

&
(B)
8 9
(.(⌧)) =

8>><
>>:

1
|SAWB

89
|
� 2=
⌘·3

�
B Õ
�2SAWB

89

.�(⌧) if 8 < 9 ,

0 otherwise.
(4.4.1)

99

For G,⌧
� as in Theorem 4.25, we simplify .(G) to Y and .(⌧�) to .�. Similarly we define

Y and .� to be the �-truncated centered adjacency matrices of G and ⌧�.
The choice of the truncation threshold � > 0 depends on the proof of the Eq. (4.1.11).

As explained in Section 4.1, � has to be a constant if we hope to solve Problem 4.21 for
constant ⌧ 2 [0, 1]. Indeed the smaller the choice of � the larger the constant fraction ⌧ of
corruptions that our algorithm can tolerate. On the other hand, the threshold cannot be
too small as otherwise we may loose too much information. With these mild conditions in
mind, for technical reasons, we define

� =

&
max

(
12844

3
4
, 40�B3, 2 log(2�B) + 12��B2 · log 2 + 8�2�2

B
2
✓
log 6

⌘

◆2
)'

, (4.4.2)

where � > 1000B3 and

� = �B log 6
⌘
. (4.4.3)

We remark that this is not a delicate choice in the sense that the results we will prove hold
for many larger values of �, as long as the fraction of corruptions ⌧ is a small constant.
However, it is important to observe that � is polynomial in (3, B), this will turn out to
be especially useful in computing moments of &(B)(Y) and &(B)(.�). Finally, notice that �
mildly depends on ⌘, this suggests that the fraction of corruption that our algorithm can
tolerate decreases as log 1

⌘ increases. We defer a more detailed discussion to Appendix B.1.
The algorithm we use is the following.

Algorithm 4.27 (Robust Recovery for SBM).
Input: An instance (⌧�, 3, ⌘) of Problem 4.21.

1. Fix �,�, � as in Eq. (4.4.2) and C = log =/400.

Let B > 1010 �1 + 1
⇣

� �
max

�
log 3, log log 2

⌘ , 1, log 1
⇣

 �2.

Compute &(B)(.�) where .� is the �-truncation of .�.

2. Run Algorithm 4.10 on the rescaled matrix &
(B)(.�)/

✓
ÖTr

⇣
&

(B)(Y)
⌘2C

◆1/2C
with

⇠
⇤ = 400 and a large enough universal constant ✏ > 0.

The proof that Algorithm 4.27 solves Problem 4.21 essentially amounts to showing that
the tuple

&
(B)(Y)/

✓
Tr

⇣
&

(B)(Y)
⌘2C

◆1/2C
,&

(B)(.�)/
✓
ÖTr

⇣
&

(B)(Y)
⌘2C

◆1/2C
, x/kxk

!

satisfiesA�,�,✏,⇣⇤ ,✓,⇠⇤ for a meaningful range of parameters, with sufficiently large proba-
bility over the realization of G, x, for all admissible ⌧�. In particular, the main additional

100

ingredients needed to prove Theorem 4.25 consists of bounds on the moments of&(B)(Y) and

&
(B)(Y) � xxT. We remark that, since in practice we don’t have access to

✓
Tr

⇣
&

(B)(Y)
⌘2C

◆1/2C
,

we can only scale down &(B)(.�) by the expectation of
✓
Tr

⇣
&

(B)(Y)
⌘2C

◆1/2C
. It turns out how-

ever that this random variable concentrates around its expectation, so the error introduced
with this rescaling will be negligible.

For simplicity let us write

Q := &(B)(Y)/
✓
Tr

⇣
&

(B)(Y)
⌘2C

◆1/2C

&̃ := &(B)(.�)/
✓
ÖTr

⇣
&

(B)(Y)
⌘2C

◆1/2C
,

x := x/kxk .

The central step in the proof of Theorem 4.25 is the statement below.

Lemma 4.28. Consider the settings of Theorem 4.25 Then the tuple (Q, &̃ , x) satisfy
Eq. (A�,�,✏,⇣⇤ ,✓,⇠⇤) with parameters

1. � 6 2 ,

2. ⇣⇤ = ⇣$(1)
,

3. � = 2⌧ · �B+1
,

4. ⇠⇤ = 400

5. ✓ = 10�B+1 · 42⇠⇤
,

and a constant ✏ > 0 depending only on B , ⇠⇤, log(1/⌘), with probability at least 0.99.

We prove Lemma 4.28 in Section 4.4.1.1 and directly use it here.

Proof of Theorem 4.25. In order to apply Theorem 4.11 we need to show that

4
2⇠⇤ ✓

2
p
✏
6

⇣⇤

4 ,

8✓ · ✏2 · � 6 ⇣⇤

4 .

By Lemma 4.28 and choice of �, B ,�, � for ⌧ 6 ⇣⇤
4
�
100 · ✏6 · �2B+2 · 42⇠⇤ ��1 a direct appli-

cation of Theorem 4.11 shows that with probability at least 0.99 the algorithm finds a
=-times-= matrix M satisfying

hM, xxTi >
��xxT��

F · kMknuc · ⇣$(1)
.

101

For the running time dependence, we note that the entries in &
(B) are degree B

polynomials in = variables, thus we can evaluate the matrix &(B) in time =$(B). Then the
convex programming, matrix powering and rounding can all be solved in poly(=) time as
we take

B > 1010
✓
1 + 1

⇣

◆ ✓
max

⇢
log 3, log log 2

⌘
, 1, log 1

⇣

�◆2
.

Therefore the running time of the algorithm can be bounded by =poly(1/⇣,log 3) ⇤

4.4.1.1 The stochastic block model satisfies correlation, sensitivity and
perturbations constraints

In this section we prove Lemma 4.28. Our central tool will be the following concentration
inequalities, which we prove in Section 4.5.

Lemma 4.29. Consider the settings of Theorem 4.25. Let �,�, � be as defined in Eq. (4.4.2) and
let C = log =

400 . Then

Tr

⇣
&

(B)(Y)
⌘2C

�1/2C
=(1 ± >(1))Ö

Tr

⇣
&

(B)(Y)
⌘2C

�1/2C
, (4.4.4)

Tr

⇣
&

(B)(Y) � xxT
⌘2C

�1/2C
6(1 + ⇣)�1/10Ö

Tr

⇣
&

(B)(Y)
⌘2C

�1/2C
, (4.4.5)

’
82[=]

✓⇣
&

(B)(Y)
⌘2C�2

◆2

88

6
✏
=

·
✓
Tr

⇣
&

(B)(Y)
⌘2C�2

◆2
, (4.4.6)

for a universal constant ✏ > 0, with probability at least 0.99. Moreover

=

2 6 Ö

Tr

⇣
&

(B)(Y)
⌘2C

�1/2C
. (4.4.7)

Remark 4.30. The careful reader may have noticed that so far, we never explicitly compute

the quantity
✓
ÖTr

⇣
&

(B)(Y)
⌘2C

◆1/2C
. In practice, for each value of =, we need to compute this

expectation to sufficiently close precision only once and not at every run of the algorithm.
This can be done efficiently and accurately (with high probability) by sampling several
graphs from SBM=(3, ⌘), compute the corresponding 2C-Schatten norm and take the average.

By scaling Tr Q2C = 1. We show now that Q satisfy the second correlation constraint in
A�,�,✏,⇣⇤ ,✓,⇠⇤ .

Lemma 4.31. Consider the settings of Theorem 4.25. Suppose Eq. (4.4.4) and Eq. (4.4.5) are
satisfied. Then for some 0 < � 6 2 and ⇣⇤ = ⇣$(1),

Tr
�
Q � � · xxT�2C

6 (1 � ⇣⇤)�2C
.

102

Proof. By Eq. (4.4.4) and Eq. (4.4.5)

Tr

⇣
&

(B)(Y) � xxT
⌘2C

�1/2C
6 (1 + ⇣)�1/11

Tr

⇣
&

(B)((Y)
⌘2C

�1/2C
.

By Eq. (4.4.7)

Tr

⇣
&

(B)(Y)
⌘2C

�1/2C
> =/2, so rescaling by 1/

Tr

⇣
&

(B)(Y)
⌘2C

�1/2C
, the poly-

nomial satisfy the correlation constraints in A�,�,✏,⇣⇤ ,✓,⇠⇤ with some 0 < � 6 2 and
⇣⇤ = ⇣$(1)

. ⇤

Next we show how by construction both Q and &̃ have columns bounded in ✓1-norm.

Lemma 4.32. Consider the settings of Theorem 4.25. Suppose Eq. (4.4.4) and Eq. (4.4.5) are
satisfied. Then

max
82[=]

’
92[=]

��Q8 9

�� 6 2�B+1

max
82[=]

’
92[=]

��
&̃89

�� 6 2�B+1
.

Proof. It suffices to show a bound for any graph with no vertex with degree larger than�. So
let⌧ be such a graph. Let. be its centered adjacency matrix (notice that its adjacency matrix
is also its �-truncated adjacency matrix, so we may use both definition interchangeably).
For D , E 2 +(⌧) and ✓ 2 [B], define the setWD ,✓ (⌧) :=

n
, 2 SAWB

D

��� ���⇢(,) \ ⇢(⌧)
��� = ✓ o.

That isWD ,✓ (⌧) contains the set of self-avoiding walks over = starting from D which
have exactly ✓ edges not in ⇢(⌧). Notice that for any , 2 WD ,✓ (⌧), ., 6

�
3

=

�✓ , and
&

(B)
DE
(.) 6 = Õ

,2SAWB

DE

., . Recall that we denote the set of vertices at distance B from D 2 +(⌧)

by #B

⌧

(D). Now, for any D 2 [=], by assumption
���#B

⌧

(D)
��� 6 �B . So

’
E2[=]

���&(B)
DE
(.)

��� 6 = ·
’

✓2[B�1]

’
,2WD ,✓ (�)

���.,
���

6 = ·
’

✓2[B�1]

’
,2WD ,✓ (�)

✓
3

=

◆
✓

.

For any ✓ 2 [B], there are at most �B�✓ · =✓ self-avoiding walks inWD ,✓ (⌧), thus
’
E2[=]

���&(B)
DE
(.)

��� 6 = · B · �B .

Since Eq. (4.4.4) and Eq. (4.4.5) are verified by assumption, applying the analysis above to
Y, .� and scaling down the inequalities the result follows. ⇤

103

Eq. (4.4.6) immediately implies the remaining sensitivity constraint on Q. Thus we only
need to show that Q and &̃ are close in a ✓1-norm sense. To do that, we need to first argue
how many different edges G and ⌧� may have.

Fact 4.33. Let � > 0 be an integer. Let ⌧,⌧� be graphs on = vertices that differs in at most ⌧ · =
edges, for some ⌧ > 0. Let ⌧ and ⌧� be respectively the graphs obtained from ⌧ and ⌧� by removing
all vertices with degree larger than �. Then ⌧ and ⌧� differs by at most 2⌧ · = · � edges.

Proof. ⌧ and ⌧
� differs by ⌧ · = edges. Each such edge changes the degree of at most 2

vertices, thus after the truncation ⌧ and ⌧� differs by at most 2⌧ · = · � edges. ⇤

Next we show that if ⌧ and ⌧
� are two arbitrary graphs (with bounded maximum

degree) which differ by at most one edge, than the matrices &(B)(.(⌧)) and &(B)(.(⌧�)) are
close.

Lemma 4.34. Let � > 0 be an integer. Let ⌧ be a graph on = vertices with maximum degree at
most �. Let ⌧� = ⌧ + DE for some D , E 2 +(⌧) such that DE 8 ⇢(⌧) and 3⌧�(D), 3⌧�(E) 6 �.
Denote respectively by . ,.� the centered adjacency matrices of ⌧ and ⌧�. Then

���&(B)(.) �&(B)(.�)
���

1
6 = · �B .

Proof. It suffices to consider length-B self-avoiding walks traversing DE. We reuse
the notation introduced in Lemma 4.32, thus for 0 , 1 2 +(⌧�) let W0 ,1 ,✓ (⌧�) :=n
, 2 SAWB

01

��� ���⇢(,) \ ⇢(⌧�)
��� = ✓ o. Furthermore, for ✓ 6 B consider the set

WDE

0 ,1 ,✓
(⌧�) :=

n
, 2 W0 ,1 ,✓ (⌧�)

��� DE 2 ⇢(,)
o
.

In other words, we look at the subsets of self-avoiding walks inW0 ,1 ,✓ containing the edge
DE. Then, ���&(B)(.) �&(B)(.�)

���
1
6 = ·

’
06✓6B�1

’
0 ,12[=]

’
,2WDE

0 ,1 ,✓
(⌧�)

���., � .�,
���

6 = ·
’

06✓6B�1

’
0 ,12[=]

’
,2WDE

0 ,1 ,✓
(⌧�)

���.,
��� + ���.�,

���

6 = ·
’

06✓6B�1

’
0 ,12[=]

’
,2WDE

0 ,1 ,✓
(⌧�)

✓
3

=

◆
✓+1

+
✓
3

=

◆
✓

= (1 + >(1))= ·
’

06✓6B�1

’
0 ,12[=]

’
,2WDE

0 ,1 ,✓
(⌧�)

✓
3

=

◆
✓

.

104

For any 0 6 ✓ 6 B � 1 we have
–

0 ,12[=]
WDE

0 ,1 ,✓
(⌧�) 6 B · �B�✓�1 · =✓ . It follows that

���&(B)(.) �&(B)(.�)
���

1
6 = · �B .

⇤

Now we can we show that Q and &̃ satisfy the first perturbation constraint.

Lemma 4.35. Consider the settings of Theorem 4.25. Suppose Eq. (4.4.4) holds. Then

1
=

��Q � &̃
��

1 6 2�B+1 · ⌧ .

Proof. By Fact 4.33 there is a sequence
n
⌧8

o
of 2⌧ · � · = graphs with maximum degree �

such that ⌧2⌧·�·= = ⌧
�, ⌧1 = G and for any 8 2 [⌧ · � · = � 1], ⌧8 and ⌧8+1 differ by at most

one edge. For each ⌧8 let .8 be its centered adjacency matrix. Then
��
&

(B)(Y1) �&(B)(Y2⌧·�·=)
��

1 6
’

82[2⌧·�·=�1]

��
&

(B)(.8) �&(B)(.8+1)
��

1

6 2⌧ · =2 · �B+1
,

where we used Lemma 4.34 in the last step. Since
���&(B)(.(G)) �&(B)(.(⌧�))

���
1
=

���&(B)(.(G)) �&(B)(.(⌧�))
���

1
,

rescaling the lemma follows. ⇤

Putting things together. We are ready to prove Lemma 4.28.

Proof of Lemma 4.28. We condition our analysis on the event that Eq. (4.4.4), Eq. (4.4.5) and
Eq. (4.4.6) are verified, which by Lemma 4.29 happen with probability 0.99. Consider the
tuple

⇣
Q, &̃ , x

⌘
By Lemma 4.31 the correlation constraints are satisfied for ⇣⇤ = ⇣$(1) and

some 0 < � 6 2. By Lemma 4.32 it holds that

max
82[=]

’
92[=]

|Q8 | 6 ✓

max
82[=]

’
92[=]

��
&̃8

�� 6 ✓ ,

for any ✓ > 2�B+1. By Lemma 4.35, the tuple satisfies the remaining perturbation constraint
for � = 2�B+1 · ⌧. The result follows. ⇤

105

4.4.2 Boosting the probability of success
In this section we conclude the proof of Theorem 4.23 showing how to increase the
probability of success of Algorithm 4.27.

Definition 4.36. Let " be a function that takes as input a graph ⌧� having [=] as the set
of vertices, and produces an = ⇥ = matrix "(⌧�) as output. Let (G, x) ⇠ SBM=(3, ⌘), and
define Esucc

= ,3,⌘," ,⌧,� to be the event that the function " succeeds, up to robustness ⌧, in
providing an output that �-correlates with the community labels.

More precisely, if (G, x) ⇠ SBM=(3, ⌘), then Esucc
= ,3,⌘," ,⌧,� is the event that for every graph

⌧
� that differs from G by at most ⌧= edges, we have

h"(⌧�), xx)i > � · kxk2 · k"(⌧�)knuc.

Theorem 4.25 implies that if " is Algorithm 4.27 with

B > 1010
✓
1 + 1

⇣

◆ ✓
max

⇢
log 3, log log 2

⌘
, 1, log 1

⇣

�◆2
,

then if 3 > (1 + ⇣) 4
⌘2 for some constant ⇣ > 0, and if ⌧ 6

� 1
⇣ · log 1

⌘

��$(1/⇣) and � 6 ⇣$(1),
then for = large enough, we have

ê
⇥
Esucc
= ,3,⌘," ,⌧,�

⇤
> 0.99.

In this section we will prove that, at the expense of paying a negligible price in the
robustness and correlation guarantees, we can boost the success probability and make
it converge to 1 at a rate that is roughly exponential in = 1

3 . In fact, we will prove a very
general boosting result:

Theorem 4.37. Let ⌘, 3 be such that 3 > (1+ ⇣) 4
⌘2 for some constant ⇣ > 0. Let " be an arbitrary

algorithm that takes as input a graph with [=] as the set of vertices, and produces an = ⇥ = matrix
as output. For every 0 < ⌧0 < ⌧ and every 0 < �0 < �, if

ê
⇥
Esucc
= ,3,⌘," ,⌧,�

⇤
> ⌦

✓
4
�=

1
4

◆
,

then for = is large enough, we have

ê
⇥
Esucc
= ,3,⌘," ,⌧0,�0

⇤
> 1 � 4�=

1
4
.

The theorem remains correct if we replace the exponent 1
4 with any constant ⇢ < 1

3 .

It is worth noting that this boosting argument is not unique to the stochastic block
model, and similar results hold in a wide range of estimation problems.

Combining Theorem 4.37 and Theorem 4.25, we obtain Theorem 4.23.
In order to prove Theorem 4.37, we will use a concentration of measure inequality

known as the blowing-up lemma, and which is widely used in information theory to prove
strong converse results. In order to describe this lemma, we need the following definition:

106

Definition 4.38. Let Y be an arbitrary finite set, and let H = (H1, . . . , H#) 2 Y# and
H
0 = (H01, . . . , H0#) 2 Y# . The Hamming distance between H and H

0 is defined as

⇡�(H , H0) =
���
8 2 [#] : H8 < H08

 ��
.

If E is a subset ofY# , we define the ✓ -blowup of E as:

�✓ (E) =
�
H
0 2 Y= : 9H 2 E ,⇡�(H , H0) 6 ✓

.

In other words, the ✓ -blowup of E is the set of elements ofY= that are at a Hamming
distance of at most ✓ from E.

Roughly speaking, the blowing-up lemma states that if we have = independent random
variables y1, . . . , y# taking values in a finite set Y, and if E ✓ Y= is an event whose
probability is not too small, then if we "inflate" E a little by adding the elements ofY# that
are close to E in Hamming distance, then the probability of the event becomes 1 � >(1).

The blowing-up lemma was first introduced in [AGK76], and there are several versions
of it (e.g., [Mar86] and [Mar96]). We will use the following version that was proved by
Marton in [Mar96] (see also Lemma 3.6.2 in [RS+13]):

Lemma 4.39. [Blowing up Lemma [Mar96]] Let y1, . . . , y# be # random variables taking values
in the same finite set Y that can be of arbitrary size. If y1, . . . , y# are independent (but not

necessarily identically distributed), then for every E ✓ Y# and every ✓ >
r

#

2 log
⇣

1
ê[E]

⌘
, we have

ê[�✓ (E)] > 1 � exp
266664
� 2
#

©≠
´
✓ �

s
#

2 log
✓

1
ê[E]

◆™Æ
¨

2377775
= 1 � exp

266664
�2#©≠

´
✓

#

�

s
1

2# log
✓

1
ê[E]

◆™Æ
¨

2377775
,

where ê[�✓ (E)] = ê
⇥
(y1, . . . , y#) 2 �✓ (E)

⇤
and ê[E] = ê

⇥
(y1, . . . , y#) 2 E

⇤
.

Remark 4.40. As can be easily seen from the lemma, if (y#)#>1 is a sequence of independent
(but not necessarily identically distributed) random variables taking values in Y, and if
(E#)#>1 is a sequence of events such that E# ✓ Y# and ê[E#] is not exponentially small
in the sense that lim

#!1
1
#

logê[E#] = 0, then:

• We can find a sequence of integers (✓#)#>1 such that lim
#!1

✓#

#

= 0 and

lim
#!1

ê[�✓# (E#)] = 1.

• We need ✓# = $(
p
#) in order for the lemma to guarantee that lim

#!1
ê[�✓# (E#)] = 1.

107

In the following, we will show how we can apply the blowing-up lemma to boost the
success probability of a weak-recovery algorithm and make it converge to 1 at a rate that is
exponential in = 1

4 . We will do this in two steps. First, we show how to boost the conditional
probability of success given the community labels x, and then we show how to boost the
success probability unconditionally.

4.4.2.1 Boosting the conditional probability of success given the com-
munity labels

Since our algorithm is robust against a linear number of adversarial edge changes, namely
⌧= changes, we can benefit from the blowing-up lemma to boost the success probability
to 1 � 4�=

1
4 by paying a negligible price in the robustness of the algorithm. However, we

need to be careful how we apply the blowing-up lemma, because in (G, x) ⇠ SBM=(3, ⌘),
we have # = =(=�1)

2 = ⌦(=2) (conditionally21) independent random edges that may or may
not be present in the graph, and our algorithm is only robust against up to ⌧= = ⇥(

p
#)

adversarial changes, whereas the naive and straightforward application of the blowing-up
lemma needs a robustness of at least $

⇣p
#

⌘
in order to guarantee the convergence of

probability to 1.
In order to successfully apply the blowing-up lemma, we will faithfully reorganize the

randomness of (G, x) ⇠ SBM=(3, ⌘) in = (conditionally) independent random variables. If
the new representation also faithfully captures closeness in the sense that representations
that are at Hamming distance ✓ induce graphs that differ by at most ✓ · >(

p
=) edges, then

our algorithm is robust against up to ⌧=
>(
p
=) = $(

p
=) adversarial changes in the random

variables, and this will allow us to successfully apply the blowing-up lemma.

Lemma 4.41. Let ⌘, 3," , ⌧ and � be as in Theorem 4.37. For every ⌧0 < ⌧, if

ê
⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ > ⌦
✓
4
�=

1
4

◆
,

then for = large enough, we have

ê
⇥
Esucc
= ,3,⌘," ,⌧0,�

��x⇤ > 1 � 4
�=

1
4

2 .

Proof. Roughly speaking, our plan is to define = random variables z1, . . . , z= taking values
in a setZ such that:

(a) There is a mapping ⌧ fromZ= to the set of graphs having [=] as the set of vertices,
such that G = ⌧(z1, . . . , z=).

21The edges are conditionally independent given x.

108

(b) For every I , I0 2 Z= , if ⇡�(I , I0) 6 ✓ , then ⌧(I) differs from ⌧(I0) by at most 2✓ · = 3
10

edges.

(c) z1, . . . , z= are conditionally independent given x.

Property (a) means that z1, . . . , z= form a faithful representation of G. Property (b) means
that there the Hamming distance inZ= is a good estimate for the number of edge changes
between the induced graphs. Properties (b) and (c) will allow us to successfully apply the
blowing-up lemma.

For every G 2 {�1,+1}= , define the set

Zsucc
= ,3,⌘," ,⌧,�(G) =

n
I 2 Z= : (⌧(I), G) 2 Esucc

= ,3,⌘," ,⌧,�

o
.

Clearly,
ê
⇥
z 2 Zsucc

= ,3,⌘," ,⌧,�(x)
��x⇤ = ê[Esucc

= ,3,⌘," ,⌧,� |x].

If we have ê[Esucc
= ,3,⌘," ,⌧,� |x] > ⌦

⇣
4
�=

1
4
⌘
, then if we take ✓ = d= 2

3 e, Lemma 4.39 implies
that

ê
h
z 2 �✓

⇣
Zsucc
= ,3,⌘," ,⌧,�(x)

⌘���xi > 1 � exp

26666664
�2=

©≠≠≠
´
=

2
3

=

�

vuuuut 1
2= log

©≠≠
´

1

⌦
⇣
4
�=

1
4
⌘ ™ÆÆ
¨
™ÆÆÆ
¨

237777775
= 1 � exp

266664
�2=

=
� 1

3 � 1p
2
=
� 3

8

r
1 ± $

⇣
=
� 1

4

⌘!2377775
> 1 � exp

h
�= 1

3

i
,

where the last inequality is true for = large enough.
Now assume that (G, x) and z = (z1, . . . , z=) are such that z 2 �✓

⇣
Zsucc
= ,3,⌘," ,⌧,�(x)

⌘
and

G = ⌧(z). Let Ĩ = (Ĩ1, . . . , Ĩ=) 2 Zsucc
= ,3,⌘," ,⌧,�(x) be such that

⇡�(z, Ĩ) 6 ✓ .

From Property (b) we know that⌧(Ĩ)differs from G = ⌧(z) by at most 2✓ ·= 3
10 6 2d= 2

3 e ·= 3
10 =

>(=) edges. On the other hand, since ⌧(Ĩ) 2 Zsucc
= ,3,⌘," ,⌧,�(x) , we have

(⌧(Ĩ), x) 2 Esucc
= ,3,⌘," ,⌧,� .

Let ⌧0 < ⌧ and let ⌧� be an arbitrary graph with +(⌧�) = [=], and which differs from
G = ⌧(z) by at most ⌧0= edges. Since ⌧(Ĩ) differs from ⌧(z) by at most 2✓= 3

10 = >(=) edges,
if = is large enough, the graph ⌧� differs from ⌧(Ĩ) by at most ⌧0= + >(=) 6 ⌧= edges. Now
since (⌧(Ĩ), x) 2 Esucc

= ,3,⌘," ,⌧,� and since ⌧� differs from ⌧(Ĩ) by at most ⌧= edges, we have

h"(⌧�), xx)i > � · kxk2 · k"(⌧�)knuc,

109

which implies that (G, x) = (⌧(z), x) 2 Esucc
= ,3,⌘," ,⌧0,� and z 2 Zsucc

= ,3,⌘," ,⌧0,�(x). Therefore,

�✓
⇣
Zsucc
= ,3,⌘," ,⌧,�(x)

⌘
✓ Zsucc

= ,3,⌘," ,⌧0,�(x).

Now since ê
⇥
z 2 Zsucc

= ,3,⌘," ,⌧0,�(x)
��x⇤ = ê[Esucc

= ,3,⌘," ,⌧0,� |x], we conclude that

ê
h
Esucc
= ,3,⌘," ,⌧0,�

���xi > 1 � exp
h
�= 1

3

i
. (4.4.8)

In the following, we will show how we can define the random variables z1, . . . , z= so
that Properties (a - c) are (almost) satisfied.

We partition the set of edges
�
DE : D , E 2 [=]

into = subsets ⌫1, . . . , ⌫= such that each

set ⌫8 has size
⌃
=+1

2
⌥

or
⌅
=+1

2
⇧
. For each 1 6 8 6 =, we fix an ordering 4(8)1 , . . . , 4

(8)
|⌫8 | of the

edges in ⌫8 , and then define

z8 =
n
9 2 {1, . . . , |⌫8 |} : 4(8)

9
2 G

o
.

Note that z8 is in one-to-one correspondence with {4 2 ⌫8 : 4 2 G}, and so z = (z1, . . . , z=)
is in one-to-one correspondence with G. Furthermore, z1, . . . , z= take values in the power
set of

�
1, . . . ,

⌃
=+1

2
⌥

.
It is easy to see that z1, . . . , z= satisfy properties (a) and (c) above, but unfortunately

they do not satisfy Property (b): It is possible for a change in just one random variable z8 to
cause ⌦(=) edge changes in the graph.

In order to make the above approach work, we need one more ingredient: If we look
closely, we find that the main reason why Property (b) does not hold is because it is possible
for a graph to contain too many edges coming from one set ⌫8 . But since we are working in
the sparse regime of stochastic block models, the probability of this happening is negligible.
We can leverage this phenomenon in order to make the above approach work.

More precisely, given x, the size |z8 | of the set z8 is the sum of |⌫8 | = ⇥(=) Bernoulli
random variables:

|z8 | =
’
DE2⌫8

DE2G.

Now for every DE 2 ⌫8 , we have

ê[DE 2 G|x] =
⇣
1 + ⌘xDxE

2

⌘
3

=

6
23
=

.

It follows from the Chernoff bound that

ê
⇥
|z8 | > =

3
10
��x⇤ 6 exp

�|⌫8 | · ⇡ !

=

3
10

|⌫8 |

������ 23
=

!!
, (4.4.9)

110

where ⇡ !(? | |@) = ? log ?

@
+ (1 � ?) log 1�?

1�@ is the Kullback-Leibler divergence between
Bernoulli(?) and Bernoulli(@). Now notice that

⇡ !

=

3
10

|⌫8 |

������ 23
=

!
=
=

3
10

|⌫8 |
log

=

3
10

|⌫8 |
23
=

+

1 � =

3
10

|⌫8 |

!
log

1 � =

3
10

|⌫8 |

1 � 23
=

=
=

3
10

⇥(=) log
=

3
10

⇥(=)
23
=

+

1 � =

3
10

⇥(=)

!
log

1 � =

3
10

⇥(=)

1 � 23
=

= ⇥
⇣
=
� 7

10

⌘
log⇥

⇣
=

3
10

⌘
+

⇣
1 � ⇥

⇣
=
� 7

10

⌘⌘
log

⇣
1 � ⇥

⇣
=
� 7

10

⌘⌘

= ⇥
⇣
=
� 7

10

⌘
log⇥

⇣
=

3
10

⌘
� ⇥

⇣
=
� 7

10

⌘

> ⌦
⇣
=
� 7

10

⌘
.

(4.4.10)

Therefore, the probability that there is at least one 8 2 [=] such that |z8 | > =
3
10 can be

upper bounded as

ê
⇥�
98 2 [=] : |z8 | > =

3
10
 ��x⇤ 6 = exp

⇣
�⇥(=) ·⌦

⇣
=
� 7

10

⌘⌘
= = exp

⇣
�⌦

⇣
=

3
10

⌘⌘
6 >

✓
4
�=

1
4

◆
,

(4.4.11)
where the last inequality is true for = large enough.

Let E⌫ be the event that the graph G contains at most = 3
10 edges from each set ⌫8 . The

above shows that
ê[E⌫ |x] > 1 � >

✓
4
�=

1
4

◆
.

Now if we have ê[Esucc
= ,3,⌘," ,⌧,� |x] > ⌦

⇣
4
�=

1
4
⌘
, then

ê
h
Esucc
= ,3,⌘," ,⌧,�

���x, E⌫i > êh
Esucc
= ,3,⌘," ,⌧,� \ E⌫

���xi > êh
Esucc
= ,3,⌘," ,⌧,�

���xi � ê⇥
E2
⌫

��x⇤

> ⌦
✓
4
�=

1
4

◆
� >

✓
4
�=

1
4

◆
= ⌦

✓
4
�=

1
4

◆
.

If we condition on E⌫, then with probability 1, the random variables z1, . . . , z= take
values in the set

Z(=1/3) =
⇢
(✓

⇢
1, . . . ,

⇠
= + 1

2

⇡�
: |(| 6 = 1

3

�
.

Now define a mapping ⌧ fromZ=

(=1/3) to the set of graphs having [=] as the set of vertices,
as follows: If (I1, . . . , I=) 2 Z=

(=1/3), then for every D , E 2 [=], the edge DE is present in
⌧(I1, . . . , I=) if and only if there exists 1 6 8 6 = and 1 6 9 6 d=+1

2 e such that DE 2 ⌫8 ,
DE = 4

(8)
9

, and 9 2 I8 . It is easy to see that we have:

111

(a’) If E⌫ occurs, then G = ⌧(z1, . . . , z<).

(b’) For every I , I0 2 Z=

(=1/3), if ⇡�(I , I0) 6 ✓ , then ⌧(I) differs from ⌧(I0) by at most 2✓= 1
3

edges.

(c’) Given x and E⌫, the random variables z1, . . . , z= are conditionally independent.

If we repeat the proof of Eq. (4.4.8) verbatim but instead of only conditioning on x, we
condition on x and E⌫, we get

ê
h
Esucc
= ,3,⌘," ,⌧0,�

���x, E⌫i > 1 � 4�=
1
3
.

Now since ê[E⌫ |x] > 1 � >
✓
4
�=

1
4

◆
, we conclude that

ê
h
Esucc
= ,3,⌘," ,⌧0,�

���xi > êh
Esucc
= ,3,⌘," ,⌧0,�

���E⌫ , xi · ê[E⌫ |x] > 1 � 4�=
1
3 � >

✓
4
�=

1
4

◆
> 1 � 4

�=
1
4

2 ,

where the last inequality is true for = large enough. ⇤

4.4.2.2 Boosting the probability of success unconditionally
So far we managed to boost the conditional probability of success given x, but we would like
to boost the success probability unconditionally. The blowing-up lemma will help us once
again in achieving that. First, we will show that if there is a lower boundê

⇥
Esucc
= ,3,⌘," ,⌧,�

⇤
> ?,

then we can derive a lower bound on the probability that x satisfies ê
⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ > ?

2 .

Lemma 4.42. Let ⌘, 3," , ⌧ and � be as in Theorem 4.37. If ? > 0 is such that

ê
⇥
Esucc
= ,3,⌘," ,⌧,�

⇤
> ? ,

then

ê
h
ê
⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ >
?

2

i
>
?

2 .

Proof. Since

Ö
h
ê
⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ i = ê
⇥
Esucc
= ,3,⌘," ,⌧,�

⇤
> ? ,

we have

Ö
h
1 � ê

⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ i 6 1 � ?.

112

Now by Markov inequality, we have

ê
h
1 � ê

⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ > 1 �
?

2

i
6

1 � ?
1 � ?

2
=

2 � 2?
2 � ? .

Therefore,

ê
h
ê
⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ >
?

2

i
> 1 �

2 � 2?
2 � ? =

?

2 � ? >
?

2 .

⇤

Now we are ready to prove Theorem 4.37

Proof of Theorem 4.37. If ê
⇥
Esucc
= ,3,⌘," ,⌧,�

⇤
> ⌦

✓
4
�=

1
4

◆
then there exist ⇠ > 0 such that

ê
⇥
Esucc
= ,3,⌘," ,⌧,�

⇤
> ⇠4�=

1
4 for = large enough. Lemma 4.42 now implies that

ê

"
ê
⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ >
⇠4
�=

1
4

2

#
>
⇠4
�=

1
4

2 = ⌦
✓
4
�=

1
4

◆
.

Now let ⌧00 be such that ⌧0 < ⌧00 < ⌧. We know from Lemma 4.41 we know that if

ê
⇥
Esucc
= ,3,⌘," ,⌧,�

��x⇤ >
⇠4
�=

1
4

2 and = is large enough, then

ê
h
Esucc
= ,3,⌘," ,⌧00,�

���xi > 1 � 4
�=

1
4

2 .

We conclude that

ê

"
ê
⇥
Esucc
= ,3,⌘," ,⌧00,�

��x⇤ > 1 � 4
�=

1
4

2

#
> ⌦

✓
4
�=

1
4

◆
.

Now define

Xsucc
= ,3,⌘," ,⌧00,� =

(
G 2 {�1,+1}= : ê

⇥
(G, x) 2 Esucc

= ,3,⌘," ,⌧00,�

��x = G

⇤
> 1 � 4

�=
1
4

2

)
.

We have

ê
h
x 2 Xsucc

= ,3,⌘," ,⌧00,�

i
= ê

"
ê
⇥
Esucc
= ,3,⌘," ,⌧00,�

��x⇤ > 1 � 4
�=

1
4

2

#
> ⌦

✓
4
�=

1
4

◆
.

113

By the blowing-up lemma, if we take ✓ = d= 2
3 e, then

ê
h
x 2 �✓

⇣
Xsucc
= ,3,⌘," ,⌧00,�

⌘i
> 1 � exp

26666664
�2=

©≠≠≠
´
=

2
3

=

�

vuuuut 1
2= log

©≠≠
´

1

⌦
⇣
4
�=

1
4
⌘ ™ÆÆ
¨
™ÆÆÆ
¨

237777775
= 1 � exp

266664
�2=

=
� 1

3 � 1p
2
=
� 3

8

r
1 ± $

⇣
=
� 1

4

⌘!2377775
> 1 � exp

h
�= 1

3

i
,

(4.4.12)
where the last inequality is true for = large enough.

Let x̃ 2 Xsucc
= ,3,⌘," ,⌧00,� be such that the Hamming distance ⇡�(x, x̃) is minimal. We break

the ties using the lexicographic order of {�1,+1}= . Define

+x = {E 2 [=] : xE < x̃E}.

Clearly, |+x | = ⇡�(x, x̃). We will generate a random graph G̃ with +(G̃) = [=] as follows:

• For every D , E 2 [=] \+x, we make the edge DE present in G̃ if and only if it is present
in G.

• For an edge DE such that D 2 +x or E 2 +x, we randomly decide its presence in G̃
independently of (G, x) and in such a way that the conditional probability of G̃ given
x̃ is consistent with the distribution of the stochastic block model. More precisely, we
generate �

DE 2 G̃ : D 2 +x or E 2 +x

independently of (G, x), and with the following conditional distribution: For every
two sets of edges

E ✓
�
DE : D , E 2 [=], D 2 +x or E 2 +x

and E0 ✓

�
DE : D , E 2 [=] \+x

,

we have

ê
h�
DE 2 G̃ : D 2 +x or E 2 +x

= E

��� x̃,
�
DE 2 G̃ : D , E 2 [=] \+x

= E0

i

= ê
h�
DE 2 G : D 2 +x or E 2 +x

= E

��� x = x̃,
�
DE 2 G : D , E 2 [=] \+x

= E0

i
.

It is easy to see that the conditional distribution of G̃ given x̃ is the same as the
conditional distribution of G given x = x̃. Now since x̃ 2 Xsucc

= ,3,⌘," ,⌧00,� and since the
conditional distribution of G̃ given x̃ is that of SBM=(3, ⌘), it follows from the definition of

Xsucc
= ,3,⌘," ,⌧00,� that with probability at least 1 � 4

�=
1
4

2 , we have (G̃, x̃) 2 Esucc
= ,3,⌘," ,⌧00,� , which

means that for every graph ⌧� that differs from G̃ by at most ⌧00= edges, we have

h"(⌧�), x̃x̃)i > � · kx̃k2 · k"(⌧�)knuc.

114

Let E be the event that x 2 �✓
⇣
Xsucc
= ,3,⌘," ,⌧00,�

⌘
and that for every graph ⌧

� that differs
from G̃ by at most ⌧00= edges, we have

h"(⌧�), x̃x̃)i > � · kx̃k2 · k"(⌧�)knuc.

It follows from Eq. (4.4.12) and from the above discussion that

ê[E] > 1 � 4�=
1
3 � 4

�=
1
4

2 . (4.4.13)

LetV be the event that the degree in G of every vertex E 2 [=] is at most = 3
10 . Similarly,

let Ṽ be the event that the degree in G̃ of every vertex E 2 [=] is at most = 3
10 . Since the

degree of every vertex is the sum of = independent Bernoulli random variables each having
a success probability of at most 23

=
, then by following calculations that are very similar to

Eq. (4.4.9), Eq. (4.4.10) and Eq. (4.4.11), we can deduce that

ê[V] > 1 � >
✓
4
�=

1
4

◆
, (4.4.14)

and
ê[Ṽ] > 1 � >

✓
4
�=

1
4

◆
. (4.4.15)

Now assume that E \V \ Ṽ occurs. Observe the following:

• Since E occurs, we have x 2 �✓
⇣
Xsucc
= ,3,⌘," ,⌧00,�

⌘
, which means that |+x | = ⇡�(x, x̃) 6 ✓ .

• From the definition of G̃, we can see that the graphs G̃ and G can differ only in edges
that are incident to vertices in +x.

• SinceV occurs, G contains at most = 3
10 · |+x | 6 =

3
10 · d= 2

3 e = >(=) edges that are incident
to vertices in +x.

• Since Ṽ occurs, G̃ contains at most = 3
10 · |+x | 6 =

3
10 · d= 2

3 e = >(=) edges that are incident
to vertices in +x.

Therefore, if E \V \ Ṽ occurs, then G̃ differs from G by at most >(=) + >(=) = >(=) edges.
Now let ⌧� be an arbitrary graph with +(⌧�) = [=] such that ⌧� differs from G by at

most ⌧0= edges. Since ⌧0 < ⌧00, then if = is large enough, the graph ⌧� differs from G̃ by at
most ⌧0= + >(=) 6 ⌧00= edges. Now since E occurs and since ⌧� differs from G̃ by at most
⌧00= edges, we have

h"(⌧�), x̃x̃)i > � · kx̃k2 · k"(⌧�)knuc.

Now notice that

h"(⌧�), xx)i = h"(⌧�), x̃x̃)i + h"(⌧�), xx) � x̃x̃)i

115

> � · kx̃k2 · k"(⌧�)knuc � |h"(⌧�), xx) � x̃x̃)i |
> � · kxk2 · k"(⌧�)knuc �

��x̃x̃) � xx)
�� · k"(⌧�)knuc.

On the other hand, since x differs from x̃ only on +x, and since |+x | 6 ✓ = d=
2
3 e, we have��x̃x̃) � xx)

�� 6 ��x̃x̃) � x̃x)
�� + ��x̃x) � xx)

�� =
��x̃(x̃) � x))

�� + ��(x̃ � x)x)
��

6 kx̃k ·
��x̃) � x)

�� + kx̃ � xk ·
��x)

�� =
p
= · 2

p
|+x | + 2

p
|+x | ·

p
=

6 4
p
= ·

q
=

3
10 = >(=) = >

�
(
p
=)2

�
= >(kxk2).

Now since �0 < �, we get that for = is large enough, we have

h"(⌧�), xx)i > (� � >(1)) · kxk2 · k"(⌧�)knuc

> �0 · kxk2 · k"(⌧�)knuc .

This implies that if E \V \ Ṽ occurs and = is large enough, then Esucc
= ,3,⌘," ,⌧0,�0 occurs as

well. By combining this with Eq. (4.4.13), Eq. (4.4.14), and Eq. (4.4.15), we conclude that for
= large enough, we have

ê
⇥
Esucc
= ,3,⌘," ,⌧0,�0

⇤
> 1 � 4�=

1
3 � 4

�=
1
4

2 � >
✓
4
�=

1
4

◆
� >

✓
4
�=

1
4

◆

> 1 � 4�=
1
4
.

⇤

4.5 Trace bounds for stochastic block models
In this section we prove Lemma 4.29. The lemma will be a direct consequence of the
following theorems: a separation in Schatten norm between &(B)(Y) and &(B)(Y) � xxT and
some concentration results on the diagonal entries of &(B)(Y).

Theorem 4.43. Let (x,G) ⇠ SBM=(3, ⌘). Let �,�, � be as defined in Eq. (4.4.2). Suppose
3 > (1 + ⇣) 4

⌘2 for some ⇣ > 0. Let B be an integer satisfying

B > 1010
✓
1 + 1

⇣

◆ ✓
max

⇢
log 3, log log 2

⌘
, 1, log 1

⇣

�◆2
,

and let C 2
⇥ 1

400 log = ,
1

100 log =
⇤
. Then for = large enough

Ö

Tr

⇣
&

(B)(Y)
⌘
C

�
>
=
C

10 · =� 2
50� ·

⇣
1 � (1 + ⇣)�

p
B·C � =1/10

⌘
. (4.5.1)

116

Furthermore

Ö

Tr

⇣
&

(B)(Y) � xxT
⌘
C

�
6 (1 + ⇣)�C/5 · Ö

Tr

⇣
&

(B)(Y)
⌘
C

�
. (4.5.2)

Let’s spend a moment discussing Theorem 4.43. Consider Eq. (4.5.1), the term containing
(1 + ⇣)

p
B·C corresponds to random noise that is uncorrelated with the underlying partition

G, and it can be made arbitrarily small by increasing the length B of the self-avoiding walks.
The term =

� 1
100� is an approximation factor that appears for technical reasons22. Hhowever

by choice of � it will be negligible. While we limit the constant chosen for C in a certain
range, this appears to be quite flexible as long as C < log =.

More interestingly, Eq. (4.5.2) shows the push-out effect of the matrix &(B)(Y): even
though xxT is not the matrix maximizing the C-Schatten norm of&(B)(Y), it is ⇣$(1)-correlated
with it.

Theorem 4.44. Consider the settings of Theorem 4.43. Then for any D , E 2 [=] , D < E

Ö
h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

i
6 (1 + >(1))Ö

h⇣
&

(B)(Y)C
⌘
DD

i2
.

Moreover, for any D 2 [=]

Ö
⇣⇣

&
(B)(Y)C

⌘
DD

⌘2
�
6 ⇠ · Ö

h⇣
&

(B)(Y)C
⌘
DD

i2
,

where ⇠ > 1 is a universal constant.

The inequalities in Theorem 4.44 shows that both the trace itself and the diagonal entries

of
⇣
&

(B)(Y)
⌘
C

have small variance and thus concentrate around their expectations. Together
with Theorem 4.43, we can use Theorem 4.44 to prove Lemma 4.29.

Proof of Lemma 4.29. Eq. (4.4.7) follows directly by Theorem 4.43. We can bound the variance
of the trace applying Theorem 4.44

Ö

Tr

⇣
&

(B)(Y)
⌘2C

�
=

’
8 , 92[=]

Ö
⇣
&

(B)(Y)C
⌘
88

⇣
&

(B)(Y)C
⌘
9 9

�

=(1 + >(1))
’
8 , 92[=]

Ö
⇣
&

(B)(Y)C
⌘
88

⇣
&

(B)(Y)C
⌘
9 9

�

=(1 + >(1))
’

8 , 92[=] ,8<9
Ö

⇣
&

(B)(Y)C
⌘
88

⇣
&

(B)(Y)C
⌘
9 9

�

22This approximation factor appears when trying to bound the dependencies that are caused by the
truncation.

117

=(1 + >(1))Ö

Tr

⇣
&

(B)(Y)
⌘
C

�2
,

where in the third step we used the fact that there is only a linear number of terms with
8 = 9. Thus Eq. (4.4.4) holds with high probability through an application of Chebyshev’s
inequality. Then by Markov’s inequality

ê
⇢
Tr

⇣
&

(B)(Y) � xxT
⌘
C

> (1 + ⇣)�C/10 Tr
⇣
&

(B)(Y)
⌘
C

�
6 >(1) .

It remains to prove Eq. (4.4.6). By Theorem 4.44, there is a universal constant ⇠ > 0 such
that

Ö
266664
’
82[=]

✓⇣
&

(B)(Y)
⌘2C�2

◆2

88

377775
6 ⇠ · Ö

266664
’
82[=]

✓⇣
&

(B)(Y)
⌘2C�2

◆
88

377775

2

= ⇠ · Ö

Tr

⇣
&

(B)(Y)
⌘2C�2

�2

= (1 + >(1)) · ⇠ ·

Tr

⇣
&

(B)(Y)
⌘2C�2

�2
,

where in the last step we used concentration of the trace. By Markov’s inequality, setting
✏ = $(⇠) we obtain the desired result. ⇤

Organization of the section. The rest of the section will contain the proofs of Theorem 4.43

and Theorem 4.44. To prove the theorems we will reduce the study of Tr
⇣
&

(B)(Y)
⌘
C

and
related quantities to the combinatorial problem of counting multi-graphs.

We introduce preliminary facts and a bird-eye view of the in Section 4.5.1. We prove
Theorem 4.43 in Section 4.5.2 and Section 4.5.3. Finally, we obtain Theorem 4.44 in
Section 4.5.4. For simplicity of the exposition, the following sections will be essentially
oblivious to the technical challenges arising when studying moments of truncated graphs.
We defer a high level discussion of the truncation effect to sections Appendix B.1 and
Appendix B.2. We present the technical arguments in Appendix B.1, Appendix B.2,
Appendix B.3 and Appendix B.4. In the forthcoming sections, we always assume the
settings of Theorem 4.43 to hold.

4.5.1 Preliminary discussion
Let (x,G) ⇠ SBM=(3, ⌘) and let Y be the adjacency matrix of G. Recall the matrix polynomial
&

(B)(Y) defined in Eq. (4.2.2):

&
(B)
8 9
(Y) =

8>><
>>:

1
|SAWB

89
|
� 2=
⌘·3

�
B Õ
�2SAWB

89

.� if 8 < 9 ,

0 otherwise.
,

118

for all 8 , 9 2 [=]. By Fact 4.7, &(B)(Y) is an unbiased estimator of xxT (up to the diagonal
entries) but, as already discussed, we will need to work with a truncated version of the
graph. For a graph ⌧, we will denote by ⌧ the graph obtained from ⌧ by deleting all the
vertices which have degree more than � in ⌧. Similarly, we will denote by . its truncated
adjacency matrix as defined in Definition 4.26.

4.5.1.1 From trace computations to graph counting
Next, we show how to reduce the trace computation to a multigraph counting problem.

Each term in the sum Tr
⇣
&

(B)(.)
⌘
C

is a concatenation of self-avoiding walks and hence
correspond to a multigraph over some subset of vertices [=]. We make this idea precise
below.

Definition 4.45 (Block SAW). Let BSAWB ,C be the set of multi-graphs obtained as follows.
Pick 81, . . . , 8C 2 [=] distinct vertices in = and set 8C+1 := 81. For each @ 2 [C], pick
,@ 2 SAWB

8@ 8@+1
(=). Then

@2[C]
,@ 2 BSAWB ,C .

Let � =
…
@2[C]

,@ . We call �(�) = {81, . . . , 8C} the set of pivot vertices of � and W(�) =

{,1, . . . ,,C} the generating self-avoiding walks of�. We denote by"(W(�)) the sequence
of edges obtained concatenating the sequences "(,1), . . . ,"(,C). We call BSAWB ,C the set
of (B , C)-block self-avoiding walks. At times, we will also use "(W(�)) to denote the set of
edges in the sequence "(W(�)).

We can now expand Tr
�
&

(B)(.)
�
.

Lemma 4.46. Consider the settings of Theorem 4.43. Let ⌧ be a graph over [=] with centered
adjacency matrix .. Then

Tr
⇣
&

(B)(.)C
⌘
= (1 ± >(1)) · =C

✓
2

⌘ · 3

◆
BC

·
’

�2BSAWB ,C

.� . (4.5.3)

Proof. By definition of trace,

Tr
⇣
&

(B)(.)C
⌘
=

’
81 ,...,8C2[=]

&
B

81 82
(.) · · ·&B

8C�1 8C
(.) · &B

8C 81
(.)

=
1�

(= � 2)B�1� C ·
✓

2=
⌘ · 3

◆
BC

·
’

81 ,...,8C2[=]

2666664
÷
✓2[C]

©≠≠
´

’
,2SAWB

8
✓
8
✓+1

.,

™ÆÆ
¨

3777775
=

1�
(= � 2)B�1� C ·

✓
2=
⌘ · 3

◆
BC

·
’

�2BSAWB ,C

.�

119

=(1 ± >(1)) · =C
✓

2
⌘ · 3

◆
BC

·
’

�2BSAWB ,C

.� .

⇤

Definition 4.45 captures all the elements in Tr
�
&

(B)(.)
�
. Furthermore, a similar expansion

can be carried out for the centered trace Tr
⇣
&

(B)(.) � GGT
⌘
C

. For simplicity of the notation,
in the next expressions, for a given set of C vertices {81, . . . , 8C} we denote 81 also by 8C+1.

Fact 4.47. Consider the settings of Theorem 4.43. Let " 2 í=⇥= . Then for any graph ⌧ with
centered adjacency matrix .

Tr
⇣
&

(B)(.) �"
⌘
C

=(1 ± >(1))=C ·
✓

2
⌘ · 3

◆
BC

·
’

81 ,...,8C2[=]

÷
✓2[C]

2666664
’

,2SAWB

8
✓
8
✓+1

©≠≠
´
., �

✓
⌘ · 3
2=

◆
B

· 1���SAWB

8✓ 8✓+1

��� ·"8✓ 8✓+1

™ÆÆ
¨

3777775
. (4.5.4)

Proof. Simply expanding the trace

Tr
⇣
&

(B)(.) �"
⌘
C

=
’

81 ,...,8C2[=]

÷
✓2[C]

⇣
&

(B)
8✓ 8✓+1

(.) �"8✓ 8✓+1

⌘

=
’

81 ,...,8C2[=]

÷
✓2[C]

©≠≠
´

1
|SAWB

8✓ 8✓+1
|

’
,2SAWB

8
✓
8
✓+1

✓
2=
⌘ · 3

◆
B

., �"8✓ 8✓+1

™ÆÆ
¨

=
✓

2
⌘ · 3

◆
BC ’
81 ,...,8C2[=]

÷
✓2[C]

©≠≠
´

=
B

|SAWB

8✓ 8✓+1
|

’
,2SAWB

8
✓
8
✓+1

., �
✓
⌘ · 3

2

◆
B

·"8✓ 8✓+1

™ÆÆ
¨

=(1 ± >(1))=C ·
✓

2
⌘ · 3

◆
BC

·
’

81 ,...,8C2[=]

÷
✓2[C]

266664
’

,2SAWB

8
✓
8
✓+1

., �

✓
⌘ · 3
2=

◆
B

· 1
|SAWB

8✓ 8✓+1
| ·"8✓ 8✓+1

!377775
.

⇤

To easily refer to the elements in the sum of Fact 4.47, we additionally use the following
notation. For a given walk, 2 SAWB

89
and (x,G) ⇠ SBM=(3, ⌘) we define the polynomial

Ŷ, := Y, �
✓
⌘ · 3
2=

◆
B

· x8x9 . (4.5.5)

120

At times, for a set of self-avoiding walksW and a multi-graph � =
…
,2W

, , we will use

the notation

.̂� =
÷
,2W

.̂, . (4.5.6)

4.5.1.2 Proof strategies
Here we outline our proof strategies.

Proof strategy for Theorem 4.43. We show the theorem in two steps, first we prove a
lower bound

���&(B)(Y)
���
C

> ⇠ (for some meaningful quantity ⇠), second an upper bound

of the form
���&(B)(Y) � xxT

���
C

6 (1 + ⇣)�⌦(1) · ⇠. The two together immediately imply the

theorem. Our strategy to lower bound
���&(B)(Y)

���
C

will be the following:

1. For any G 2 {±1}= . Prove an upper bound*�(G) for
��Ö⇥

Y�

��
G

⇤ �� for every� 2 BSAWB ,C .

2. Find a large enough class NBSAWB ,C ⇢ BSAWB ,C of nice and well-behaved block-self-
avoiding-walks whose structure allows us to prove a lower bound !� for Ö

⇥
Y�

⇤
for

every � 2 NBSAWB ,C .

3. Show that the contribution of NBSAW2

B ,C
= BSAWB ,C \ NBSAWB ,C is negligible with

respect to that of BSAWB ,C . More precisely, we will show that

’
�2NBSAW2

B ,C

Ö[*�(x)] = >

©≠
´

’
�2NBSAWB ,C

!�

™Æ
¨
. (4.5.7)

This will imply that

(1 ± >(1)) · =C
✓

2
⌘ · 3

◆
BC

·
’

�2NBSAWB ,C

!�

is a good lower bound for Ö

Tr

⇣
&

(B)(Y)
⌘
C

�
.

Next, to upper bound
���&(B)(Y) � xxT

���
C

we will need the following two additional
ingredients:

4. Show that the class of multigraphs NBSAWB ,C is strongly correlated to x in the sense
that for many � 2 NBSAWB ,C

Ö
h
Ŷ�

i
6 (1 + ⇣)�C · !� .

121

To get an intuition of why this should be true, notice that for any self-avoiding walk
, 2 SAWB

89
and for any (x,G) ⇠ SBM=(3, ⌘), we have Ö

h
Y, �

� ⌘·3
2=

� B · x8x9
��� x

i
= 0.

5. The class of multigraphs NBSAW2

B ,C
is poorly correlated with x in the sense that for

any � 2 NBSAW2

B ,C

Ö
h
Ŷ�

��� x
i
⇡ *�(x) .

Together with step 3 these will imply a good upper bound on Ö

Tr

⇣
&

(B)(Y) � xxT
⌘
C

�
.

Proof strategy for Theorem 4.44. For D , E 2 [=], let BSAWB ,C ,D ✓ BSAWB ,C the set of block
self-avoiding walks having D as pivot. To provide concentration we will use a similar
approach to the one outlined above.

1. Find a nice set of multigraphs NMULTIGB ,C ,D ,E ✓ BSAWB ,C ,D ⇥ BSAWB ,C ,E such that
’

�2NMULTIG2

B ,C ,D ,E

Ö
h
*�(x)

i
6 >(1)

’
�2NMULTIGB ,C ,D ,E

Ö
h
Y�

i
.

2. Show that for such nice multigraphs
’

�2NMULTIGB ,C ,D ,E

Ö
h
Y�

i
6(1 + >(1))

’
�2BSAWB ,C ,D

Ö[.�]2 ,

’
�2NMULTIGB ,C ,D ,D

Ö
h
Y�

i
6(1 + >(1))

’
�2BSAWB ,C ,D

Ö[.�]2

for some universal constant ⇠ > 1.

Combining the two we will obtain the theorem.

4.5.1.3 Additional notation
We introduce some additional definitions which will be helpful in our discussion of block
self-avoiding walks. We will introduce additional notation when needed. We suggest the
impatient reader to skip the section and come back here when needed.

For simplicity at times we write X for xxT. For a multigraph� with vertex set+(�) ✓ [=]
and a vertex E 2 +(�) we write 3�1 (E) to denote the number of edges in � of multiplicity
1 incident to E. Similarly, we write 3�>2(E) to denote the number of distinct edges in � of
multiplicity at least 2 incident to E. Then 3�(E) = 3

�

1 (E) + 3�>2(E), notice that 3�(E) is the
number of distinct edges incident to E.

122

Definition 4.48 (Underlying graph). Let � = (+ ,") be a multigraph. Let ⌧ = (+ , ⇢) be
the graph with vertex set +(⌧) = +(�) and edge set ⇢(⌧) such that

�
8 , 9

2 ⇢(⌧) if there

exists an edge 4 2 "(�) with endpoints 8 , 9. We call ⌧ = (+ , ⇢) the underlying graph of �
and denote it with ⌧(�).

Definition 4.49. For integers E 6 < we denote by T (< , E) the set of non-isomorphic trees
(picking one arbitrary representative per class) on < vertices with E leaves.

Definition 4.50 (Extension Set). Let ⌧ be a graph on < vertices and A edges. For any
@ 2 {A ,<(< + 1)/2}, let G(⌧, @) be the set containing a representative graph from each
isomorphic class of graphs obtained from ⌧ by adding exactly @ � A edges. We call G(⌧, @)
the @-extension set of ⌧. Notice that, trivially G(⌧, A) = {⌧} .

Figure 4.1: Example of tree) on 9 edges and a graph ⌧ 2 G() , 10).

4.5.2 Lower bound for non-centered Schatten norm
We prove here the following theorem, which implies the first half of Theorem 4.43.

Theorem 4.51. Consider the settings of Theorem 4.43. Then

’
�2BSAWB ,C

Ö
h
Y�

i
>

1
10= 2

50�
·
✓
⌘ · 3

2

◆
BC

·
⇣
1 � =� 1

10 � (1 + ⇣)�C
p
B

⌘
.

Our proof will roughly consist of the first three steps of the strategy outlined in
Section 4.5.1.2. Specifically, we show step one in Section 4.5.2.1. In section Section 4.5.2.2
we show that

Õ
�2NBSAW2

B ,C

Ö*�(x) is small, hence preparing the ground for an inequality of

the form Eq. (4.5.7). Finally, in Section 4.5.2.3 we will obtain a lower bound for nice block
self-avoiding walks. Taken together, these results will imply Theorem 4.51.

4.5.2.1 An upper bound for every multigraph
In this section we show an upper bound on the expectation of Y� for any multigraph �.
In order to do this we need to introduce some definitions. Let � be a multigraph (hence
possibly not a block self-avoiding walks) with vertex set +(�) ✓ [=].

123

Definition 4.52. We classify the vertices E 2 +(�) according to there degree-1 as follows:

• If 3�1 (E) 6 �, we say that E is 1-small in �. We denote the set of 1-small vertices in �
as S1(�).

• If 3�1 (E) > �, we say that E is 1-large in �. We denote the set of 1-large vertices in �
as L1(�).

Definition 4.53. We classify the vertices E 2 +(�) according to their degree-> 2 as follows:

• If 3�>2(E) 6
�
2 , we say that E is (> 2)-small in �. We denote the set of (> 2)-small

vertices in � as S>2(�).

• If �2 < 3
�

>2(E) 6 �, we say that E is (> 2)-intermediate in �. We denote the set of
(> 2)-intermediate vertices in � as I>2(�).

• If 3�>2(E) > �, we say that E is (> 2)-large in �. We denote the set of (> 2)-large
vertices in � as L>2(�).

Definition 4.54. We denote the set of edges of multiplicity 1 as ⇢1(�), and denote the set
of edges of multiplicity at least 2 as ⇢>2(�). An edge of multiplicity 1 is said to be annoying
if one of its end vertices is in L1(�). We denote the set of annoying edges of multiplicity 1
as ⇢01(�). We partition ⇢>2(�) into two sets:

⇢
0

>2(�) = {DE 2 ⇢>2(�) : D 8 L>2(�) and E 8 L>2(�)},

and
⇢
1

>2(�) = {DE 2 ⇢>2(�) : D 2 L>2(�) or E 2 L>2(�)}.

Definition 4.55. For every multigraph �, we define the quantity

*�(G) =2=
1

50�
1

÷
E2L>2(�)

=

1
4(3�>2(E)��)

✓
⌘3
2=

◆ |⇢1(�)| ✓23
=

◆ |⇢1>2(�)|

·
÷

E2+(�)

✓
6
⌘

◆max{23�1 (E)��,0} ÷
DE2⇢0>2(�)

⇣
1 + ⌘GDGE

2

⌘
3

=

+ 332

=

p
=

�
.

We can now present a general upper bound for the expectation of block self-avoiding
walks.

Lemma 4.56. Consider the settings of Theorem 4.43. For every multigraph � with +(�) ✓
[=] , |+(�)| 6 B log =, let*�(G) be as in Definition 4.55. Then��Ö⇥

Y� |G
⇤ �� 6 *�(G),

for = large enough.

124

We prove Lemma 4.56 in Appendix B.1. Notice that, for block self-avoiding walks, the
expression ✓

⌘3
2=

◆ |⇢1(�)| ÷
DE2⇢>2(�)

⇣
1 + ⌘GDGE

2

⌘
3

=

+ 3
2

=
2

�

is roughly the upper bound that we can get for |Ö[Y� |G]| in the non-truncated case (see
Section 4.2). Therefore, truncation has the effect of:

• An amplification by a factor = 1
50� .

• An amplification by a factor of
� 6
⌘

�23�1 (E)�� for every vertex in L1(�).

• For every DE 2 ⇢1>2(�),
h �

1 + ⌘GDGE
2

�
3

=
+ 3

2

=
2

i
is replaced by 23

=
.

• For every DE 2 ⇢0>2(�),
h �

1 + ⌘GDGE
2

�
3

=
+ 3

2

=
2

i
is replaced by

h �
1 + ⌘GDGE

2
�
3

=
+ 332

=

p
=

i
.

• A reduction by a factor of =
1
4 (3�>2(E)��) for every (> 2)-large vertex E in �.

4.5.2.2 Walks that are not nice have negligible contributions
With the tools developed in Section 4.5.2.1 we can now approach Theorem 4.51. Remember
from Section 4.5.1.2 we want to show that only a specific subset of block self-avoiding walks
have large contribution to the expectation Eq. (4.5.3). The next lemma formalizes this idea.

Lemma 4.57. Consider the settings of Theorem 4.43. Let NBSAWB ,C be the set of block self-avoiding
walks � with the following structure:

• Every edge 4 2 ⇢(�) satisfies <�(4) 6 2 .

• Every vertex E 2 +(�) satisfies 3�1 (E) 2 {0, 2} , 3�>2(E) 6 �.

• ⇢1(�) is a non-empty cycle.

• ⇢1(�) is a cycle on at least C/
p
� edges.

• The edges of multiplicity 2 form a forest, i.e., ⇢>2(�) is a forest.

• Each connected component of the forest of edges of multiplicity 2 is connected to ⇢1(�)
through a single vertex.

Then for = large enough’
�2NBSAW2

B ,C

Ö*�(x) 6
⇣
=
� 1

6 + (1 + ⇣)�C
p
B

⌘ ’
�2NBSAWB ,C

Ö*�(x) .

Block self-avoiding walks in NBSAWB ,C are said to be nice. Block self-avoiding walks in
NBSAW2

B ,C
are said to be negligible.

125

Bounding negligible block self-avoiding walks with few vertices. We start our proof
of Lemma 4.57 with an observation. There are many block self-avoiding walks that "clearly"
have a negligible contribution in the expectation of Eq. (4.5.3). To get some intuition,
consider the following example. Let S (we will use this notation only for this specific
example) be the set of all block self-avoiding walks in BSAWB ,C which have all vertices with
degree 2 and all edges with multiplicity 1. That is, each walk in S is a cycle. Let S0 be
instead the subset of block self-avoiding walks in which all but one vertex have degree 2,
one vertex has degree 4 and all edges have multiplicity 1. Now it is immediate to see that
for any � 2 S and �0 2 S0 we have Ö

h
*�(x)

i
= Ö

h
*�

0(x)
i

but
’
�
02S0
Ö

h
*�

0(x)
i
= (1 ± >(1)) · =�1 ·

’
�2S

Ö
h
*�(x)

i
,

where the inequality follows simply because we have |S | ⇡ = · |S0|. In Lemma 4.60 we
formalize this and similar observations. We introduce first additional tools.

Fact 4.58. Consider the settings of Theorem 4.43 and let > 0. Let � 2 BSAWB ,C be a multigraph
on at most $(C) vertices and let �⇤ be an induced sub-multigraph of � satisfying:

1. the maximum (> 2)-degree in �⇤ is > 0 ,

2. all the edges in the cut �(+(�),+(�) \+(�⇤)) have multiplicity one in � .

We denote ✓ , @ > 0 as the number of multiplicity-1 edges in �
⇤ and �(+(�),+(�) \ +(�⇤))

respectively. Let / be a set of vertices in+(�⇤) such that �(+(�⇤) \/) has no multiplicity-2 cycles.
Then

Ö*�(x) 6
1
4=
�1/25�

✓
6
⌘

◆2✓+2@
Ö*

�(+ ,+\+(�⇤))(x) · Ö*�(+\+(�⇤))(x)

·
⇣
1 + ⌘

2

⌘ |/ |·
·
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)| ÷
42⇢0>2(�⇤)

3

=

+ 332

=

p
=

�
,

and

Ö*�(x) >
1
4=
�1/25�Ö*

�(+ ,+\+(�⇤))(x) · Ö*�(+\+(�⇤))(x)

·
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)| ÷
42⇢0>2(�⇤)

3

=

+ 332

=

p
=

�
,

126

We prove Fact 4.58 in Appendix B.4.1.
We now temporarily limit our analysis to block self-avoiding walks with bounded

maximum degree-(> 2). As observed in Section 4.5.2.1, walks with large degree-(> 2) will
have small contribution to Eq. (4.5.3) and will be easily bounded. Let

BSAW
B ,C ,3

�

>26�
:=

⇢
� 2 BSAWB ,C

���� max
E2E(�)

3
�

>2(E) 6 �
�
,

we require another definition.

Definition 4.59. Let � 2 BSAW
B ,C ,3

�

>26�
and let E 2 +(�). We denote by @�(E) the number

of connected components of the line graph with vertex set ⇢�(E) and such that there is an
edge between 4 , 40 2 ⇢�(E) if and only if 4 , 40 appear in the sequence of edges "(W(�))
consecutively. Let @� :=

Õ
E2+(�)

(@�(E)� 1) . Now, for @ > 0 we defineD@ ,B ,C ✓ BSAW
B ,C ,3

�

>26�

to be the subset of block self-avoiding walks� with @� = @ . We also writeD@ ,B ,C(�) ✓ +(�)
to be the set of vertices in � with @�(E) > 2 . Finally we write

D>1,B ,C =
ÿ
@>1
D@ ,B ,C .

When the context is clear we writeD@ instead ofD@ ,B ,C .

We can now prove that block self-avoiding walks inD>1 have negligible contribution
to the expectation of Eq. (4.5.3).

Lemma 4.60. Consider the settings of Theorem 4.43. Then for = large enough
’

�2D>1

Ö*�(x) 6
1
=

2/3

’
�2BSAW

B ,C ,3
�

>26�
\D>1

Ö*�(x) .

Proof. Fix @ > 1 and consider the following procedure to obtain a block self-avoiding
walk in BSAW

B ,C ,3
�

>26�
\ D@ from a block self-avoiding walk � 2 D@ . Let "(W) be the

sequence of edges obtained concatenating the generating self-avoiding walks of � so that
the subsequence

�
4
(✓�1)·B+1

, . . . , 4
(✓�1)·B+B corresponds to the ✓ -th generating self-avoiding

walk of � (for simplicity we let 8 � 1 = BC for 8 = 1 and analogously we let 8 + 1 = 1
for 8 = BC). Let E 2 D@(�). Let �� ,E be the line graph with vertex set ⇢�(E) and edges
as described in Definition 4.59. Let ⇢�(E)1 be an arbitrary connected component of �� ,E

and let D be a vertex not in �. We construct the block self-avoiding walk �0 2 D@�1 with
+(�0) = +(�) [{D} applying the following operation on �:

• Consider the sequence of edges "(W(�)), we replace every edge EF 2 "(W(�))
(and FE 2 "(W(�))) such that EF 2 ⇢1

�
(E) with the edge DF (resp. FD).

127

Clearly, �0 2 BSAW
B ,C ,3

�

>26�
\ D@ and |+(�0)| � |+(�)| = 1. Furthermore

��
⇢
0

1(�0)
�� >��

⇢
0

1(�)
�� � � � 2. Thus

÷
E2+(�)

✓
6
⌘

◆max{23�1 (E)��,0}
6
✓
6
⌘

◆�+2
·

÷
E2+(�0)

✓
6
⌘

◆max
n
23�01 (E)��,0

o
.

By Fact 4.58 it follows that

1
=
|+(�0)|�|+(�)| ·

Ö
h
*�(x)

i

Ö
h
*�

0(x)
i 6 1

=

·
✓
6
⌘

◆2� ⇣
1 + ⌘

2

⌘2�
6

1
=

·
✓
12
⌘

◆3�
. (4.5.8)

To obtain a multi-graph not inD>1 we repeatedly apply the operation above untilD@(�)
is empty. Notice that (BC)$(@) applications suffice. It remains to show that the contribution
to the expectation of Eq. (4.5.3) of block self-avoiding walks inD>1 is negligible. For this,
observe that at each step there are at most (BC)2 block self-avoiding walks that can produce
the same multigraph �0. So using Eq. (4.5.8), we get for any @ > 1

’
�2D@

Ö*�(x) 6
(BC)2
=

0.99

’
�
02D@�1

Ö*�(x) .

The result follows since the maximum degree in any block self-avoiding walk is 2C. ⇤

Bounding block self-avoiding walks from their shape and edges multiplicities. Next
we develop a general bound on the contribution of block self-avoiding walks based on
the shape of their underlying graph and the multiplicity of each edge. Together with
Lemma 4.60 this will be enough to obtain Lemma 4.57. We will need the following
definitions.

Definition 4.61. For a collection of disjoint connected graphs on at least two vertices
B = {⌫1, . . . , ⌫I}, we define the setMB ,C(⌫1, . . . , ⌫I) to be the subset of BSAWB ,C satisfying
the following: if � 2 MB ,C(⌫1, . . . , ⌫I), then for any ⌫ 2 B

(i) ⌫ ✓ ⌧(�), we denote with ⌫0 a (arbitrary) copy of ⌫ in � and by �(⌫) the multigraph
induced by +(⌫0),

(ii) 84 2 ⇢(�(⌫)) that is also an edge in ⌫, <�(4) > 2,

(iii) there exists a cut �(+(⌫0),+(�) \ +(⌫0)) in � such that each edge in the cut has
multiplicity 1 in �.

and furthermore

(iv) the copies ⌫01, ⌫
0
2, . . . , ⌫

0
I

are disjoint

128

(v) every edge in �

+(�) \

 –
92[I]

+(⌫0
9
)
!!

has multiplicity 1.

With a slight abuse of notation, we will simply write �(⌫) instead of �(⌫0).

Definition 4.62. Let B = {⌫1, . . . , ⌫I} be a collection of disjoint connected graphs, let�
✓8 , @8 , ?8 , ⌘8

I

8=1 be a sequence of tuples of integers such that for all 8 2 [I] ✓8 , @8 , ?8 , ⌘8 > 0.
Further we denote F8 = {✓8 , @8 , ?8 , ⌘8}. We writeM

B ,C ,{F8 , 8}I8=1
(B) for the subset ofMB ,C(B)

such that for any 8 2 [I]:

(i) the size of the cut �(+(�) \+(⌫8),+(⌫8)) is ✓8

(ii) the number of edges in �(⌫8) of multiplicity one is @8

(iii) the number of edges 4 in �(⌫8) with <�(4) = 2 is ⌘8

(iv) the maximum degree-(> 2) in �(⌫8) is 8 .

(v) the edges with multiplicity larger than 2 in �(⌫8) satisfy
’

42�(⌫8)
<�(4)>3

<�(4) = ?8 ,

When the context is clear we simply write M(B) and M{F8 , 8}I8=1
(B) ✓ M(⌫). For

B = {⌫} we simply writeM(⌫). For B = ;, the setM(B) corresponds to the set of block
self-avoiding walks in BSAWB ,C where all edges have multiplicity 1. The next lemma studies
the contribution of block self-avoiding walks inM(B) for all B.

Lemma 4.63. Consider the settings of Theorem 4.43. Let I > 1 and <1, . . . ,<I > 1 be integers.
Then for = large enough,

’
for 82[I]:

@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

’
�2M{F8 , 8}I8=1

({⌫1 ,...,⌫I})
Ö*�(x)

6
÷
82[I]

266664
(BC)14 ·

200� + B10 + 2

log =
C

(1 + ⇣)B/4

!2<8/B377775
·

’
�2M(;)

Ö*�(x) .

Furthermore, restricting the sum over A8 > <8 � 1, or over ?8 > 1, or @8 > 1, or 8 > � or ✓8 > 2,

for some 8 2 [I] the inequality holds with an additional =�
1
5

⇣
?8+@8+ [8>�](8��)+ [✓8>2](✓8�2)

⌘
factor.

129

Lemma 4.63 formalizes the following idea: for all possible collections of I (possibly
isomorphic) graphs ⌫1, . . . , ⌫I respectively on <1, . . . ,<I vertices, the contribution to the
expectation of Eq. (4.5.3) of block self-avoiding walks inM(B) can be upper bounded byÕ
�2M(;)

Ö*�(x) times a scalar which depends on the order and the shape of the graphs.

Indeed the sum on the left-hand side captures all possible choices of graphs ⌫1, . . . , ⌫I and
setsM{F8 , 8}I8=1

({⌫1, . . . , ⌫I}). Moreover the lemma implies that the contribution of block
self-avoiding walks inM(B) is negligible if any of the graphs inB contains a cycle, and that
among the block self-avoiding walks inM(B), most of the mass is concentrated in a very
specific subset of block self-avoiding walks. This last observation will be extremely useful
in simplifying our analysis and prove Lemma 4.57. It can be observed how for certain block
self-avoiding walks with few edges of multiplicity at least 2 this bound appears very rough,
however, we can bound the contribution of these walks to the expectation of Eq. (4.5.3)
using Lemma 4.60.

Concerning the parameters, 2(2⌘9 + ?9 + @9)/B + ✓9 is an upper bound on the maximum
number of pivots of � that can be in �(⌫9). The parameter E9 (the number of degree 1
vertices in ⌫9) has a loose correspondence with the number of vertices D with 3�(⌫9)

>2 (D) = 1
in �(⌫), in the sense that E9 � 2A9 6

���nD 2 �(⌫9)
��� 3�(⌫9)
>2 (D) = 1

o��� 6 E. Finally, recall from
section Section 4.5.1.3 that with T (< , E) we denote the set of non-isomorphic (picking one
arbitrary representative per class) trees on < vertices and E leaves. For a given tree) we let
G() , A) be the set of non-isomorphic graphs obtained from) adding A � |⇢())| edges.

To prove Lemma 4.63 we need some intermediate results. First, we need to count how
many block self-avoiding walks are inM{F8 , 8}I8=1

(B) (for some choice of the parameters).

Lemma 4.64. Consider the settings of Theorem 4.43. Let B = {⌫1, . . . , ⌫I} be a collection of
disjoint connected graphs each with respectively <1, . . . ,<I vertices. Let {F8}I8=1 be a sequence of
tuples of integers as in Definition 4.62. Let 5B ,C , ,B ,C be the functions

5B ,C(< ,<
0
, F ,) =()2⌘/B+10(@+✓+?+1)+2⌘�2(<0�1) · (BC)5✓+5@+8?+4⌘+4�4(<0�1)

,

,B ,C(<0, F) ==�?�✓/2�@�2⌘+<0
.

Let< =
Õ
92[I]

<9 . Then there are at most =BC · Œ
82[I]

5B ,C(< ,<8 , F8 , 8) ·,B ,C(<8 , F8) block self-avoiding

walks in the setM
B ,C ,{F8 , 8}I8=1

(B).

We prove Lemma 4.64 in Appendix B.4.2 and directly use it here. Second we introduce
bounds to split the expectation of*�(x) into the expectation of its components.

Fact 4.65. Consider the settings of Theorem 4.44. Let B = {⌫1, . . . , ⌫I} be a collection of disjoint
connected graphs on at least 2 vertices. Then for any � 2 M{F8 , 8}I8=1

(B) and 8 2 [I]

Ö*�(x) 6
1
4=
�1/25�

✓
6
⌘

◆2✓8+2@8
Ö*

�(+ ,+\⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(⌫8)(x) ,

130

Ö*�(x) >
1
4=
�1/25�Ö*

�(+ ,+\⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(⌫8)(x) .

We are now ready to prove Lemma 4.63.

Proof of Lemma 4.63. Our strategy will be the following: fix some graphs ⌫1, . . . , ⌫I�1
and some tuples {F8 , 8}I�1

8=1 . Then we will show that the contribution of block self-
avoiding walks inM{F8 , 8}I8=1

({⌫1, . . . , ⌫I}) for all possible choice of the graph ⌫I and the
parameters FI , I is upper bounded by some function of

Õ
�2M{F8 , 8}I�1

8=1
({⌫1 ,...,⌫I�1})

Ö*�(x).

This function will be easy to upper bound for the setM(;), thus by reiterating the analysis
for 9 = I , . . . , 9 = 1 we will obtain the desired bound.

Now, for simplicity, for any � 2 M(B) let us write �
⇤ = �(+ \ (⌫1 [. . . [⌫I)).

Define
Õ
92[I]<9 =: <. Recall that for any <I , EI by Fact B.105 we have |T (<I , EI)| 6

2EI · (84 · <I/EI)2EI and that for any graph in the extension set of some tree in) 2 T (<I , E)
we have at most <2

I
possible choices for each additional edge. Combining these bounds

with Lemma 4.64 we will be able to compute the number of block self-avoiding walks at
hand.

We can start carrying out the computation. Fix some graphs ⌫1, . . . , ⌫I�1 and some
tuples {F8 , 8}I�1

8=1 . By Fact 4.65, for any multigraph inM{F8 , 8}I8=1
({⌫1, . . . , ⌫I}) for some

⌫I , FI , I :

Ö*�(x) 6
÷
92[I]

266664
✓
6
⌘

◆2✓9+2@9
· (2=1/50�)�5/2 · Ö*

�(⌫9)(x) · Ö*�(+(�⇤),⌫9)(x) ·
÷

:2[I],:<9

q
Ö*

�(⌫9 ,⌫:)(x)
377775

· Ö*�
⇤(x) , (4.5.9)

where we used the squared root to avoid counting for the edges in the cut �(⌫9 , ⌫:) twice
and the factor (2=1/50�)�5/2 appears due to the fact that we use multiple times upper bounds
of the form*�(x). For fixed {F8 , 8}I�1

8=1 and fixed <I > 0 we can thus focus on bounding,’
@I ,✓I>0
 I>0

’
EI62(2⌘I+?I+@I)/B+✓I

)2T (<I ,EI)

’
A><I�1

⌫I2G() ,A) :
max deg(⌫I)= I

’
⌘I ,?I>0

�2M{F8 , 8}I8=1
({⌫1 ,...,⌫I})

Ö*�
⇤(x) · Ö*

�(⌫I)(x) · Ö*�(+(�⇤),⌫I)(x) ·
÷

:2[I�1]

q
Ö*

�(⌫I ,⌫:)(x) ·
✓
6
⌘

◆2✓I+2@I
. (4.5.10)

For each 8 2 [I], we let ✓8 = ✓
0
8
+ ✓ 00

8
where ✓ 0

8
corresponds to the number of edges in

�(+(�⇤), ⌫8) and ✓ 00
8

corresponds to the number of remaining edges in the cut. Note that
⌘I + |{4 2 �(⌫I) : <�(4 > 3)}| = A 6 ⌘I + ?I . So, for fixed I , @I , ⌘I , ?I , ✓I , A , EI it holds
by Fact 4.58

Ö*�
⇤(x) · Ö*

�(⌫I)(x) · Ö*�(+(�⇤),⌫I)(x) ·
÷

:2[I�1]

q
Ö*

�(⌫9 ,⌫:)(x) ·
✓
6
⌘

◆2✓I+2@I

131

6
266664

÷
D2+(�⇤)

✓
6
⌘

◆max{23�⇤1 (D)��,0}377775
·
✓
⌘3
2=

◆ |⇢(�⇤)|
·
✓
6
⌘

◆2✓I+2@I
·
✓
⌘3
2=

◆
@I+✓ 0I+✓ 00I /2

·
✓

1 + 1p
=

◆
3

=

�
A

· 22(A�<I�1)· I ·
÷

D2L>2(�(⌫I))

"✓
23
=

◆ 1
4(3�>2(D)��)

#
. (4.5.11)

Notice that changing ✓I , @I then the multigraph�⇤ changes and so doesÖ*�
⇤(x). Moreover

by Lemma 4.64, since I 6 2C it follows that the contribution to Eq. (4.5.10) of block self-
avoiding walks with I > �will be at least a factor = 1

5 smaller.
By Lemma 4.60, we may assume there are no annoying edges in �⇤. Thus we may upper

bound Eq. (4.5.10) by

=
BC ·

266664
÷
92[I�1]

5B ,C

�
< ,<9 , F9 , 9

�
· ,B ,C(<9 , F9)

377775
·

’
?I ,⌘I ,✓I ,@I>0
A><I�1
 I6�

EI62(2⌘I+?I+@I)/B+✓I

(84 · <I/EI)2EI · 5B ,C(< ,<I , FI , I) · ,B ,C(<I , FI) (4.5.12)

·
✓
⌘3
2=

◆
BC� Õ

82[I]
(2⌘8+?8+@8+✓ 0

8
+✓ 00

8
/2)

·
✓
6
⌘

◆2✓I+2@I
·
✓
⌘3
2=

◆
@I+✓ 0I+✓ 00I /2

·
✓

1 + 1p
=

◆
3

=

�
A

·(2<I)2(A�<I�1) · 22(A�<I�1)· I
. (4.5.13)

By Eq. (4.5.11) and Lemma 4.64 it is easy to see that Eq. (4.5.13) is a geometric sum. So
define the quantity

"✓
0
I
,✓
00
I

:= (BC)4·�2<I/B+10 · (1004 · B)2(<I/B+✓I) ·
✓
⌘ · 3
2=

◆
✓
0
I
+✓ 00

I
/2
·
✓
3

=

◆
<I�1

·
✓
6
⌘

◆2✓I

· 5B ,C(< ,<I , {✓I , 0, 0,<I � 1}, I) · ,B ,C(<I , {✓I , 0, 0,<I � 1}) .

If, for fixed ✓I = ✓ 0I + ✓ 00 > 0, ⌘I we restrict the sum Eq. (4.5.13) to the case ?I > 1 we get the
upper bound

6 =BC ·
266664

÷
92[I�1]

5B ,C

�
< ,<9 , F9 , 9

�
· ,B ,C(<9 , F9)

377775
·=�1/3

’
✓I>0

A><I�1
 I6�

EI62(2⌘I+@I)/B+✓I

"✓I
·
✓
⌘3
2=

◆
BC� Õ

82[I]
(2⌘8+?8+@8+✓ 0

8
+✓ 00

8
/2)

·
✓
6
⌘

◆2✓I+2@I
·
✓
⌘3
2=

◆
@I+✓ 0I+✓ 00I /2

132

·
✓

1 + 1p
=

◆
3

=

�
A

· (2<I)2(A�<I�1) · 22(A�<I�1)· I
.

Similarly, restricting the sum to the case A > <I � 1 (since for any additional edge in ⌫

we then have at most <2
I

possible choices) or @I > 1 we also have =� 1
3 ·"✓I

. It remains to
consider Eq. (4.5.13) for @I = 0 , A = <I � 1 , ?I = 0 for any ✓I . To do this we study first the
behavior of "✓I

as ✓I grows. We distinguish two cases depending on whether ✓I = 0.
If ✓I = 0, it means that for any of the graphs considered we had �(⌫) = � and B = {⌫}.

Thus 2<I + ?I = BC and we get

"0 6(BC) · (1004 · B)4C ·
✓
3

=

◆
BC/2

· 5B ,C(BC/2 + 1, BC/2 + 1, {0, 0, 0, BC/2},�) · ,B ,C(BC/2 + 1, {0, 0, 0, BC/2})
6

�
100� + B10�2C · (BC)6 · = · 3BC/2

,

which yields a ratio between Eq. (4.5.13) and
Õ

�2M(;)
Ö*�(x) of

✓
⌘2

43

◆
BC/2

·
�
200� + B10 + ⇠

�2C
=

✓
200� + B10 + ⇠

(1 + ⇣)B/4

◆2C
,

where ⇠ = 22 log =
C . Conversely, suppose ✓I > 2 (it must be even given that the graph is

Eulerian). Then

"✓I
6 (�)2<I/2+10✓I ·(BC)6+5✓I ·

✓
3

=

◆
<I�1

·

3

=

·
✓
6
⌘

◆4
!
✓I/2

· 5B ,C(< ,<I , {✓I , 0, 0,<I � 1},�),B ,C(<I , {✓I , 0, 0,<I � 1}) .

For ✓I = 2 the ratio with

=
BC · Ö*�

⇤(x)
÷
92[I�1]

266664
5B ,C(< ,<9 , F9 , 9),B ,C(<9 , F9)

✓
6
⌘

◆2✓9+2@9
Ö*

�(⌫9)(x)Ö*�(�⇤ ,⌫9)(x)
÷

:2[I],:<9

q
Ö*

�(⌫9 ,⌫:)(x)
377775

can be bounded by

(BC)14
✓

200�10

(1 + ⇣)B/4

◆2<I/B
.

We get an additional =�
✓I�2

5 factor if ✓I > 2. We can now reiterate the analysis on
M{F8 , 8} 9

8=1
(
�
⌫1, . . . , ⌫9

) for 9 = I � 1, . . . , 1. The result follows. ⇤

133

Putting things together. We are now ready to prove Lemma 4.57.

Proof of Lemma 4.57. We argue that if a block self-avoiding walk � is not in NBSAWB ,C , then
it satisfies one of the following:

• � 2 D>1,

• � 2 M{F8 , 8}I8=1
(B) for any non-empty B and tuples {F8}I8=1 with ?8 > 1 or @8 > 1 or

✓8 > 3 or 8 > � for some 8 2 [I],

• � 2 M{F8 , 8}I8=1
(B) for any non-empty B containing some ⌫8 with a cycle,

• all edges in � have multiplicity at least 2.
Suppose this claim holds. The contribution of walks satisfying one of the first three bullets
is negligible by Lemma 4.60 and Lemma 4.63. Thus we only need to consider walks with
all edges with multiplicity 2. By Lemma 4.63, it suffices to show that

2

300� + B10 + 2

log =
C

(1 + ⇣)B/4

!
6 (1 + ⇣)�10

p
B

, (4.5.14)

which, for C 2
h

log =
400 ,

log =
100

i
, may be rewritten as

B >
108

⇣

�
max

�
log 300�, log B , 1

 �2
.

By assumption on B, Eq. (4.5.14) is satisfied and thus the desired inequality follows.
It remains to verify our claim. So consider some � in NBSAW2

B ,C
. Suppose that there

is some vertex E 2 +(�) with 3
�

>2(E) = 0 and 3
�

1 (E) > 4, by construction then � 2 D>1.
Suppose now � 2 M(B) for some collection of graphs B = {⌫1, . . . , ⌫I}. We may assume
that � 2 M{F8 , 8}I8=1

(B) where for all 8 2 [I], ✓I = 2 , @I = ?I = 0 , , ⌘I = <I � 1, I 6 �
as otherwise � satisfies one of the bullet points listed above. Moreover, for any 8 2 [I]
the graph ⌫8 must be a tree. Now, the claim would follow if we can show that for any
8 2 [I] �(⌫8) is connected to �(+ \ ⌫8) by a single vertex. Suppose this is not true, since by
assumption ✓8 = 2, the vertex-cut between �(⌫8) and �(+ \ ⌫8) must have cardinality 2. We
obtain a contradiction since this implies that @8 + ?8 > 1 as � is a closed walk. ⇤

4.5.2.3 Bounding the non-centered Schatten norm
The machinery of Section 4.5.2.1 allowed us to upper bound the expectation of any block
self-avoiding walk under the truncated distribution. Then in Section 4.5.2.2 we used such
machinery to show that certain block self-avoiding walk have small contribution to the
expectation of Eq. (4.5.3). In this section we prove Theorem 4.51.

Our strategy will be the following. For most nice block self-avoiding walks we will
be able to lower bound the expectation. THe remaining ones will be few and have
negligible contribution to the expectation of Eq. (4.5.3). Combining these observations with
Lemma 4.57 will yield reftheorem:truncation-schatten-norm-lower-bound.

134

Bounds on nice block self-avoiding walks. We start proving additional bounds on the
expectation of nice block self-avoiding walks. We further divide the set of nice block
self-avoiding walks into sets.

Definition 4.66. For ✏ > 0 define the set

NBSAW
B ,C ,3

�6✏ :=
�
� 2 NBSAWB ,C

�� 8E 2 +(�) , 3�(E) 6 ✏

.

For< , I > 1 let NBSAWB ,C ,< ,I be the subset of block self-avoiding walks� 2 NBSAWB ,C such
that the graph obtained from ⌧(�) by removing all edges of multiplicity 1 in � is a forest
on< vertices and I components. Notice that if� 2 NBSAWB ,C ,< ,I then |⇢>2(�)| = <� I.We
also define

NBSAW
B ,C ,3

�6✏,< ,I
:= NBSAW

B ,C ,3
�6✏ \NBSAWB ,C ,< ,I

.

Observe that for < = I = 0 we have

NBSAWB ,C ,0,0 = NBSAWB ,C \MB ,C(;) .

For many nice block self-avoiding walks, we can lower bound the expectation.

Lemma 4.67. Consider the settings of Theorem 4.43. Let < , I be integers such that BC � 2< � 2I >
C/�. If = is large enough, then for every � 2 NBSAW

B ,C ,3
�6�,< ,I

Ö
⇥
Y�

⇤
> !� := 1

3= 1
100�

·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

We present the proof of Lemma 4.67 in Appendix B.1.3, and directly use the result.
For the remaining nice block self-avoiding walks, the next two results upper bound their
expectation.

Lemma 4.68. Consider the settings of Theorem 4.43. If = is large enough, then for any � 2
NBSAWB ,C \ NBSAW

B ,C ,3
�6�

���Ö⇥
Y�

⇤ ��� 6 4
=

1/12 ·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

We prove Lemma 4.68 in Appendix B.1.3.

Fact 4.69. Consider the settings of Theorem 4.43. Let < , I > 0 be integers. If = is large enough,
then for any � 2 NBSAWB ,C ,< ,I and any �0 2 NBSAWB ,C ,0,0���Ö⇥

Y�

⇤ ��� 6 6=3/100� · [(1 � >(1))(1 + ⇣)]�<+I · =<�I · !�0 .

Proof. Notice that

Ö*�(x)
Ö*�

0(x)
6

✓
3

=

◆
I�<

·
✓
(1 � >(1))⌘

2

◆2I�2<
= [(1 � >(1))(1 + ⇣)]�<+I · =<�I .

Thus the result follows applying Lemma 4.67 and the definition of*�(x). ⇤

135

Counting nice block self-avoiding walks. Next we count the number of nice block
self-avoiding walks with maximum degree larger than � or few edges of multiplicity 1.

Lemma 4.70. Consider the settings of Theorem 4.43. Define the set

NBSAWB ,C ,< ,I ,✓1 ,✓2 :=
�
� 2 NBSAWB ,C ,< ,I

�� ���
E 2 E(�)

��
3
�(E) = � + 1

 �� = ✓1 ,���
E 2 E(�)

��
3
�(E) = � + 2

 �� = ✓2
Then for = large enough, there exists ✓ > ✓1 + 2✓2 such that

|NBSAWB ,C ,< ,I ,✓1 ,✓2 | 6 (1 + >(1)) · 2C · =�✓
��NBSAW

B ,C ,3
�6�,<0,I0

��
.

for some <0, I0 > 0 such that < � I = <
0 � I0 + ✓ .

We prove Lemma 4.70 in Appendix B.4.2.

Lemma 4.71. Consider the settings of Theorem 4.43. Let < , I > 0 be integers such that BC � 2< �
2I > C/10

p
�. Then

|NBSAWB ,C ,< ,I | 6 210C
B
C · =�<+I · |NBSAWB ,C ,0,0 | .

We also prove Lemma 4.71 in Appendix B.4.2.

Putting things together. We can now bound the contribution to the expectation of
Eq. (4.5.3) of nice block self-avoiding walks, and hence of all block self-avoiding walks of
length BC.

Lemma 4.72. Consider the settings of Theorem 4.43. Then for = large enough

’
�2NBSAWB ,C

Ö
h
Y�

i
>

1
9= 2

50�
·
✓
⌘ · 3

2

◆
BC

.

Proof. By Lemma 4.70 and Lemma 4.68, the contribution of nice block self-avoiding walks
with maximum degree larger than � can be bounded by
’
< ,I>1

’
�2NBSAWB ,C ,< ,I\NBSAW

B ,C ,3
�6�

Ö
h
Y�

i
6

’
< ,I>1

’
�2NBSAWB ,C ,< ,I\NBSAW

B ,C ,3
�6�

Ö
h
*�(x)

i

6 2C · =�1/12 ·
’
< ,I>1

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*�(x)

i

6 =�1/13 ·
’
< ,I>1

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*�(x)

i
.

136

By Lemma 4.71 and Fact 4.69, the contribution of nice block self-avoiding walks with at
most C/

p
� edges of multiplicity 1 can be bounded by

’
< ,I>1B .C .

BC�2<+2I6C/
p
�

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
Y�

i

6
’

< ,I>1B .C .
BC�2<+2I6C/

p
�

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*�(x)

i

6 (6BC) · =3/100� · (210
B)C · [(1 � >(1))(1 + ⇣)]�BC/2

’
�2NBSAW

B ,C ,3
�6�,0,0

!�

6 (1 + ⇣)�BC/3
’

�2NBSAW
B ,C ,3

�6�,0,0

!� .

Combining the two bounds, it follows by Lemma 4.67

’
�2NBSAWB ,C

>
’

�2NBSAW
B ,C ,3

�6�,0,0

!� >
1

9= 2
50�

✓
⌘ · 3

2

◆
BC

.

⇤

Theorem 4.51 now follows as a direct consequence.

Proof of Theorem 4.51. Combining Lemma 4.57 and Lemma 4.72, by assumption on
C ,�, B , 3, � the result follows. ⇤

4.5.3 Upper bound on the centered Schatten norm

In this section we provide an upper bound on Tr
⇣
&

(B)
⇣
Y
⌘
� xxT

⌘
C

to obtain Theorem 4.43.
We do it through the following result.

Theorem 4.73. Consider the settings of Theorem 4.43. Then

Ö

Tr

⇣
&

(B)(Y) � xxT
⌘
C

�
6 (1 + ⇣)�C/4 · Ö

Tr

⇣
&

(B)(Y)
⌘
C

�
.

Theorem 4.43 immediately follows combining Theorem 4.73 with Theorem 4.51. The
proof of Theorem 4.73, amounts of step 4 and 5 of the scheme outlined in Section 4.5.1.2.
The main observation we will need is that the subtraction of xxT has the effect of removing
the contribution of many graphs and to leave the contribution of the others essentially
unchanged.

137

Upper bound on negligible block self-avoiding walks. Here we bound from above the
contribution to the expectation of Eq. (4.5.4) of negligible block self-avoiding walks. For
� 2 BSAWB ,C , recall the definitions of (1(�) and (>2(�) as in Definition 4.52, Definition 4.53.

Definition 4.74. Let � 2 BSAWB ,C and letW1(�) ✓ W(�) be the subset of generating
self-avoiding walks , of � such that +(,) ✓ (1(�) \ (>2(�) and ⇢(,) ✓ ⇢1(�). Then,
for any x ⇠ SBM=(3, ⌘) define the quantity

*̂�(x) =
=

1
100� · 2|⇢01(�)|
2�B·|W1(�)| ·*�(x) ,

where � is as defined in Eq. (4.4.2).

Similarly to Lemma 4.56, for any � 2 BSAWB ,C we can show an upper bound on .̂� for
any � 2 BSAWB ,C

Lemma 4.75. Consider the settings of Theorem 4.43. Let � 2 BSAWB ,C , for = large enough and for
any x ⇠ SBM=(3, ⌘) ���Öh

Ŷ�

��� x
i ��� 6 *̂�(x) .

We defer the proof of Lemma 4.75 to Appendix B.2. Crucially, the lemma implies that
Ö *̂�(x) ⌧ Ö*�(x) for many nice block self-avoiding walks. On the other hand for others:
Ö *̂�(x) ⇡ Ö*�(x). Together, these two bounds will allow us to obtain Theorem 4.73.
First we show that the contribution to the expectation of Eq. (4.5.4) of negligible block
self-avoiding walks is still negligible.

Lemma 4.76. Consider the settings of Theorem 4.43. Then for = large enough
’

�2NBSAW2

B ,C

Ö *̂�(x) 6
⇣
=
�1/7 + (1 + ⇣)�C

p
B/2

⌘
·

’
�2NBSAWB ,C

Ö*�(x) .

Proof. By Lemma 4.57, Definition 4.74 and Lemma 4.75, since C 2
h

log =
400 ,

log =
100

i
and � > 1000

for any {F8 , 8}I�1
8=1 the result follows. ⇤

So we only need to tackle nice walks. As in the proof of Theorem 4.51 we get rid of a
tiny fraction of nice block self-avoiding walks.

Lemma 4.77. Consider the settings of Theorem 4.43. Then for = large enough
’

�2NBSAWB ,C

Ö
h
Ŷ�

i
6 =�1/14

’
< ,I>0

BC�2<+2I>C/
p
�

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*�(x)

i
.

138

Proof. By Lemma 4.70 and Lemma 4.68, the contribution of nice block self-avoiding walks
with maximum degree larger than � can be bounded by’
< ,I>1

’
�2NBSAWB ,C ,< ,I\NBSAW

B ,C ,3
�6�

Ö
h
Ŷ�

i
6

’
< ,I>1

’
�2NBSAWB ,C ,< ,I\NBSAW

B ,C ,3
�6�

Ö
h
*̂�(x)

i

6 2C · =�1/12 ·
’
< ,I>1

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*̂�(x)

i
.

By Lemma 4.71 and Fact 4.69, the contribution of nice block self-avoiding walks with at
most C/

p
� edges of multiplicity 1 can be bounded by’

< ,I>1B .C .
BC�2<+2I6C/

p
�

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
Y�

i

6
’

< ,I>1B .C .
BC�2<+2I6C/

p
�

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*̂�(x)

i

6 (6BC) · =1/100� · (210
B)C · [(1 � >(1))(1 + ⇣)]�BC/2

’
�2NBSAW

B ,C ,3
�6�,0,0

Ö
h
*̂�(x)

i

6 (1 + ⇣)�BC/3
’

�2NBSAW
B ,C ,3

�6�,0,0

Ö
h
*̂�(x)

i
.

Combining the two bounds with Lemma 4.75 the result follows. ⇤

Upper bound on the remaining self-avoiding walks. Now we split the remaining walks
in two sets. For one set, the contribution to the expectation of Eq. (4.5.4) will be roughly the
same contribution to the expectation of Eq. (4.5.3). For the other, it will be considerably
smaller. The catch is that in the expectation of Eq. (4.5.3) the latter set has a significantly
larger contribution.

Definition 4.78. Denote by NNBSAWB ,C ✓
–

< ,I>0
BC�2<+2I>C/

p
�

NBSAW
B ,C ,3

�6�,< ,I
the set of nice

self-avoiding walks � such that

|W1(�)| > C

B

.

Denote by NNBSAW2

B ,C
the set

©≠≠≠
´

–
< ,I>0

BC�2<+2I>C/
p
�

NBSAW
B ,C ,3

�6�,< ,I

™ÆÆÆ
¨
\ NNBSAWB ,C .

Next we show how the contribution of walks in NNBSAWB ,C ,NNBSAW2

B ,C
changes from

the expectation of Eq. (4.5.3) to that of Eq. (4.5.4).

139

Lemma 4.79. Consider the settings of Theorem 4.43. Then for = large enough

for every � 2 NNBSAWB ,C Ö *̂�(x) 6 2�BC · Ö*�(x) ,
for every � 2 NBSAWB ,C Ö *̂�(x) 6 3=

1
100� · Ö*�(x) .

Proof. The first inequality follows by Definition 4.78 and Lemma 4.75. The second by
observing that for any � 2 NBSAWB ,C we have ⇢01(�) = ;. ⇤

As an immediate corollary, Lemma 4.79 implies that block self-avoiding walks in
NNBSAWB ,C have small expectation.

Corollary 4.80. Consider the settings of Theorem 4.43. Then for = large enough’
�2NNBSAWB ,C

Ö
h
Ŷ�

i
6 2�BC/2

’
�2NNBSAWB ,C

!� .

It remains to bound the contribution to nice block self-avoiding walks in NNBSAW2

B ,C
.

We require an additional definition.

Definition 4.81. Let F , 1 ,< , I > 0 be integers. Define NF ,@ ,< ,I ⇢ NNBSAW2

B ,C
to be the set

of nice block self-avoiding walks � such that:

• the number of vertices E with 3�(E) 6 1 is @,

• the number of walks inW1 is F,

• ⇢>2(�) is a forest on < edges and I components.

Notice that by definition of NNBSAW2

B ,C
the set N@ ,F ,< ,I is empty ifF > C/B or<�I 6 C�2C/B.

Moreover, observe that @ < C since for any block self-avoiding walks all vertices with total
degree 1 must be pivots.

By Lemma 4.79, we can upper bound the contribution of walks in NF ,@ ,< ,I . To upper
bound their number –and hence their total contribution– we use the following two results.

Lemma 4.82. Consider the settings of Theorem 4.43. Let A > 0 be an integer. For = large enough’
< ,I>0
<�I=A

|NBSAWB ,C ,< ,I | 6 �6C
=
BC�A

.

We prove Lemma 4.82 in Appendix B.4.2.

Lemma 4.83. Consider the settings of Theorem 4.43. Let < , I > 0 be integers such that 0 6
< � I < C

p
B

2 . Then for = large enough
��NF ,@ ,< ,I

�� 6 2FB · (1 + ⇣)
C

10 · =�@ ·
��NBSAW

B ,C ,3
�6�,<0,I0

��
for some <0, I0 such that <0 � I0 = < � I � @. Moreover, it holds that @ > C � 2C/

p
B.

140

We also defer the proof of Lemma 4.83 to Appendix B.4.2. We can finally bound the
expectation of nice block self-avoiding walks in #F ,@ ,< ,I .

Lemma 4.84. Consider the settings of Theorem 4.43. Then for = large enough
’

F ,@ ,< ,I>0

’
�2#F ,@ ,< ,I

Ö
h
*̂�(x)

i
6 (1 + ⇣)�C/3

’
< ,I>0

BC�2<+2I>C/
p
�

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*�(x)

i

Proof. First consider the case < � I > C
p
B/2. Sinceÿ

F ,@

NF ,@ ,< ,I ✓ NBSAW
B ,C ,3

⌘6�,< ,I
,

by Lemma 4.82 and definition of *̂(x) ,*(x) we get
’
< ,I>0

<�I>C/2
p
B

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö[Y�] 6
’
<�I

<�I>C/2
p
B

’
�2NBSAW

B ,C ,3
�6�,< ,I

Ö
h
*̂�(x)

i

6 (1 + ⇣)�C
p
B/2 · (�)6C · (1 + >(1))BC ·

’
�2NBSAWB ,C ,0,0

Ö
h
*̂�(x)

i

6 (1 + ⇣)�C/2
’

�2NBSAWB ,C ,0,0

Ö
h
*�(x)

i
.

So consider the case<�I < C

p
B/2. By Lemma 4.83 then @ > C�2C/

p
B. For any� 2 #F ,@ ,< ,I

and any �0 2 NBSAW
B ,C ,3

�6�,<0,I0 with <0 � I0 = < � I � @ we have

Ö
h
*̂�(x)

i
6 3=1/100� · 2��BF · [(1 + >(1))(1 + ⇣)]�@ · =@ · Ö

h
*�

0(x)
i

6 (1 + ⇣)�C/2 · =@ · Ö
h
*�

0(x)
i
.

By Lemma 4.83 it follows
’

�2#F ,@ ,< ,I

Ö
h
*̂�(x)

i
6 (1 + ⇣)�C/2

’
�
02NBSAW

B ,C ,<
0
,I
0

Ö
h
*�

0(x)
i
.

Repeating the argument for each F , @ ,< , I > 0 such that #F ,@ ,< ,I is non-empty (and thus
so is the corresponding NBSAWB ,C ,<

0
,I
0) we obtain the desired result. ⇤

We are now ready to prove Theorem 4.73.

Proof of Theorem 4.73. By Lemma 4.76 and Lemma 4.77
’

�2BSAWB ,C\(NNBSAWB ,C[NNBSAW2

B ,C
)
Ö

h
*̂�(x)

i
6

⇣
=
�1/15 + (1 + ⇣)�C

p
B/2

⌘ ’
�2BSAWB ,C

Ö
h
*�(x)

i
.

141

By Corollary 4.80 and Lemma 4.84
’

�2NNBSAWB ,C[NNBSAW2

B ,C

Ö
h
*̂�(x)

i
6

⇣
2�BC + (1 + ⇣)C/3

⌘ ’
�2BSAWB ,C

Ö
h
*�(x)

i
.

Putting the two inequalities together, by Fact 4.69 we get

Ö

Tr

⇣
&

(B)(Y) � xxT
⌘
C

�
6 (1 + ⇣)�C/4 · Ö

Tr

⇣
&

(B)(Y)
⌘
C

�

as desired. ⇤

4.5.4 Concentration of block self-avoiding walks
We prove here Theorem 4.44. Our strategy will be similar to the one used for The-
orem 4.43. Concretely, we will show that for any D , E 2 [=] most of the mass of
Ö

h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

i
comes from a specific subset of nice block self-avoiding walks.

4.5.4.1 Multigraphs that are not nice have negligible contributions
In this section, for D , E 2 [=], we show which multigraphs have negligible contribution in
Ö

h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

i
. We need the following definitions.

Definition 4.85 (Block self-avoiding walks with fixed pivot). For D 2 [=], let BSAWB ,C ,D ✓
BSAWB ,C be the set of block self-avoiding walks with D as pivot. We think of D as the first (and
last) vertex and we will refer to it as the first pivot. Notice that the set BSAWB ,C ,D corresponds
to the set of block self-avoiding walks arising in Ö

h⇣
&

(B)(Y)C
⌘
DD

i
. For every � 2 BSAWB ,C ,D

we write "(W(�)) for its sequence of edges. We denote by 4�1 , 4
�

BC
respectively the first and

last edges in the sequence "(W(�)) and write "D(�) :=
�
4
�

1 , 4
�

BC

. By construction both

4
�

1 , 4
�

BC
are incident to vertex D. Similarly, we define NBSAWB ,C ,D = BSAWB ,C ,D \NBSAWB ,C .

Definition 4.86 (Decomposition block self-avoiding walks). For D , E 2 [=] and a multigraph
� 2 BSAWB ,C ,D ⇥ BSAWB ,C ,E we denote by �(1) 2 BSAWB ,C ,D and �(2) 2 BSAWB ,C ,E the two
block self-avoiding walks such that � = �(1) ��(2). We call �(1),�(2) the decomposition block
self-avoiding walks of �. We write "(1)(�) for "D(�(1)) and "(2)(�) for "E(�(2)). When the
context is clear we simply write "(1),"(2).

Our central tool will be the following lemma, which resemble Lemma 4.57.

Lemma 4.87. Consider the settings of Theorem 4.44. Let D , E 2 [=] and let NMULTIGB ,C ,D ,E be
the set of multigraphs � in NBSAWB ,C ,D ⇥NBSAWB ,C ,E with the following structure. If D < E:

• +(�(1))\+(�(2)) = ;. That is, the decomposition block self-avoiding walks of � are disjoint.

142

If D = E

• The edges of multiplicity 2 form a forest, i.e., ⇢>2(�) is a forest.

• For each E 2 +(�), 3�>2(E) 6 �.

• Each connected component ⌫ of ⇢>2(�) not satisfying:

"(1) ["(2) ✓ ⇢(�(+ ,+ \ ⌫) � �(⌫)) ,
D 2 +(⌫DD) ,

is connected to ⇢1(�) through a single vertex, every edge in "(�(⌫)) satisfies <�(4) 6 2 .

• If there is a connected component ⌫DD of ⇢>2(�) satisfying:

"(1) ["(2) ✓ ⇢(�(+ ,+ \ ⌫) � �(⌫)) ,
D 2 +(⌫DD) ,

then �(⌫DD) is connected to ⇢1(�) by 4 edges and at most two vertices.

• If ⇢1(�) contains two connected components than these components are cycles. If ⇢1(�)
is connected then it is either a path, or a cycle, or a path connected to a cycle by one of its
endpoints, or two cycles with a single vertex in common.

Then for = large enough
’

�2NMULTIG2

B ,C ,D ,E

Ö*�(x) 6
⇣
=
� 1

6 + (1 + ⇣)�C
p
B

⌘ ’
�2NMULTIGB ,C ,D ,E

Ö*�(x) .

Multigraphs in NMULTIGB ,C ,D ,E are said to be nice. Multigraphs in NMULTIG2

B ,C ,D ,E
are

said to be negligible. It is important to observe that for D = E the family of multigraphs we
need to consider grows. However, since NMULTIGB ,C ,D ,D ✓ NBSAWB ,C ,D ⇥NBSAWB ,C ,D we
can still ensures nice multigraphs satisfy several useful properties. For example, in every
� 2 NMULTIGB ,C ,D ,D edges have multiplicity at most 4, moreover no vertex E 2 +(�) has
degree-1 larger than 4.

Bounding negligible multigraphs with few vertices. The first step to prove Lemma 4.87
is to obtain a result similar in spirit to Lemma 4.60. For D , E 2 [=] define

(BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�
:=

⇢
� 2 BSAWB ,C ,D ⇥ BSAWB ,C ,E

���� max
E2+(�)

3
�

>2(E) 6 �
�
.

Definition 4.88. Let D , E 2 [=]. Let � 2 (BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�
and let F 2 +(�).

We denote by @�(F) the number of connected components of the line graph with vertex

143

set ⇢�(F) and such that there is an edge between 4 , 40 2 ⇢�(F) if and only if 4 , 40 appear in
the sequence of edges "(W(�)) consecutively. We define

@� :=
�
@�(E) + @�(D) [D<E] � 2

�
+

’
F2+(�)\{D ,E}

(@�(F) � 1) .

Now, for @ > 0 we define D@ ,B ,C ,D ,E ✓ (BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�
to be the subset of

multigraphs � with @� = @ . We also writeD@ ,B ,C ,D ,E(�) ✓ +(�) to be the set of vertices F
in � with

@�(F) >
(

3 if D = E = F

2 otherwise .

Finally we write

D>1,B ,C ,D ,E =
ÿ
@>1
D@ ,B ,C ,D ,E .

When the context is clear we writeD@ ,D ,E instead ofD@ ,B ,C ,D ,E .

We prove that multigraphs inD>1,D ,E have negligible contribution to the expectation of⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

.

Lemma 4.89. Consider the settings of Theorem 4.44. Let D , E 2 [=]. Then for = large enough
’

�2D>1,D ,E

Ö*�(x) 6
1
=

2/3

’
�2(BSAWB ,C ,D⇥BSAWB ,C ,E)

3
�

>26�
\D>1,D ,E

Ö*�(x) .

Proof. Fix @ > 1 and consider the following procedure to obtain a multigraph in
(BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�

\D@ ,D ,E from a multigraph� 2 D@ ,D ,E . Let"(1)(W),"(2)(W)
be respectively the sequence of edges obtained concatenating the generating self-avoiding
walks of �(1) and �(2). We write

n
4
(✓�1)·B+1
(1) , . . . , 4

(✓�1)·B+B
(1)

o
for the subsequence correspond-

ing to the ✓ -th generating self-avoiding walk of �(1) (for simplicity we let 8 � 1 = BC for
8 = 1 and analogously we let 8 + 1 = 1 for 8 = BC). We denote the generating self-avoiding
walks of �(2) similarly. Let F 2 D@ ,D ,E(�). Let �� ,F be the line graph with vertex set
⇢�(F) and edges as described in Definition 4.88. If F 8 {D , E}, let ⇢�(F)1 be an arbitrary
connected component of �� ,F and let I be a vertex not in �. Conversely if F = D let
⇢�(F)1 be an arbitrary connected component of �� ,F such that ⇢�(F)1\"(1)(�) = ;, since
F 2 D@ ,D ,E(�) there must exists such connected component (Notice that this also covers
the case D = E). Analogously, if F = E let ⇢�(F)1 be an arbitrary connected component of
�� ,F such that ⇢�(F)1 \"(2)(�) = ;, since F 2 D@ ,D ,E(�) We construct the multigraph
�
0 2 D@�1,D ,E with +(�0) = +(�) [{I} applying the following operation on �:

144

• Consider the sequence of edges "(1)(W),"(2)(W), we replace every edge F0F 2
"

(1)(W) (and FF0 2 "(1)(W)) such that F0F 2 ⇢1
�
(F) with the edge F0I (resp. IF0).

Similarly, we replace every edge F0F 2 "(2)(W) (and FF
0 2 "(2)(W)) such that

F
0
F 2 ⇢1

�
(F) with the edge F0I (resp. IF0).

Clearly, �0 2 (BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�
\D@ ,D ,E and |+(�0)| � |+(�)| = 1. Furthermore��

⇢
0

1(�0)
�� > ��

⇢
0

1(�)
�� � � � 2. Thus

÷
E2+(�)

✓
6
⌘

◆max{23�1 (E)��,0}
6
✓
6
⌘

◆�+2
·

÷
E2+(�0)

✓
6
⌘

◆max
n
23�01 (E)��,0

o
.

By Fact 4.58 it follows that

1
=
|+(�0)|�|+(�)| ·

Ö
h
*�(x)

i

Ö
h
*�

0(x)
i 6 1

=

·
✓
6
⌘

◆2� ⇣
1 + ⌘

2

⌘2�
6

1
=

·
✓
12
⌘

◆3�
. (4.5.15)

To obtain a multi-graph not in D>1,D ,E we repeatedly apply the operation above until
D@ ,D ,E(�) is empty. Notice that (BC)$(@) applications suffice. It remains to show that the
contribution to the expectation of

⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

of multigraphs in D>1,D ,Eis
negligible. For this, observe that at each step there are at most (BC)4 multigraphs in
(BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�

that can produce the same multigraph�0. So using Eq. (4.5.15),
we get for any @ > 1

’
�2D@ ,D ,E

Ö*�(x) 6
(BC)4
=

0.99

’
�
02D@�1,D ,E

Ö*�(x) .

The result follows since the maximum degree in any multigraphs in
(BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�

is 4C. ⇤

Bounding multigraphs from their shape and edges multiplicities. Next we extend
Lemma 4.63 to multigraphs in BSAWB ,C ,D ⇥ BSAWB ,C ,E for any D , E 2 [=]. That is, we
compute a general bound on multigraphs in BSAWB ,C ,D ⇥ BSAWB ,C ,E based on the shape
of its underlying graph and the multiplicity of each edge. We introduce some needed
definitions.

Definition 4.90. Let D , E 2 [=]. Let B = {⌫1, . . . , ⌫I} be a collections of disjoint connected
graphs on at least two vertices. Let ⌫DE be a connected graph on at least two vertices disjoint
from any graph in B. We defineMB ,C ,D ,E(B , ⌫DE) to be the subset of BSAWB ,C ,D ⇥ BSAWB ,C ,E

satisfying the following. For � 2 MB ,C ,D ,E(B , ⌫DE), let �(1),�(2) be the decomposition block
self-avoiding walks of �. For any ⌫ 2 B [{⌫DE}:

145

• ⌫ ✓ ⌧(�), we denote with ⌫0 a (arbitrary) copy of ⌫ in � and by �(⌫) the multigraph
induced by +(⌫0) (With a slight abuse of notation we will simply write +(⌫) for
+(⌫0)),

• 84 2 ⇢(�(⌫)) that is also an edge in + , <�(4) > 2,

• there exists a cut �(+(⌫0),+(�) \ +(⌫0)) in � such that each edge in the cut has
multiplicity 1 in �.

Furthermore,

• every edge in �
✓
+(�) \

✓ –
⌫2B[BDE

+(⌫0)
◆◆

has multiplicity 1,

• it holds that D , E 2 +(⌫DE) and

"(1)(�) ["(2)(�) ✓ �(⌫DE) [�(⌫DE ,+ \ ⌫DE) .

That is, ⌫DE contains the first pivots D , E of the decomposition block self-avoiding walks
�(1) 2 BSAWB ,C ,D and �(2) 2 BSAWB ,C ,D of �. If no such graph ⌫DE exists we simply write
MB ,C ,D ,E(B , ;). When the context is clear we drop the subscripts B , C.

Definition 4.91. Let D , E 2 [=]. Let B = {⌫1, . . . , ⌫I} be a collections of disjoint connected
graphs and let ⌫DE be a graph disjoint from any graph in B. Let

�
✓8 , @8 , ?8 , ⌘8

I+1
8=1 be a se-

quence of tuples of integers such that for all 8 2 [I], ✓8 , @8 , ?8 , ⌘8 > 0. Let { 8}I+1
8=1 be a sequence

of positive integer. Further we denote F8 = {✓8 , @8 , ?8 , ⌘8}. We writeM
B ,C ,D ,E{F8 , 8}I+1

8=1
(B , ⌫DE)

for the subset ofMB ,C ,D ,E(B , ⌫DE) such that for any 8 2 [I + 1]

(i) the size of the cut �(+(�) \+(⌫8),+(⌫8)) is ✓8 ,

(ii) the number of edges in �(⌫8) of multiplicity one is @8 ,

(iii) the number of edges 4 in �(⌫8) with <�(4) = 2 is ⌘8 ,

(iv) the maximum degree-(> 2) in �(⌫8) is 8 .

(v) the edges with multiplicity larger than 2 in �(⌫8) satisfy
’

42�(⌫8)
<�(4)>3

<�(4) = ?8 .

Now we study the contribution of block self-avoiding walks inMD ,E(B , ⌫DE) for all
B , ⌫DE .

146

Lemma 4.92. Consider the settings of Theorem 4.44. Let I > 1 and <1, . . . ,<I ,<I+1 be
nonnegative integers. Let D , E 2 [=]. Then for = large enough,

’
for 82[I+1]:
@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

’
�2M

D ,E ,{F8 , 8}I+1
8=1

({⌫1 ,...,⌫I},⌫I+1)
Ö*�(x)

6
÷

82[I+1]

266664
(BC)30 ·

200� + B10 + 4

log =
C

(1 + ⇣)B/8

!4<8/B377775
·

’
�2M(;,;)

Ö*�(x) .

Furthermore:

• restricting the sum over A8 > <8 � 1, or over ?8 > 1, or @8 > 1, or 8 > � or ✓8 >
2, for some 8 2 [I] or 8 2 [I + 1] if D < E, the inequality holds with an additional

=

� 1
5

⇣
?8+@8+ [8>�](8��)+ [✓8>2](✓8�2)

⌘
factor.

• if D = E, restricting the sum over AI+1 > <I+1 � 1, or over multigraphs � with <�(1) (4) > 3
or <�(2) (4) > 3 for some 4 2 �, or @I+1 > 1, or I+1 > � or ✓I+1 > 4 the inequality holds

with an additional =�
1
5

⇣
?I+1/5+@I+1+ [I+1>�](I+1��)+ [✓I+1>2](✓I+1�2)

⌘
factor.

To prove Lemma 4.92 we need two intermediate steps. First, an adaptation of Lemma 4.64
to the sets in Definition 4.91. Second, a result along the lines of Fact 4.65.

Lemma 4.93. Consider the settings of Theorem 4.44. Let D , E 2 [=]. Let B = {⌫1, . . . , ⌫I} be
collections of disjoint connected graphs each with respectively <1, . . . ,<I > 2 vertices. Let ⌫DE
be a connected graph disjoint from any graph in B and with <I+1 > 2 vertices.Let {F:}I+1

8=1 be a
sequence of tuples of integers as in Definition 4.91. Let 5 ⇤

B ,C
, ,⇤

B ,C
be the functions

5
⇤
B ,C
(< ,<

0
, F ,) =()2⌘/B+10(@+✓+?+1)+2⌘�2(<0�1) · (BC)5✓+5@+8?+4⌘+4�4(<0�1)

,

,⇤
B ,C
(<0, F) ==�?�✓/2�@�2⌘+<0

.

Let < =
Õ

92[I+1]
<9 . Then there are at most

2=2BC�2+ [D=E] [⌫DE<;] ·
÷

16:6I0
5
⇤
B ,C
(< ,<: , F8 , 8) · ,⇤B ,C(<8 , F8 , ⌘8)

block self-avoiding walk pairs in the setM
D ,E{F8 , 8}I+I

0
8=1

(B).

We show Lemma 4.93 in Appendix B.4.2. We also extend Fact 4.65 to mutligraphs in
BSAWB ,C ,D ⇥ BSAWB ,C ,E .

147

Fact 4.94. Consider the settings of Theorem 4.44. Let D , E 2 [=] , let B = {⌫1, . . . , ⌫I} be a
collection of disjoint connected graphs on at least 2 vertices and let ⌫DE be a (possibly empty) graph
disjoint from any graph in B. Then for any � 2 M{F8 , 8}I+1

8=1
(B , ⌫DE) and 8 2 [I + 1]

Ö*�(x) 6
1
4=
�1/25�

✓
6
⌘

◆2✓8+2@8
Ö*

�(+ ,+\⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(⌫8)(x) ,

Ö*�(x) >
1
4=
�1/25�Ö*

�(+ ,+\⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(⌫8)(x) .

We obtain Fact 4.65 in Appendix B.4.1 and directly apply it here. Next we prove
Lemma 4.92.

Proof of Lemma 4.92. Our argument closely resembles that of Lemma 4.63. Consider first
the case D < E. For any non-empty ⌫I+1 the same proof as in Lemma 4.63, combined with
Lemma 4.93 implies’

for 82[I]:
@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

’
�2M

D ,E ,{F8 , 8}I8=1
({⌫1 ,...,⌫I},⌫I+1)

Ö*�(x)

6
⇣
=
�1/5 + (1 + ⇣)�

p
BC

⌘
·

’
for 82[I]:

@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

’
�2M

D ,E ,{F8 , 8}I8=1
({⌫1 ,...,⌫I},;)

Ö*�(x) ,

as it must be that either ✓I+1 > 4 or ?I+1 > 1. Here we used the definition of B ,�, C. The rest
of the proof then continues as in Lemma 4.63 so we omit it. Conversely, consider the case
D = E. Again as in Lemma 4.63, applying Lemma 4.93 we get for any ⌫I+1’

for 82[I]:
@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

’
�2M

D ,E ,{F8 , 8}I8=1
({⌫1 ,...,⌫I},⌫I+1)

Ö*�(x)

6
÷
82[I]

266664
(BC)30

200� + B10 + 2

log =
C

(1 + ⇣)B/8

!4<8/B377775
·

’
@I+1 , I+1 ,✓I+1 ,EI+1>0
)I+1 82T (<I+1 8 ,EI+1)

AI+1><I+1�1
⌫I+1 82G()I+1 8 ,AI+1)
⌘I+1 8 ,?I+1 8>0

’
�2M

D ,E ,{FI+1 , I+1}(;,⌫I+1)
Ö*�(x) ,

148

where if we restrict the sum over A8 > <8 � 1 or ?8 > 1 or @8 > 1 or 8 > � or ✓8 > 2 for some
8 2 [I] the inequality holds with an additional =�1/5 factor. For simplicity of the notation
let 8 = I + 1. It remains to study’

@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

’
�2M

D ,E ,{F8 , 8}(;,⌫8)
Ö*�(x) .

For any {F8 , 8}, ⌫8 , A8 , E8 and any � 2 M
D ,D ,{F8 , 8}(;, ⌫8) by Fact 4.94 and Fact 4.58

Ö*�(x) 6
✓
6
⌘

◆2✓8+2@8
· (2=1/50�)�2Ö*

�(⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(+(�\⌫8),⌫8)(x)

6 2=1/50� ·
266664

÷
D2+(�\⌫8)

✓
6
⌘

◆max
n
23�(+\⌫

8
)

1 ��,0
o377775

·
✓
6
⌘

◆2✓8+2@8
·
✓
⌘3
2=

◆ |⇢(�(+\⌫8))|
·
✓
⌘3
2=

◆
@8+✓8

·
✓

1 + 1p
=

3

=

◆�
A8

· 22(A8�<8�1)· 8 ·
÷

D2L>2(�(⌫8))

"✓
23
=

◆ 1
4(3�>2(D)��)

#
. (4.5.16)

Thus we can use the bound’
@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

’
�2M

D ,E ,{F8 , 8}(;,⌫I+1)
Ö*�(x)

6 2=1/50�
’

@8 , 8 ,✓8 ,E8>0
)82T (<8 ,E8)
A8><8�1
⌫82G()8 ,A8)
⌘8 ,?8>0

266664
÷

D2+(�\⌫8)

✓
6
⌘

◆max
n
23�(+\⌫

8
)

1 ��,0
o377775

·
✓
6
⌘

◆2✓8+2@8
·
✓
⌘3
2=

◆ |⇢(�(+\⌫8))|
·
✓
⌘3
2=

◆
@8+✓8

·
✓

1 + 1p
=

3

=

◆�
A8

· 22(A8�<8�1)· 8 ·
÷

D2L>2(�(⌫8))

"✓
23
=

◆ 1
4(3�>2(D)��)

#
. (4.5.17)

By Lemma 4.93, since 8 6 4C it follows that the contribution to Eq. (4.5.17) of multigraphs
walks with 8 > �will be at least a factor = 1

5 smaller than the others. Thus by Lemma 4.89,
Lemma 4.93 and Fact B.105 we may upper bound Eq. (4.5.17) by

2=1/50� · 2=2BC�2·
’

?8 ,⌘8 ,✓8>0
A8><8�1
 86�

E862(2⌘8+?8+@8)/B+✓8

=
[<8>2] · 5B ,C(<8 ,<8 , F8 , 8) · ,B ,C(<8 , F8)

149

·(84 · <8/E8)2E8 · (2<8)2(A8�<8�1) · 22(A�<8�1)· 8

·
✓
6
⌘

◆2✓8+2@8
·
✓
⌘3
2=

◆2BC�2⌘8�?8�✓8�@8
·
✓
⌘3
2=

◆
@8+✓8

·
✓

1 + 1p
=

◆
3

=

�
A8

. (4.5.18)

As for Lemma 4.63, it is easy to see that Eq. (4.5.18) is a geometric sum which can be upper
bounded by

2=1/50� · 2 ·
✓
1 + 4

=
1/5

◆
· =2BC�2·

’
⌘8 ,?8 ,>0,06✓864

 86�
E862(2⌘8)/B+✓8

=
[<8>2]

· 5B ,C(<8 ,<8 ,

�
✓8 , 0, ?8 ,<8 � 1

, 8) · ,B ,C(<8 ,

�
✓8 , 0, ?8 ,<8 � 1

)

·(84 · <8/E8)2E8

·
✓
⌘3
2=

◆2BC�2⌘8�?8

·
✓

1 + 1p
=

◆
3

=

�
<8�1

. (4.5.19)

That is, if we restrict Eq. (4.5.18) to A8 > <8 � 1, or @8 > 0 or 8 > � or ✓8 > 5 the contribution
drops by a =�1/5 factor. So we need only to consider the settings @8 = 0, A8 = <8 � 1, 8 6
�, ✓8 6 4. If ✓8 < 4 then since each multigraph considered is a product of two block
self-avoiding walks it must be that 2⌘8 + ?8 > BC + 1 and thus we obtain a ratio with

’
�2MD ,D(;,;)

Ö*�(x) (4.5.20)

of at most
✓
⌘2

43

◆
BC/2

·
�
200� + B10 + ⇠

�2C
=

✓
200� + B10 + ⇠2

(1 + ⇣)B/4

◆2C
,

where ⇠ = 22 log =
C . It remains to consider the case ✓8 = 4. Notice that for any multigraph �

in the sum, this means no edge can have multiplicity larger than 4 and no edge can have
multiplicity larger than 2 in �(1) and �(2). Thus we obtain a ratio with Eq. (4.5.20) of at most

(BC)14
✓

200�10

(1 + ⇣)B/4

◆
<8/B

.

Putting things together the proof follows. ⇤

150

Putting things together. We are now ready to prove Lemma 4.87.

Proof of Lemma 4.87. We argue that if a multigraph� 2 (BSAWB ,C ,D ⇥ BSAWB ,C ,E)3�>26�
is not

in NMULTIGB ,C ,D ,E , then it satisfies one of the following:

• � 2 D>1,D ,E .

• if D < E either ⇢1(�(1)) = ; or ⇢1(�(2)) = ;.

• if D = E and ⇢1(�) = 0.

• � 2 M
D ,E{F8 , 8}I+1

8=1
(B , ⌫DE) for any non-empty B [{⌫DE} containing some ⌫8 with a

cycle, for 8 2 [I + 1].

• � 2 M
D ,E{F8 , 8}I+1

8=1
(B , ⌫DE) for tuples {F8}I8=1 such that for some 8 2 [I], ?8 > 1 or

@8 > 1 or 8 > � or ✓8 > 3.

• if D < E, � 2 M
D ,E{F8 , 8}I+1

8=1
(B , ⌫DE) for any non-empty {⌫DE}.

• if D = E and � 2 M
D ,E{F8 , 8}I+1

8=1
(B , ⌫DE) for any non-empty {⌫DE}, then @I+1 > 1 or

✓I+1 < 4 or there exists 4 2 �(⌫DE) such that <�(1) (4) > 3 or <�(2) (4) > 3.

Suppose this claim holds. As for Lemma 4.57, the inequality in Lemma 4.87 immediately
follows if

2

300� + B10 + 2

log =
C

(1 + ⇣)B/4

!
6 (1 + ⇣)�

p
B

, (4.5.21)

which, for C 2
h

log =
400 ,

log =
100

i
, may be rewritten as

B >
108

⇣

�
max

�
log 300�, log B , 1

 �2
.

Since by assumption Eq. (4.5.21) is satisfied, applying Lemma 4.92, Lemma 4.89 and
observing that the elements in

Õ
�2NBSAW2

B ,C

Ö*�(x) form a geometric sum we obtain the

desired inequality.
It remains to verify our claim. Suppose first D < E and consider some � in

NMULTIG2

B ,C ,D ,E
. If +(1) \ +(2) = ; the claim follows as in Lemma 4.57 and the fact that

�(1),�(2) are nice block self-avoiding walks. Otherwise either ⇢(�(1)) \ ⇢(�(2)) < ; or
⇢(�(1)) \ ⇢(�(2)) = ;. In the former case � 2 MD ,E(B , ⌫DE) [MDE(;, ⌫DE) [MDE(B , ;) for
some B [⌫DE with |(+ \ ⌫,+)| > 4. In the latter � 2 D>1,D ,E .

So let D = E, if +(1) \ +(2) = {D} then again the claim follows as in Lemma 4.57. If
{D} ⇢ +(1) \ +(2) then � 2 M

D ,D{F8 , 8}I+1
8=1
(B , ⌫DD) [M

D ,D{F8 , 8}(;, ⌫DD) for some tuples
of parameters {F8 , 8}I+1

8=1 and non-empty ⌫DD . We may assume that B is a collection of

151

trees such that for each ⌫8 2 B, ✓8 = 2, ?8 = @8 = 0 and 8 6 � as otherwise the claim
holds. Similarly we may assume ⌫DD is a tree with ✓I+1 = 4, @I+1 = 0 and I+1 6 �. If
�(⌫DD) is connected to ⇢1(�) by more than two vertices then ✓I+1 > 5 or @I+1 > 1 or there
exists 4 2 ⇢(⌫DD) such that max

�
<�(1) (4)<<�(2)

> 3 contradicting our assumption. The

remaining cases are trivial. ⇤

4.5.4.2 Bounding the variance of non-negligible multigraphs
By Lemma 4.87, to obtain Theorem 4.44 it remains to bound the variance of nice multigraphs.
As for nice block self-avoiding walks, we split nice multigraphs in different sets.

Definition 4.95. For D , E 2 [=], define the set NMULTIGB ,C ,D ,E ,< ,I to be the set of nice
multigraphs in which ⇢>2(�) is a forest on < vertices and I components. Further define

NMULTIG⇤
B ,C ,D ,E

:=
�
� 2 NMULTIGB ,C ,D ,E

��
�(1) 2 NBSAWB ,C ,<1 ,I1

�(2) 2 NBSAWB ,C ,<2 ,I2

BC � 2<1 � 2I1 > C/
p
� , BC � 2<2 � 2I2 > C/

p
�

o
,

NMULTIG
B ,C ,D ,E ,3

�6� :=
⇢
� 2 NMULTIGB ,C ,D ,E

���� max
E2+(�)

3
�(E) 6 �

�
.

That is, NMULTIG⇤
B ,C ,D ,E

denotes the set of nice multigraphs in which both decomposition
block self-avoiding walks have at least C/

p
� edges with multiplicity 1. We also define

NMULTIG⇤
B ,C ,D ,E ,3

�6� := NMULTIG
B ,C ,D ,E3

�6� \NMULTIG⇤
B ,C ,D ,E

,

NMULTIG⇤
B ,C ,D ,E ,3

�>� := NMULTIG⇤
B ,C ,D ,E

\ NMULTIG
B ,C ,D ,E3

�6� ,

NMULTIG
B ,C ,D ,E ,3

�6�,< ,I
:= NMULTIG

B ,C ,D ,E3
�6� \NMULTIGB ,C ,D ,E ,< ,I .

Variance of the products of walks with different first pivots. We consider first the
settingsD , E 2 [=], D < E. We provide an upper bound on the expectation of nice multigraphs
in NMULTIG⇤

B ,C ,D ,D
.

Lemma 4.96. Consider the settings of Theorem 4.44. Let D , E 2 [=] and let < > 0 be an integer.
Then for any � 2 NMULTIG⇤

B ,C ,D ,E
with decomposition block self-avoiding walks �(1),�(2)

Ö[Y�] 6 (1 + >(1))Ö
⇥
Y�(1)

⇤
· ⇢

⇥
Y�(2)

⇤
.

Moreover for any � 2 NMULTIG⇤
B ,C ,D ,E ,3

�>�

|Ö[Y�]| 6
4

=
1/13 Ö*�(1) (x)Ö*�(2) (x) .

We prove Lemma 4.96 in Appendix B.1.4. The first inequality of Theorem 4.44 follows
directly.

152

Lemma 4.97. Consider the settings of Theorem 4.44. Let D , E 2 [=] , D < E. Then

Ö
h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

i
6 (1 + >(1))Ö

h⇣
&

(B)(Y)C
⌘
DD

i2
.

Proof. By Lemma 4.87

Ö
h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

i
6

’
�2NMULTIGB ,C ,D ,E

h
Ö[Y�] +

⇣
=
�1/6 + (1 + ⇣)C

p
B

⌘
*�(x)

i

6
’

�2NMULTIG
B ,C ,D ,E ,3

�6�

h
Ö[Y�] +

⇣
=
�1/6 + (1 + ⇣)C

p
B

⌘
*�(x)

i

+
’

�2NMULTIG
B ,C ,D ,E ,3

�>�

Ö[*�(x)] ·
⇣
1 + =�1/6 + (1 + ⇣)C

p
B

⌘
.

By Lemma 4.68, Lemma 4.70 and Lemma 4.96
’

�2NMULTIG
B ,C ,D ,E ,3

�>�

Ö[*�(x)] 6
1

=
1/13

’
�2NMULTIG

B ,C ,D ,E ,3
�>�

Ö
⇥
*�(1) (x)

⇤
Ö

⇥
*�(2) (x)

⇤

6
22C

=
1/13

’
< ,I>1

’
�2NMULTIG

B ,C ,D ,E ,3
�>�,< ,I

Ö
⇥
*�(1) (x)

⇤
Ö

⇥
*�(2) (x)

⇤

6
1

=
1/14

’
< ,I>0

’
�2NMULTIG

B ,C ,D ,E ,3
�6�

Ö
⇥
*�(1) (x)

⇤
Ö

⇥
*�(2) (x)

⇤
.

On the other hand by Lemma 4.67, Fact 4.69, Lemma 4.71 and Lemma 4.96
’

�2NMULTIG
B ,C ,D ,E ,3

�6�\NMULTIG⇤
B ,C ,D ,E ,3

�6�

Ö
h
*�(x)

i

6
’

�2NMULTIG
B ,C ,D ,E ,3

�6�\NMULTIG⇤
B ,C ,D ,E ,3

�6�

Ö
⇥
*�(1) (x)

⇤
Ö

⇥
*�(2) (x)

⇤

6
⇥
(BC) · 210C · BC · (1 + ⇣)�BC/2⇤2 ’

�2NMULTIG⇤
B ,C ,D ,E ,3

�6�

Ö
⇥
*�(1) (x)

⇤
Ö

⇥
*�(2) (x)

⇤

6 >(1)
’

�2NMULTIG⇤
B ,C ,D ,E ,3

�6�

!�(1)!�(2)

6 >(1)
’

�2NMULTIG⇤
B ,C ,D ,E ,3

�6�

Ö
h
Y�(1)

i
Ö

h
Y�(2)

i
.

All in all we get

Ö
h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
EE

i
6 (1 + >(1))

’
�2NMULTIG⇤

B ,C ,D ,E ,3
�6�

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤

153

6 (1 + >(1))
’

�2NMULTIG⇤
B ,C ,D ,E ,3

�6�

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤

6 (1 + >(1))
’

�2BSAWB ,C ,D⇥BSAWB ,C ,E

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤

where the last step follows by the fact that by Lemma 4.57 and Lemma 4.72
’
< ,I>0

BC�2<�2I>C/
p
�

’
�2NBSAW

B ,C ,D ,3
�6�,< ,I

Ö[Y�] > (1 � >(1))
’

�2BSAWB ,C ,D

Ö[Y�] .

as for Theorem 4.51. ⇤

Concentration of diagonal entries. It remains to prove the second inequality of Theo-
rem 4.44. Let D 2 [=]. Consider the sets

NMULTIGB ,C ,D ,D ,✓ :=
�
� 2 NMULTIGB ,C ,D ,D

�� ��
⇢(�(1)) \ ⇢(�(2))

�� = ✓
NMULTIG⇤⇤

B ,C ,D ,D
:=

�
� 2 NMULTIG⇤

B ,C ,D ,D

�� |⇢1(�)| > C/�

.

Lemma 4.98. Consider the settings of Theorem 4.44. Let D , E 2 [=] and let < > 0 be an integer.
Then for any � 2 NMULTIG⇤⇤

B ,C ,D ,D ,✓
with decomposition block self-avoiding walks �(1),�(2). If��

⇢1(�(1)) \ ⇢>2(�(2))
�� + ��

⇢1(�(2)) \ ⇢>2(�(1))
�� 6 log =

12 log(2
⌘) and max

E2+(�) 3�(E) 6 �

Ö[Y�] 6
�
1 + (1 + ⇣)�B

�
·
✓
1 + ⇣

10

◆�✓
· Ö

⇥
Y�(1)

⇤
⇢

⇥
Y�(2)

⇤
.

If
��
⇢1(�(1)) \ ⇢>2(�(2))

�� + ��
⇢1(�(2)) \ ⇢>2(�(1))

�� > log =
12 log(2

⌘) or max
E2+(�) 3�(E) > �

|Ö[Y�]| 6
1

=
1/13 Ö

h
*�(1) (x)

i
Ö

h
*�(2) (x)

i
.

We prove Lemma 4.98 in Appendix B.1.4. We introduce an additional counting argument.

Lemma 4.99. Consider the settings of Theorem 4.44. Let D 2 [=] and Then for ✓ < BC

|NMULTIGB ,C ,D ,D ,✓ | 6
✓

10

=
✓

|NMULTIGB ,C ,D ,D ,0 | .

For ✓ = BC

|NMULTIGB ,C ,D ,D ,✓ | 6
4
=
✓�1 |NMULTIGB ,C ,D ,D ,0 | .

We are now ready to prove the inequality.

154

Lemma 4.100. Consider the settings of Theorem 4.44. Let D 2 [=]. Then

Ö
h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
DD

i
6 ⇠ · Ö

h⇣
&

(B)(Y)C
⌘
DD

i2
,

where ⇠ is a universal constant.

Proof. By Lemma 4.87

Ö
h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
DD

i
6

’
�2BSAWB ,C ,D⇥BSAWB ,C ,D

Ö[Y�]

6
’

�2NMULTIGB ,C ,D ,D

h
Ö[Y�] +

⇣
=
�1/6 + (1 + ⇣)C

p
B

⌘
*�(x)

i
.

For any ✓ 6 BC, we split the set NMULTIGB ,C ,D ,D in

(1,✓ := NMULTIG⇤⇤
B ,C ,D ,D ,✓

\ NMULTIG
B ,C ,D ,D ,3

�6�

(2,✓ := NMULTIGB ,C ,D ,D ,✓ \ NMULTIG⇤
B ,C ,,D ,D ,✓

(3,✓ := NMULTIG⇤
B ,C ,D ,D ,✓

\ NMULTIG⇤⇤
B ,C ,D ,D

(4,✓ := NMULTIG⇤⇤
B ,C ,D ,D ,✓ ,3

�6� .

Notice that (1,✓ [(2,✓ [(3,✓ [(4,✓ = NMULTIGB ,C ,D ,D . We bound each term separately.
Consider the (1,✓ by Lemma 4.67, Lemma 4.99 and Lemma 4.98

’
✓6BC

’
�2(1,✓

Ö
h
*�(x)

i
6

1
=

1/13

’
✓6BC

(1 + ⇣)�✓

=
1/50� =

✓

’
�2(1,✓

Ö
⇥
*�(1) (x)

⇤
Ö

⇥
*�(2) (x)

⇤

6
1

=
1/14

’
�2(1,0

!�(1)!�(2)

6
1

=
1/14

’
�2(1,0

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤
.

Next we consider (2,✓ . Notice that if � 2 (2,✓ then ⇢1(�) 6 2C/
p
� by Lemma 4.71 and

Lemma 4.99
’
✓6BC

’
�2(2,✓

Ö
h
*�(x)

i
6

’
✓6BC

(1 + ⇣)�✓

=
1/50� =

✓

’
�2(2,✓

Ö
h
*�(1) (x)

i
Ö

h
*�(2) (x)

i

6
$(1)
=

1/50�

’
�2(2,0

Ö
h
*�(1) (x)

i
Ö

h
*�(2) (x)

i

6
$(1)
=

1/50� · (1 + ⇣)�C
p
B/2

’
�2NMULTIGB ,C ,D ,D ,0,0

Ö
h
*�(1) (x)

i
Ö

h
*�(2) (x)

i

155

6 >(1)
’

�2NMULTIGB ,C ,D ,D ,0,0

!�(1)!�(2)

6 >(1)
’

�2NMULTIGB ,C ,D ,D ,0,0

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤
.

Notice now that (3,✓ is empty unless ✓ > 9C/
p
�. Moreover by choice of �, it holds

(1 + ⇣)�9C/
p
�

=
10/� 6 (1 + ⇣)�C/

p
�. It follows that by Lemma 4.99 and Lemma 4.67

’
✓6BC

’
�2(3,✓

Ö
h
*�(x)

i
6

’
✓6BC

(1 + ⇣)�✓
=

1/50� =
✓

’
�2(3,✓

Ö
h
*�(1) (x)

i
Ö

h
*�(2) (x)

i

6 >(1)
’

�2NMULTIGB ,C ,D ,D ,0,0

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤
.

It remains to bound the contribution of nice multigraphs in (4,✓ . We first consider the case
✓ < BC. By Lemma 4.99

’
✓<BC

’
�2(4,✓

Ö[Y�] 6 (1 + (1 + ⇣)�B)
’
✓<BC

’
�2(4,✓

✓
1 + ⇣

10

◆�✓
=
✓ Ö

⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤

6 ⇠
’
�2(4,0

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤

where ⇠ > 1 is a universal constant. For ✓ = BC, similarly we get

’
�2(4,BC

Ö[Y�] 6 (1 + (1 + ⇣)�B)
’

�2(4,BC

✓
1 + ⇣

10

◆�BC
=
BC Ö

⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤

6 = · (BC)10 ·
✓
1 + ⇣

10

◆�BC ’
�2(4,0

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤

6 >(1)
’
�2(4,0

Ö
⇥
Y�(1)

⇤
Ö

⇥
Y�(2)

⇤
.

Putting things together

Ö
h⇣
&

(B)(Y)C
⌘
DD

⇣
&

(B)(Y)C
⌘
DD

i
6 ⇠0 · Ö

h⇣
&

(B)(Y)C
⌘
DD

i2

for a universal constant ⇠0 > 1. ⇤

156

Chapter 5

Stochastic block models with node
corruptions

In Chapter 4 we saw that for stochastic block models, even under a constant fraction of
edge corruptions, there exists an efficient algorithm achieving weak recovery down to the
KS threshold. In this chapter, based on [DdH23], we focus on node corruptions and prove
Theorem 1.4. We restate the model and the results. To simplify the proofs, our notation
differs from Chapter 1. In contrast to Chapter 4 we do not write random variables in bold
face, but we reuse the canonical stochastic block model introduced in Definition 4.1.

Definition 5.1 (Restatement of Definition 1.3). Given ⇠ 2 [0, 1) and (G⇤,⌧0) ⇠ SBM=(3, ⌘),
an adversary may choose up to ⇠= vertices in ⌧0 and arbitrarily modify edges incident to
at least one of them to produce the corrupted graph ⌧.

Recall that, along the lines of Chapter 4, we say that an algorithm that given a graph ⌧0

outputs an estimate Ĝ(⌧0) for the community labels of ⌧0 achieves ⇠-node-robust weak
recovery for {SBM=(3, ⌘)}=2é if

Ö
(G⇤ ,⌧0)⇠SBM=(3,⌘)

min
⌧2+⇠(⌧0)

h
1
=
|hG⇤, Ĝ(⌧)i |

i
> ⌦3,⌘(1) , (5.0.1)

where+⇠(⌧0) is the set of graphs that ca be obtained from ⌧
0 as in Definition 5.1. We prove:

Theorem 5.2 (Restatement of Theorem 1.4). Let = > 1, 3 > 1, ⌘ 2 (0, 1) and ⇠ 2 [0, 1). When
⇣ := ⌘2/43 � 1 > ⌦(1) and ⇠ 6 ⌦⇣(1), ⇠-node-robust weak recovery is possible. 1 Moreover, the
underlying algorithm runs in polynomial time.

This algorithm is the first one that succeeds down to the KS threshold under node
corruptions, [LM22] cannot work unless ⇣ is sufficiently large, and the algorithms discussed
in Chapter 4 cannot tolerate the corruption of ⌦⇣(1) vertices.

1⇠ 6 ⌦⇣(1) here means that ⇠ is bounded by a constant depending on ⇣. The dependence on ⇣ is necessary:
if ⇠ is a fixed constant, then the recovery impossible for a small enough constant ⇣ (see Section 5.5 for details).

157

ö2 synchronization. The techniques used for the robust stochastic block model, also
yield an algorithm for the closely related robust ö2 synchronization problem, which can
be formulated as follows:

Definition 5.3 (Row/column-corruptedö2 Synchronization model). Given a hidden vector
G
⇤ 2 {±1}= and � > 0, let �0 be the uncorrupted ö2 synchronization matrix

�
0 = �G⇤(G⇤)> +,

where, 2 í=⇥= is a symmetric random matrix whose upper triangular entries are i.i.d
sampled from #(0, =). An adversary may select ⇠= elements of [=] and arbitrarily modify
the corresponding rows and columns of �0 to produce a corrupted matrix � that we
observe.

When � 6 1, even with no corruptions (i.e. ⇠ = 0), it is information theoretically
impossible to achieve weak recovery ([PWBM18]). When � > 1 + ⌦(1) and ⇠ = 0, a
polynomial-time algorithm is known to output estimator Ĝ 2 {±1}= such that hĜ , Gi2 >
⌦(=2) with high probability. This is due to the BBP transition phenomenon [BBAP05].
However, for reasons similar to those described in the SBM settings, when ⇠ > ⌦(1), the
analysis of known algorithms such as semidefinite programming ([MS16]) or spectral
algorithm ([PWBM18]) breaks down. Here, we give an algorithm that can achieve the
constant sharp threshold for robust ö2 synchronization:

Theorem 5.4 (Proved in Section 5.6). Given a row/column corrupted matrix � generated from
Definition 5.3, when � > 1 +⌦(1), there is a polynomial-time algorithm that outputs an estimator
Ĝ 2 {±1}= such that Ö

⇥
hĜ , G⇤i2

⇤
> ⌦(=2) with high probability over G⇤ and �0.

5.1 Techniques
We outline here the main ideas behind Theorem 5.2 and Theorem 5.4. The algorithm is
splitted into two components, each tailored to handle one degree regime. For the regime
with average degree 3 > 3⇣, where 3⇣ is a constant that only depends on ⇣ := 3⌘2/4� 1, our
starting point is the result of [MS16]. For the sparse regime with 3 6 3⇣, we will borrow
from Chapter 4.

Push-out effect of the basic SDP. Consider the settings 3 > 3⇣ and, for simplicity of the
exposition, assume 3 = $(1) and ⇠ = >(1). Recall, [MS16] proved that the following SDP
program –which we refer to as the basic SDP–

SDP(") = max{h" ,-i : - ⌫ 0,-88 = 188 2 [=]}

achieves weak recovery at the KS threshold. Concretely, for an uncorrupted graph (G⇤,⌧0) ⇠
SBM=(3, ⌘) with centered adjacency matrix �̃0, they showed for some constant �⇣ > 0 ,

SDP(�̃0) > (2 + �⇣)=
p
3 , (5.1.1)

158

SDP(�̃0 � ⌘3
2= G

⇤
G
⇤T) 6

✓
2 + �⇣

2

◆
=

p
3 . (5.1.2)

with probability 1 � exp(�⌦⇣(=)). Taken together, these inequalities highlight a push-out
effect: a significant shift in the SDP value resulting from the subtraction of a rank-1 matrix
from �̃

0. Additionally, the exponential concentration probability allows us to demonstrate
that the push-out effect occurs for every principal submatrix of size (1 � >(1))= ⇥ (1 � >(1))=

We already saw in Chapter 4 how this algorithm is robust against edge adversarial
perturbations. A single edge alteration can change both Eq. (5.1.1) and Eq. (5.1.2) by at most
2. As SDP(�̃0) � SDP(�̃0 � ⌘3

2= G
⇤
G
⇤T) > ⌦(=

p
3) , as long as the number of edge corruptions

is bounded from above by $(=
p
3), the algorithm can still approximately recover the

communities. However, in the node corruption model, the number of modified edges
can reach ⌦(= · 3), which is far more than =

p
3 when 3 = $(1). The gap between =3 and

=

p
3 indicates that a fundamentally different approach is needed to handle ⌦(=) node

corruptions.

Push-out effect of submatrices. A priori it is not clear whether it is possible to recover
the signal in presence of node corruptions, or if such an adversary has the capability of
hiding all the information. A good news is that, while the basic SDP is fragile to node
corruptions, it suggests a plausible direction to design an (inefficient!) algorithm robust to
node corruptions. The key observation is that there is always a principal submatrix of size
(1 � ⇠)= ⇥ (1 � ⇠)= free from corruption. More specifically, let �̃ be the adjacency matrix
of the corrupted graph, the structure of node corruptions implies that the uncorrupted
vertices (⇤ ✓ [=] satisfies �̃(⇤ = �̃

0
(
⇤ , where �̃(⇤ and �̃

0
(
⇤ denote the submatrix of �̃ and

�̃
0 restricted to the set (⇤ ⇥ (⇤. Moreover, it can be shown that, with high probability, the

push-out effect still holds for this submatrix. That is:

SDP(�̃(⇤) > (2 + �⇣)(1 � ⇠)=
p
3 , (5.1.3)

SDP
✓
�̃(⇤ �

⌘3
2= G

⇤
(
⇤G
⇤>
(
⇤

◆
6

✓
2 + �⇣

2

◆
(1 � ⇠)=

p
3 . (5.1.4)

In other words, if we knew the set of uncorrupted nodes, then we would still be able to
approximately recover the communities.

Unfortunately, the set of uncorrupted nodes (⇤ is not immediately known. Moreover,
even disregarding computational issues, it remains unclear how one could identify such
a set. A rudimentary strategy to address this challenge would be to identify a subset
(✓ [=] such that the objective value of the SDP(�̃() is large and to use the optimizer - as
an estimator. However, this approach presents a problem in that the selected set (may
contain corrupted vertices, leading to a situation where the optimizer - may align with
the corruption rather than accurately reflecting the true labels.2

2Note that even with no corruption, when ⇣ is a small constant, the optimizer - is only weakly correlated
with G⇤G⇤T.

159

A natural way to circumvent this issue, is to search over pairs ((,-) where (✓ [=] and
- is a positive semidefinite matrix that fulfills the submatrix push-out constraints that is
described below.

Definition 5.5. Given a corrupted graph ⌧ as described in Definition 5.1 and its centered
adjacency matrix �̃, consider a set (✓ [=] such that |(| = (1�⇠)= and a positive semidefinite
matrix - where -88 = 1 for all 8 2 [=], we say that the triplet (�̃, (,-) satisfies submatrix
push-out constraints if and only if for every subset (0 ✓ (such that |(0| > (1 � 2⇠)=, it holds
that

h�̃(0 ,-(0i > (2 + �⇣)(1 � >(1))=
p
3 .

Suppose one can find (,- such that (�̃, (,-) satisfies the submatrix push-out constraints,
then for (0 = (\ (⇤, we have

h�̃(0 ,-(0i > SDP
✓
�̃(⇤ �

⌘3
2=

�
G
⇤
G
⇤T�

(
⇤

◆
+⌦

⇣
=

p
3

⌘

> SDP
✓
�̃(0 �

⌘3
2=

�
G
⇤
G
⇤T�

(
0

◆
+⌦

⇣
=

p
3

⌘
.

One can then deduce that h-(0 ,-⇤
(
0i > ⌦(=2). As a result, we have h- ,-

⇤i > ⌦(=2) as
well. Subsequently, after applying the standard rounding procedure outlined in Lemma 5.19,
we obtain an estimator Ĝ 2 {±1}= with a weak recovery guarantee hG⇤, Ĝi2 > ⌦(=2).

Certificates for the submatrix push-out effect. Even with the submatrix push-out con-
straints, two fundamental challenges remain. First, we need to prove the existence of a pair
((,-) that satisfies the submatrix push-out constraints. Second, we need to be able to find
such a pair efficiently.

With regard to the first challenge, ideally we would like to prove that the set of
uncorrupted nodes (⇤ and the optimizer - of SDP(�̃(⇤) fulfill the submatrix push-out
constraints. However, it is difficult prove this: even though we have established that
h�̃(⇤ ,-i > (2 +⌦(1))(1 � ⇠)=

p
3, it remains unclear whether h�̃(⇤ � �̃(0 ,-i is small for all

(
0 ✓ (⇤ of size (1 � 2⇠)=.

To overcome this barrier, we make the following crucial observation:

Lemma 5.6 (Formal statement and proof in Appendix C.3). Given (of size (1 � ⇠)=, if��
�̃(

��
op 6 $(

p
3), then SDP(�̃(� �̃(0) 6 $(p⇠ · = ·

p
3) for all (0 ✓ (of size at most (1 � 2⇠)=.

This result suggests us to consider the following program:

max
- ,(

h�̃(,-i

s.t. - ⌫ 0
-88 = 1 88 2 [=]��
�̃(

��
op 6 $(

p
3)

(5.1.5)

160

We begin by establishing the feasibility of the program. Although the spectral norm of
�̃(⇤ can potentially reach polylog(=), we can leverage the results of [FO05] and reduce it
to $(

p
3) through the pruning of high-degree nodes. The feasibility of the program can

then be confirmed by taking (as the set of uncorrputed nodes and have degree at most
$(3). Furthermore, by union bound and the push-out effect established in Eq. (5.1.1) and
Eq. (5.1.2), we have SDP(�̃() > (2 + �⇣) · (1 � 2⇠)=

p
3 with high probability. Therefore the

objective value of this program is at least (2 + �⇣) · (1 � 2⇠)=
p
3.

The optimizer of program 5.1.5, denoted by the pair (-̂ , (̂), can then be shown to satisfy
the submatrix push-out constraints as defined in Definition 5.5. It follows from our previous
argument that the objective value of this program is at least (2 + �⇣) · (1 � 2⇠)=

p
3, which

implies h�̃
(̂
, -̂i > (2 + �⇣) · (1 � 2⇠)=

p
3. Moreover, the program constraints enforce the

bound
��
�̃
(̂

��
op 6 $(

p
3). Together with Lemma 5.6, these implies that SDP(�̃

(̂
� �̃(0) 6

$(p⇠ · = ·
p
3) for all (0 ✓ (̂ with size at most (1 � 2⇠)=. When ⇠ = >(1), it follows that

SDP(�̃(0) > SDP(�̃
(̂
) + SDP(�̃(0 � �̃

(̂
) > (2 + �⇣) · (1 � >(1)) · =

p
3 for all (0 ✓ (max with

size at most (1 � 2⇠)=.
As a result, due to the push-out effect, the optimizer -̂ will now have non-trivial

correlation with the ground truth G⇤, that is h-̂ ,-
⇤i > ⌦(=2).

The last step is to turn this exponential-time algorithm into an efficient one. Fortunately,
the above argument can be captured by the Sum-of-Squares proof system, thereby enabling
us to use the Sum-of-Squares relaxation of program 5.1.5 to obtain an estimator -̂ such
that h-̂ ,-

⇤i > ⌦(=2).

Node robust algorithms for sparse graphs. In the degree regime 3 6 3⇣, a simpler
approach works: remove high-degree vertices iteratively. Although all vertices in the graph
could have degree $(1) under corruption, a successful strategy is to limit the number
of removed vertices to $(⇠=) by iteratively removing the highest degree node and one
of its random neighbors. In this way, in each round, the number of corrupted nodes in
the remaining graph is reduced by ⌦(1) in expectation, meaning that the algorithm will
terminate in $(⇠=) rounds in expectation. As a result, the remaining graph differs from
the uncorrupted graph by $(=) edges, which allows us to apply the edge robust algorithm
from Chapter 4.

5.2 Preliminaries
In this section, we formally define notations and cover necessary preliminaries that will be
used throughout the chapter. We use the notation in Chapter 2.

Matrix and vector notations. Given a set (✓ [=], we use E(to denote the subvector
restricted to the set (and "(to denote the submatrix of " where we only keep entries in

161

the set (⇥ (, that is "(= " � (1(1>
(
).

Stochastic block model notations. For a stochastic block model (G⇤,⌧0) ⇠ SBM=(3, ⌘),
at times we consider the conditional distribution of ⌧0 given G

⇤, which we denote by
SBM3,⌘(G⇤). In these settings, to avoid corner cases that happens with probability >(1), we
further assume G⇤ to be approximately balanced as hG⇤, 1i 6 $(

p
=) . We oftentimes consider

only the condiWe use ⇣ = ⌘2/43 � 1 to denote the distance to the KS threshold, use �0 to
denote the adjacency matrix of the uncorrupted graph ⌧0, use � to denote the adjacency
matrix of the corrupted graph ⌧, use -⇤ = G

⇤(G⇤)> to denote the label matrix, use (⇤ to
denote the uncorrupted set of vertices, use �̃0 = �

0 � 3

=
� to denote the centered uncorrpted

adjacency matrix and use �̃ = � � 3

=
� to denote the centered corrupted adjacency matrix.

Basic SDP and Grothendieck norm. We define basic SDP and Grothendieck norm as
follows
Definition 5.7 (Basic SDP). We define basic SDP as follows

SDP(") = max{h" ,-i : - ⌫ 0,-88 = 188 2 [=]} (5.2.1)

An equivalent definition (can be easily verified using eigendecomposition of -) is

SDP(") = max
8>><
>>:

=’
8 , 9=1

"89 h�8 , �9i : �8 ⇠ (=�1
9>>=
>>;

(5.2.2)

where (=�1 is the =-dimensional unit sphere.
Definition 5.8 (Grothendieck norm). Let matrix function %� : í=⇥= ! í2=⇥2= be defined
as

%�(") =

0 "

0 0

�

We define Grothendieck norm k·k
⌧A

: í=⇥= ! í as

k"k
⌧A

= max{h%�("),-i : - ⌫ 0,-88 = 188 2 [2=]} (5.2.3)

An equivalent definition (the equivalence can be easily verified using eigendecomposition
of -) is

k"k
⌧A

= max
8>><
>>:

=’
8 , 9=1

"89 h�8 , ⇣ 9i : �8 ⇠ (=�1
, ⇣8 ⇠ (=�1

9>>=
>>;

(5.2.4)

where (=�1 is the =-dimensional unit sphere.
From Definition 5.7 and Definition 5.8, it is easy to get the following inequalities between

the basic SDP and Grothendieck norm.
Claim 5.9 (Proved in Appendix C.3). Given matrix ", we have SDP(") 6 k"k

⌧A
.

Claim 5.10 (Proved in Appendix C.3). Let " be an = ⇥ = matrix whose diagonal entries are
0 and (✓ [=] be a subset of indices, we have SDP("() 6 SDP(").

162

Grothendieck inequality. The celebrated Grothendieck inequality relates Grothendieck
norm and the1! 1 norm.

Definition 5.11 (1! 1 norm). Let us define1! 1 norm k·k1!1 : í=⇥= ! í as

k"k1!1 = max
�
hG ,"Hi : G , H 2 {±1}=

Theorem 5.12 (Grothendieck inequality, see [AN04]). Let " be a real matrix of size = ⇥ =. We
have

k"k1!1 6 k"k⌧A 6 ⌧k"k1!1

where ⌧ is a universal constant called the Grothendieck constant.

5.3 Reaching the KS threshold for diverging de-
gree

In this section, we give an SoS algorithm when average degree 3 is larger than some
constant 3⇣ which depends only on ⇣ B ⌘2

3/4 � 1.
We begin by presenting our main technical theorem, which implies Theorem 5.2.

Theorem 5.13. Let G be a graph as described in Definition 5.1, suppose ⇣ > ⌦(1), there exists
constants 3⇣ 6 $(1) and ⇠⇣ > ⌦(1) which only depend on ⇣, such that when 3 > 3⇣ and ⇠ 6 ⇠⇣,
there exists a polynomial-time algorithm (Algorithm 5.14) that outputs Ĝ 2 {±1}= satisfying

ÖhĜ , G⇤i2 > ⌦(=2) .

Our algorithm is based on the deg-4 SoS relaxation of the following contraint set. Given
a node-corrupted graph ⌧ generated according to Definition 5.1 and its centered adjacency
matrix �̃ = � � 3

=
1 1>, we consider the following system of polynomial equations in PSD

matrix - of size = ⇥ = and {0, 1}-vector F of size =:

A :=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

F
2
8
= F8 88 2 [=]’

8

F8 = (1 � ⇠ � �)=

- ⌫ 0
-88 = 1 88 2 [=]
h�̃ � (FF>),-i > (2 + �)(1 � ⇠ � �)=

p
3��

�̃ � (FF>)
��

op 6 ⇠B
p
3

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(5.3.1)

Here � and ⇠B are constants depending on ⇣, and � is the small fraction of high degree
nodes we need to prune to get bounded spectral norm according to Corollary C.3.

The outline of our algorithm is given below:

163

Algorithm 5.14 (Algorithm reaching KS threshold for diverging degree).
Input: Graph ⌧ from node-corrupted SBM.

1. Run deg-4 SoS relaxation of program 5.3.1 and obtain pseudo-expectation Ö̃.

2. Compute -̂ B Ö̃[-].

3. Apply the rounding procedure in Lemma 5.19 on -̂ to get estimator Ĝ.

The design and analysis of our SoS algorithm is based on the push-out effect of the
basic SDP ([MS16]) and spectral properties of the adjacency matrix ([FO05, CRV15, LM22])
(see Appendix C.1 and Appendix C.2 for more details). Essentially, we identify a subset of
the vertices whose adjacency matrix has large enough basic SDP value and is spectrally
bounded. Then, we use the spectral norm bound and the Grothendieck inequality to bound
the basic SDP value of the submatrix formed by corrupted vertices in the selected subset.

Theorem 5.15. Consider the constraint set in program 5.3.1, when ⇣ > ⌦(1), there exists functions
3⇣ 6 $(1) and ⇠⇣ > ⌦(1) which only depend on ⇣, such that when 3 > 3⇣ and ⇠ 6 ⇠⇣, the
following holds with probability at least 1 � >(1)

A 4
- ,F h- ,-

⇤i > ⌦(=2)

We break down the proof of Theorem 5.15 into Lemma 5.16, Lemma 5.17 and Lemma 5.18.
For simplicity, let us refer to the set of vertex 8withF8 = 1 as set (, that is (= {8 2 [=]|F8 = 1}.

In Lemma 5.16, we prove the feasibility of program 5.3.1.

Lemma 5.16 (Proof deferred to Appendix C.3). Program 5.3.1 is feasible with probability
1 � >(1).

Then, in Lemma 5.17, we give a deg-4 SoS proof to show that h-(0 ,-⇤
(
0i is large for some

set (0 with size at least (1 � 2⇠ � �)=.

Lemma 5.17. Consider set (0 = (\ (⇤, which is the set of uncorrupted vertices in the set (found
by the program. For - and F that satisfy the SoS program in Eq. (5.3.1), we have

A 4
- ,F h-(0 ,-⇤

(
0i >

2�0(1 � �)=2

⌘
p
3

� $(p⇠ =
2

⌘
p
3

)

where � is the small constant fraction of high degree nodes we need to prune to get bounded spectral
norm according to Corollary C.3 and �0 = �0(⇣) for some value �0(⇣) that only depends on ⇣.

Proof. We will apply the identity h-(0 ,-⇤
(
0i = h-(0 , 2=

⌘3 �̃(0i � h-(0 , 2=
⌘3 �̃(0 � -⇤(0i and bound

the value of h-(0 , 2=
⌘3 �̃(0 � -⇤(0i and h-(0 , 2=

⌘3 �̃(0i separately.

164

The value of h-(0 , 2=
⌘3 �̃(0 � -⇤(0i is easy to bound. From Theorem C.1 and union bound,

we can get that, with probability 1 � >(1), we have

h-(0 , �̃(0 �
⌘3
2=-

⇤
(
0i 6 SDP(�̃(0 �

⌘3
2=-

⇤
(
0) 6 (2 + ⌧)(1 � 2⇠ � �)=

p
3

Now, goal is to bound h-(0 , �̃(0i. We decompose it as follows

h-(0 , �̃(0i = h-(, �̃(i � h-(, �̃(� �̃(0i (5.3.2)

From the constraints of Eq. (5.3.1), we have

h-(, �̃(i > (2 + �)(1 � ⇠ � �)=
p
3 (5.3.3)

To bound the value of h-(, �̃(� �̃(0i, we note that, by constraint k�̃(kop 6 ⇠B
p
3, we

can apply Lemma 5.6 to get

h-(, �̃(� �̃(0i 6 SDP(�̃(� �̃(0) 6 ⇠0B
p
⇠=
p
3 (5.3.4)

for some constant ⇠0
B
.

Plug Eq. (5.3.3) and Eq. (5.3.4) into Eq. (5.3.2), we get

h-(0 , �̃(0i = h-(, �̃(i � h-(, �̃(� �̃(0i > (2 + �)(1 � ⇠ � �)=
p
3 � ⇠0

B

p
⇠=
p
3

Now, we can apply the identity h-(0 ,-⇤
(
0i = h-(0 , 2=

⌘3 �̃(0i � h-(0 , 2=
⌘3 �̃(0 � -⇤(0i and get

h-(0 ,-⇤
(
0i =h-(0 ,

2=
⌘3
�̃(0i � h-(0 ,

2=
⌘3
�̃(0 � -⇤

(
0i

>
2=
⌘3

⇣
(2 + �)(1 � ⇠ � �)=

p
3 � ⇠0

B

p
⇠=
p
3

⌘
� 2=

⌘3
(2 + ⌧)(1 � 2⇠ � �)=

p
3

>
�0(1 � �)4=2

⌘
p
3

� $(p⇠ 4=2

⌘
p
3

)

⇤

Finally, since - is positive semidefinite and -88 = 1 for all 8 2 [=], we can conclude that
there is a deg-4 SoS proof to show that correlation h- ,-

⇤i is large.

Lemma 5.18 (Proof deferred to Appendix C.3). For - and F that satisfy the SoS program in
Eq. (5.3.1), we have

A 4
- ,F h- ,-

⇤i >
�0(1 � �)2=2

⌘
p
3

� $(p⇠ 2=2

⌘
p
3

) � 2�=2

where � is the small constant fraction of high degree nodes we need to prune to get bounded spectral
norm according to Corollary C.3 and �0 = �0(⇣) for some value �0(⇣) that only depends on ⇣.

165

Now, we have all the ingredients to prove Theorem 5.15

Proof of Theorem 5.15. From Lemma 5.16, we know that the SoS program in Eq. (5.3.1) is
feasible with probability 1 � >(1). Combine this with Lemma 5.18, we know that, with
probability 1 � >(1), the SoS program in Eq. (5.3.1) finds - and F such that they satisfy

A 4
- ,F h- ,-

⇤i >
�0(1 � �)2=2

⌘
p
3

� $(p⇠ 2=2

⌘
p
3

) � 2�=2

for some � that is the small constant fraction of high degree nodes we need to prune to
get bounded spectral norm according to Corollary C.3 and �0 = �0(⇣) for some value �0(⇣)
that only depends on ⇣.

When ⇠ 6 ⇠⇣ for some value ⇠⇣ that only depends on ⇣ and � = �(⇣) for some value
�(⇣) that only depends on ⇣, we have:

A 4
- ,F h- ,-

⇤i >
�0(1 � �)2=2

⌘
p
3

� $(p⇠ 2=2

⌘
p
3

) � 2�=2 = (⇣)=2

for some (⇣) that only depends on ⇣. Thus, when ⇣ > ⌦(1), we can get the weak recovery
guarantee:

A 4
- ,F h- ,-

⇤i > ⌦(=2)
⇤

In order to fully establish the validity of Theorem 5.13, it remains to apply the standard
rounding procedure from [HS17] on the pseudo-expectation of matrix - (as depicted in
Algorithm 5.14). We will address this part in next.

Rounding. Now, we complete the proof of Theorem 5.13 by giving a rounding procedure.

Lemma 5.19 (Rounding procedure adapted from Lemma 3.5 of [HS17]). Let =
1

k-k
�
=
h- ,-

⇤i. Let . be a matrix of minimum Frobenious norm such that . ⌫ 0, diag. = 1 and
1

k-k
�
=
h. ,-i > . With probability 1 � >(1), the vector Ĝ obtained by taking coordiate-wise sign of

a Gaussian vector with mean 0 and covariance . satisfies

Ö[hĜ , G⇤i2] > ⌦()2=2

Proof. Apply Lemma 3.5 of [HS17] by taking % = -, H = G
⇤ and ⇣0 = , we can get

Ö[hĜ , G⇤i2] > ⌦()2=2

Notice that, because each entry of - is within ±1, we have k-k 6 =. Since h- ,-
⇤i > ⌦(=2)

by Theorem 5.15, we have = ⌦(1). Thus, Ĝ weakly recovers G⇤. ⇤

Now we finish the proof of Theorem 5.13.

166

Proof of Theorem 5.13. By combining Theorem 5.15 and Corollary 4.24, we can compute
the pseudo-expectation Ö̃ for the SoS relaxtion of Eq. (5.3.1) in polynomial time. Let
-̂ B Ö̃[-] in Eq. (5.3.1). By linearity of pseudo-expectation, we have -̂ ⌫ 0, -̂88 = 1
and h-̂ ,-

⇤i > ⌦(=2) with probability 1 � >(1). Now applying rounding procedure in
Lemma 5.19, we can then obtain Ĝ 2 {±1}= such that ÖhĜ , G⇤i2 > ⌦(=2). ⇤

5.4 Reaching KS threshold for constant degree
In this section, we give an algorithm that reduces node corruption to edge corruption when
3 < 3⇣. This allows us to deal with graphs with small average degree. We will make use of
Theorem 4.23 and Corollary 4.24, which we restate and combine here for convenience.

Theorem 5.20 (Combination of Theorem 4.23 and Corollary 4.24). Given a graph ⌧ ⇠
SBM=(3, ⌘), suppose ⌧0 is an arbitrary graph that differs from ⌧ in at most $(⌧=) edges for

⌧ 6
� 1
⇣

log 2
⌘

��$(1/⇣)

Then, there exists a polynomial-time algorithm that, given ⌧0 and ⇣, computes an =-dimensional
unit vector Ĝ such that

Ö[hĜ , G⇤i2] > ⇣$(1)
=

5.4.1 Degree-pruning based algorithm
The algorithm is based on degree pruning. The tricky part is that node corruption can
arbitrarily increase the degree of uncorrupted vertices to ⇠=. Therefore, simply pruning
high-degree vertices can be quite difficult to analyse.

Our solution is to iteratively remove the highest degree node as well as one of its
neighbours that is selected uniformly at random until all vertices have small enough
degree. The goal is to make sure that, in each round, we remove ⌦(1) corrupted vertices in
expectation.

Notice that, in each round, if the highest degree node is corrupted, then it is good. If the
highest degree node is uncorrupted, then we can show, with high probability, the majority
of its neighbours are corrupted vertices and we are likely to remove a corrupted vertex
if we select one of its neighbours uniformly at random. A key observation is that, this
approach allows us to easily bound the total number of removed vertices using a simple
and standard Markov Chain drift analysis.

After the degree pruning procedure, we will invoke the edge-robust algorithm from
[DdNS22] that is restated in Theorem 5.20.

167

Algorithm 5.21 (Algorithm reaching KS threshold for constant degree).
Input: A node-corrupted stochastic block model ⌧.

1. Set ⌧0 ⌧

2. While there exist vertices with degree larger than ⇠deg(⇠)3 in ⌧0:

• remove the highest-degree vertex E from ⌧
0,

• remove from ⌧
0 a neighbour D of E that is selected uniformly at random.

3. Run edge-robust algorithm from Theorem 5.20 on the remaining graph ⌧0.

4. Apply the rounding procedure in Lemma 5.19 to get estimator Ĝ.

In the following theorem, we will show that Algorithm 5.21 outputs an estimator Ĝ that
achieves weak recovery.

Theorem 5.22. When 3 < 3⇣ and ⇣ = ⌦(1), for some ⇠34,(⇠) that only depends on ⇠, Algo-
rithm 5.21 outputs a vector Ĝ 2 {±1}= such that

Ö[hĜ , G⇤i2] > ⌦(=2)

Moreover, Algorithm 5.21 runs in polynomial time.

To prove Theorem 5.22, we will use the following two lemmas: Lemma 5.23 and
Lemma 5.24. First, we prove Lemma 5.23 which says that, with probability 0.99, the pruning
step of Algorithm 5.21 terminates in $(⇠=) rounds. Then, in Lemma 5.24, we prove that,
with probability 0.99, Algorithm 5.21 produces a graph ⌧0 that differs from ⌧

0 by at most
$(⌧=) edges, such that we can apply Theorem 5.20 on ⌧0 to get an estimator Ĝ that achieves
weak recovery.

Lemma 5.23. With probability at least 0.99, for some ⇠34,(⇠) that only depends on ⇠, step 2 of
Algorithm 5.21 terminates in $(⇠=) rounds.

Proof. Let (denote the set of uncorrupted vertices and let ⌧[(] denote the induced
subgraph of the uncorrupted vertices. For vertices with degree more than ⇠34,(⇠)3 in ⌧,
we separate them into three cases:

1. corrupted vertices,

2. uncorrupted vertices with degree larger than or equal to 1
2⇠34,(⇠)3 in ⌧[(],

3. uncorrupted vertices with degree smaller than 1
2⇠34,(⇠)3 in ⌧[(].

We will prove that, with probability at least 0.99, all three cases can be eliminated in $(⇠=)
rounds. Therefore, with probability 0.99, step 2 of Algorithm 5.21 terminates in $(⇠=)
rounds.

168

Case 1: Since there are at most ⇠= corrupted vertices, it takes at most ⇠= rounds to deal
with corrupted vertices with degree more than ⇠34,(⇠)3 in ⌧.

Case 2: For uncorrupted vertices with degree larger than or equal to 1
2⇠34,(⇠)3 in ⌧[(]

and degree more than ⇠34,(⇠)3 in ⌧, we bound it by the total number of vertices with
degree larger than or equal to 1

2⇠34,(⇠)3 in ⌧0. By Chernoff Bound, we have that, for each
vertex E, the probability that E has degree more than 1

2⇠34,(⇠)3 in ⌧0 is roughly bounded
by

ê[deg
⌧

0(E) >
1
2⇠34,(⇠)3] 6 $(exp(�1

2⇠34,(⇠)3))

Let) be the set of vertices with degree larger than or equal to 1
2⇠34,(⇠)3 in ⌧0. By Markov’s

inequality, we get that the probability that) contains more than ⇠= vertices is roughly
bounded by

ê[|) | > ⇠=] 6 $(
exp(�1

2⇠34,(⇠)3)
⇠

)

By setting ⇠34,(⇠) to be large enough with respect to ⇠, we get that, with probability 0.999,
there are at most ⇠= vertices with degree larger than or equal to 1

2⇠34,(⇠)3 in ⌧0. Therefore,
it takes at most ⇠= rounds to remove the vertices that are uncorrupted and has degree
more than 1

2⇠34,(⇠)3 in ⌧[(].

Case 3: For uncorrupted vertices that have degree smaller than 1
2⇠34,(⇠)3 in ⌧[(] but

have degree more than ⇠34,(⇠)3 in ⌧, the key observation is that more than half of their
neighbours are corrupted vertices. Therefore, each time such a node is removed as the
highest degree node, with probability more than 1/2, the algorithm will remove a corrupted
node as its random neighbour.

Now, let us only consider the rounds where the highest degree node is in case 3 and let
C denote the total number of such rounds. Let -8 denote the number of corrupted vertices
removed after round 8 and -0 = 0. We know that -8+1 = -8 + 1 with probability more
than 1/2 and -8+1 = -8 otherwise. We also know that the process has to terminate when
-C = ⇠=. Therefore, by the standard Markov Chain drift analysis (see Lemma 1 in [HY04]),
we have:

Ö[C] 6 2⇠=

and, by Markov inequality, the probability that vertices in case 3 are not eliminated after
1000⇠= rounds where the highest degree node is in case 3 is bounded by

ê[C > 1000⇠=] 6
2⇠=

1000⇠= = 0.002

Therefore, with probability at least 0.998, vertices in case 3 are eliminated in 1000= rounds.

169

Conclusion. Taking union bound over the failure probabilities, we get that, with proba-
bility at least 0.99, step 2 Algorithm 5.21 terminates in 1002⇠= = $(⇠=) rounds. ⇤

Notice that Lemma 5.23 gives us an upper bound on the total number of removed
vertices during the pruning step and Algorithm 5.21 guarantees that ⌧0 will have bounded
degree after pruning. These two observations allow us to have the following lemma, which
says that the difference between ⌧

0 and ⌧
0 is at most $(⌧=) edges, where $(⌧=) is the

number of edges that can be tolerated by the edge-robust algorithm in Theorem 5.20.

Lemma 5.24. Let ⌧0 be the uncorrupted graph, with probability 0.99, the remaining graph ⌧0 in
step 3 of Algorithm 5.21 differs from ⌧

0 by $(⌧=) edges, where ⌧ 6
� 1
⇣ log 2

⌘

��$(1/⇣) as defined in
Theorem 5.20.

Proof. Graph ⌧0 differs from ⌧
0 by two types of edges:

1. corrupted edges in ⌧0,

2. uncorrupted edges that are removed from pruning.

We will bound the two cases separately.

Case 1. Algorithm 5.21 guarantees that the degree of each vertex in ⌧0 is bounded by
⇠deg(⇠)3. Since there are at most ⇠= corrupted vertices in ⌧0, the maximum number of
corrupted edges in ⌧0 is ⇠deg(⇠)⇠3=. Since 3 < 3⇣ for some 3⇣, we can set ⇠deg(⇠) to be
small enough such that ⇠deg(⇠)⇠3= 6 $(⌧=).

Case 2. For case 2, we consider two types of vertices that are removed in Algorithm 5.21:

• vertices with degree smaller than or equal to ⇠deg(⇠)3 in ⌧0,

• vertices with degree larger than ⇠deg(⇠)3 in ⌧0.

For the first type of vertices, we observe that, with probability 0.99, Algorithm 5.21
terminates in $(⇠=) rounds by Lemma 5.23. Therefore, with probability 0.99, there can
be at most $(⇠=) vertices in this case. Hence, the number of uncorrupted edges that are
removed from pruning the first type of vertices can be bounded by $(⇠deg(⇠)⇠3=). Similar
to case 1, we can set ⇠deg(⇠) properly such that $(⇠deg(⇠)⇠3=) 6 $(⌧=).

For the second type of vertices, we know that, for each vertex E, the probability that E
has degree larger than or equal to C is bounded by

ê[deg
⌧

0(E) > C] 6 $(exp(�C))

Let -C denote the number of vertices with degree C in ⌧0. We have

Ö[-C] 6 ê[deg
⌧

0(E) > C] · = 6 $(exp(�C)=)

170

Therefore, for some properly selected ⇠deg(⇠), the expected total number of edges from
vertices with degree larger than ⇠deg(⇠)3 in ⌧0 can be bounded by

Ö
266664

1’
C=⇠deg(⇠)3

-CC

377775
=

1’
C=⇠deg(⇠)3

Ö[-C]C 6 $
©≠
´

1’
C=⇠deg(⇠)3

exp(�C)C=™Æ
¨

By setting ⇠deg(⇠) to be a large enough value, we have

Ö
266664

1’
C=⇠deg(⇠)3

-CC

377775
6 �⌧=

for some universal constant �. By Markov inequality, with probability 0.99, the number of
uncorrupted edges that are removed from pruning second type of vertices can be bounded
by $(⌧=).

Conclusion. Take union bound over failure probabilities, we get that, with probability
0.98, ⌧0 differs from ⌧

0 by $(⌧=) edges. ⇤

Now, we prove Theorem 5.22 using Lemma 5.23 and Lemma 5.24.

Proof of Theorem 5.22. First, we prove recovery guarantees of Algorithm 5.21. From
Lemma 5.24, we know that, with probability 0.98, ⌧0 differs from ⌧

0 by $(⌧=) edges.
Combine the guarantees of Theorem 5.20 and the rounding procedure in Lemma 5.19, step
3 will output an estimator Ĝ 2 {±1}= such that

Ö[hĜ , G⇤i2] > 0.98 ·⌦(=2) = ⌦(=2)

Now, we prove the time complexity of Algorithm 5.21. For step 2 of the algorithm,
each round takes at most $(=2) time and there can be at most = rounds. Therefore, step 2
takes at most $(=3) time. For step 3, the edge-robust algorithm from Theorem 5.20 takes
polynomial time. For step 4, the rounding procedure from Lemma 5.19 takes polynomial
time. Therefore, Algorithm 5.21 runs in polynomial time. ⇤

5.5 Lower bound on the corrupted fraction
As stated in Theorem 5.2, our algorithm is robust against⌦⇣(1) fraction of corrupted nodes.
One might wonder whether we can remove the dependency on ⇣ = ⌘2

3/4 � 1, and find an
algorithm robust against ⌦(1) fraction of corrupted nodes (e.g 0.001 fraction of corrupted
nodes). The following claim shows that this is impossible.

171

Claim 5.25. Let = > 1, 3 > 1, ⌘ 2 (0, 1) and label vector G⇤ 2 {±1}= . Let ⇣ B ⌘2
3/4 � 1

and suppose ⇣ > ⌦(1). For ⌧0 ⇠ SBM3,⌘(G⇤) and ⇠ > ⇣, if an adversary removes ⇠=
vertices uniformly at random from ⌧

0 to obtain the graph ⌧ that we observe, then it is
information theoretically impossible to achieve weak recovery given⌧, i.e. for any estimator
Ĝ(⌧) 2 {±1}= , we have

ÖhĜ(⌧), G⇤i2 6 >(=2) .

Proof. Let us denote the set of remaining vertices as '. Note that the remaining graph
follows distribution SBM3

0
,⌘0(G⇤

'
), where 30 = (1 � ⇠) · 3 and ⌘0 = ⌘. When ⇠ > ⇣, we have

⌘0230/4 6 (1 � ⇣)2 · (1 + ⇣) 6 1. According to [MNS15b], it is information theoretically
impossible to achieve weak recovery when ⌘0230/4 6 1. Thus, it is information theoretically
impossible to recover G⇤. ⇤

5.6 Robust synchronization
In this section, we give an algorithm to solve the row/column-corruptedö2 synchronization
problem using techniques from Section 5.3. The idea is similar to the robust SoS algorithm
for node-corrupted stochastic block model: we find a subset of the rows/columns such
that the submatrix formed by the subset has large enough basic SDP value and bounded
spectral norm. Then, we use the spectral norm bound to upper bound the basic SDP value
of the submatrix formed by corrupted rows/columns in the selected subset.

Phase transition for synchronization. Before introducing our algorithm, we give a small
summary of the basic SDP value phase transition for ö2 synchronization. It is based
on Theorem 5 of [MS16], where they gave a very clean result for the phase transition
of deformed GOE matrices. The phase transition can naturally be extended to the ö2
synchronization model using a simple argument based on rotational symmetry. The
following theorem informally restates Theorem 5 of [MS16] and provides the result we
need for our robust ö2 synchronization algorithm.

Theorem 5.26 (ö2 synchronization phase transition [MS16]). Given an uncorrupted ö2
synchronization matrix �0 that is generated acoodirng to Definition 5.3,

• if � 2 [0, 1], then for any ⇢ > 0, we have SDP(�0) 2 [(2 � ⇢)=2
, (2 + ⇢)=2] with probability

1 � >(1),

• if � > 1, then there exists �(�) > 0 such that SDP(�0) > (2 + �(�))=2 with probability
1 � >(1).

172

Sum-of-squares algorithm. In this corruption model, the ö2 synchronization is easier
than the stochastic block model in the sense that, with high probability, �0 is already
bounded in spectral norm. Therefore, we can omit the pruning step that we did for
robust stochastic block model. Let � be the row/column corrupted /2 synchronization
matrix generated according to Definition 5.3, consider the following system of polynomial
equations in PSD matrix X of size = ⇥ = and vector F of size =:

A :=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

F
2
8
= F8 88 2 [=]’

8

F8 = (1 � ⇠)=

- ⌫ 0
-88 = 1 88 2 [=]
h� � (FF>),-i > (2 + �(�))(1 � ⇠)2=2��
� � (FF>)

��
op 6 (� + ��1)=

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(5.6.1)

where �(�) > 0 is value that only depends on �.
In Eq. (5.6.1), the vector F is a {0, 1} vector that finds a subset of the rows/columns

whose submatrix behaves like uncorrupted ö2 synchronization matrix. Essentially, we
require the submatrix � � (FF>) to have two properties: (a) it has large enough basic SDP
value and (b) it has small enough spectral norm. The matrix - is a PSD matrix that is a
solution to the basic SDP, such that the inner product between - and � � (FF>) is large
enough. This certifies property (a) and also allows us to obtain our estimator -. Property
(b) is easy to show because there is an SoS certificate for spectral norm.

We will prove the following theorem for the SoS relaxation of Eq. (5.6.1), which implies
Theorem 5.4. It says that, with high probability, there is a deg-4 SoS proof which shows
that any - which satisfies Eq. (5.6.1) has non-trivial correlation with the true labels -⇤.

Theorem 5.27 (SoS proof for robust ö2 synchronization). When � > 1 and ⇠ 6 ⇠⇤(�) for
some value ⇠⇤(�) that only depends on �, with probability at least 1 � >(1), we have:

A 4
- ,F h- ,-

⇤i > ⌦(=2)

To prove Theorem 5.27, we need to show two things:

1. A 4
- ,F h- ,-

⇤i > ⌦(=2) with high probability,

2. the constraint set Eq. (5.6.1) is feasible with high probability.

Now, we prove the first property in the following lemma.

Lemma 5.28. For - and F satisfying Eq. (5.6.1), we have, with probability 1 � >(1),

A 4
- ,F h- ,-

⇤i > ⌦(=2)

173

Proof. Let B 2 {0, 1}= be the indicator variable for the set of uncorrupted indices. We will
use the following identity to prove the lemma

h- ,-
⇤i = h- ,-

⇤ � (FF>) � (BB>)i + h- ,-
⇤ � (� � (FF>) � (BB>))i (5.6.2)

Notice that we have A 4
- ,F

-
2
8 9
6 1 for each (8 , 9) 2 [=] ⇥ [=]. Therefore, we can get the

following bound for the second term of Eq. (5.6.2)

A 4
- ,F h- ,-

⇤ � (� � (FF>) � (BB>))i > �4⇠=2 (5.6.3)

Now, the goal is to show that h- ,-
⇤ � (FF>) � (BB>)i is large enough. To do this, we will

use the following identity

h- ,-
⇤�(FF>)�(BB>)i = 1

�
(h- ,��(FF>)�(BB>)i�h- , (���-⇤)�(FF>)�(BB>)i) (5.6.4)

The easy part is to bound h- , (� � �-⇤) � (FF>) � (BB>)i. We know that (� � �-⇤) �
(FF>) � (BB>) = (�0 � �-⇤) � (FF>) � (BB>) since it is restricted to the set of uncorrupted
rows/columns. Moreover, from Theorem 5.26, we know that, with high probability,
SDP(�0 � �-⇤) 6 (2 + ⇢)=2 for any constant ⇢ > 0. Therefore, by monotonicity of the basic
SDP from Claim 5.10, we have:

A 4
- ,F h- , (� � �-⇤) � (FF>) � (BB>)i
=h- , (�0 � �-⇤) � (FF>) � (BB>)i
6 SDP((�0 � �-⇤) � (FF>) � (BB>))
6 SDP(�0 � �-⇤)
6(2 + ⇢)=2

The hard part is to show that h- ,� � (FF>) � (BB>)i is large enough. We show this via the
following identity:

h- ,� � (FF>) � (BB>)i = h- ,� � (FF>)i � h- ,� � (FF>) � � � (FF>) � (BB>)i

For the first term h- ,� � (FF>)i, we can simply apply the program constraint and get:

A 4
- ,F h- ,� � (FF>)i > (2 + �(�))(1 � ⇠)2=2

For the second term h- ,� � (FF>)�� � (FF>)� (BB>)i, we bound it by the Grothendieck
norm of �� (FF>)��� (FF>)� (BB>). Since we haveA 4

- ,F k� � (FF>)kop 6 (�+��1)=
from the program constraints, we can apply Lemma 5.6 to get

A 4
- ,F h- ,� � (FF>) � � � (FF>) � (BB>)i 6 3 ⌧(� + ��1)p⇠=2

Thus, we have:

A 4
- ,F h- ,� � (FF>) � (BB>)i > (2 + �(�))(1 � ⇠)2=2 � 3 ⌧(� + ��1)p⇠=2

174

Plug the two parts into Eq. (5.6.4), we get:

A 4
- ,F h- ,-

⇤ � (FF>) � (BB>)i > 1
�

�
(2 + �(�))(1 � ⇠)2=2 � 3 ⌧(� + ��1)p⇠=2 � (2 + ⇢)=2�

= (�)=2

(5.6.5)

for some (�) that only depends on �.
Now, plug Eq. (5.6.3) and Eq. (5.6.5) into Eq. (5.6.2), we get

A 4
- ,F h- ,-

⇤i = h- ,-
⇤ � (FF>) � (BB>)i + h- ,-

⇤ � (� � (FF>) � (BB>))i
> (�)=2 � 4⇠=2

When ⇠ 6 ⇠⇤(�) for some value ⇠⇤(�) that only depends on �, we have

A 4
- ,F h- ,-

⇤i > 0(�)=2

where 0(�) is a value that only depends on �. Thus, when � > 1, we have, with probability
1 � >(1),

A 4
- ,F h- ,-

⇤i > ⌦(=2)
⇤

Now, we are ready to prove Theorem 5.27. In the proof, we first prove feasibility of the
contraint set in Eq. (5.6.1), then use Lemma 5.28 to complete the proof.

Proof of Theorem 5.27. The feasibility analysis is similar to the feasibility analysis in
Lemma 5.16. From Theorem 5.26 and union bound, we get that the inequality
h� � (FF>),-i > (2 + �(�))(1 � ⇠)2=2 is feasible with probability 1 � >(1). The inequal-
ity k� � (FF>)kop 6 (� + ��1)= is feasible with probability 1 � >(1) due to the famous
BBP phase transition and monotonicity of spectral norm. Take union bound over failure
probabilities of the two inequalities, we can conclude the feasibility analysis.

From Lemma 5.28, we get that, with probability 1�>(1), we haveA 4
- ,F h- ,-

⇤i > ⌦(=2).
Therefore, we can take union bound and conclude that, with probability 1 � >(1), the
program finds an - such that

A 4
- ,F h- ,-

⇤i > ⌦(=2)

⇤

Now we finish the proof of Theorem 5.4.

Proof of Theorem 5.4. By combining Theorem 5.27 and Theorem 5.13, we can compute the
pseudo-expectation Ö̃ for the SoS relaxtion of Eq. (5.6.1) in polynomial time. Let -̂ B Ö̃[-]
in Eq. (5.3.1). By linearity of pseudo-expectation, we have -̂ ⌫ 0, -̂88 = 1. Furthermore,
we have h-̂ ,-

⇤i > ⌦(=2) with probability 1 � >(1). Now, applying rounding procedure in
Lemma 5.19, we can then obtain Ĝ 2 {±1}= such that ÖhĜ , G⇤i2 > ⌦(=2). ⇤

175

Chapter 6

Random CSPs with adversarial signs

We prove here the results on constraint satisfaction problems discussed in Section 1.1.4.
Recall there are two algorithmic questions concerning CSPs: finding an assignment
maximizing the number of satisfied constraints, or finding a strong refutations of the
instance.

In Chapter 1 we saw that an important algorithmic milestone was the idea of using
spectral techniques to find refutations, introduced in [FGK05] and then refined in
subsequent work. This idea turned out to be useful not only for refuting random CSPs, but
also for the maximization version of the problem as well, when combined with convex
programming. As the results in Section 1.1.4 requires novel certificates, we follow a similar
roadmap here. First we provide novel certificates, then we use them to prove tight strong
refutations. Finally we apply these ideas to the maximization problem, obtaining the sharp
results against adversarial perturbations of Theorem 1.5.

State-of-the-art certificates. The state of the art concerning polynomial-time computable
strong refutations of random constraint satisfaction problems is [AOW15]. Allen, O’Donnell
and Witmer [AOW15] show how to obtain strong refutations for random :-XOR constraint
satisfaction problems on = variables and =:/2(log =)$(1) constraints. When : is even,$(=:/2)
constraints suffice. Thanks to a reduction from arbitrary constraint satisfaction to :-XOR
(of which we provide a self-contained simpler proof in Section 6.6), similar bounds hold
for any constraint satisfaction problem over : variables.

To illustrate the difference between odd : and even :, we briefly discuss how a strong
refutation for random 4-XOR and random 3-XOR instances is constructed.

In general, if we have an instance of :-XOR with < constraints and = variables, a strong
refutation is a certificate that

max
G2{�1,1}=

’
81 ,...,8:

)81 ,...,8: G81 · · · G8: 6 ⌘<

176

where) is a symmetric tensor of order : such that)81 ,...,8: = 0 if there is no constraint
on the :-tuple of variables G81 , . . . , G8: , and otherwise)81 ,...,8: = ±1 depending on the
right-hand-side of the constraint.

When : = 4, we can flatten the tensor to an =
2 ⇥ =2 symmetric matrix " (where

"(0 ,1),(2 ,3) =)0 ,1 ,2 ,3) and we have

max
G2{�1,1}=

’
81 ,...,84

)81 ,...,84G81 · · · G84 = max
G2{�1,1}=

(G⌦2)T"G
⌦2

Now we can relax the right-hand side to a maximization over arbitrary =2-dimensional
Boolean vectors and further relax to the1-to-1 norm:

max
G2{�1,1}=

(G⌦2)T"G
⌦2 6 max

H2{�1,1}=2
H

T
"H 6 max

H ,I2{�1,1}=2
H

T
"I = | |" | |1!1

Finally, the last expression above can be upper bounded by ⌘<, by using Chernoff
bounds and a union bound over all the 22=2 possible choices for H and I, which is possible if
< is a sufficiently large constant times =2/⌘2. Finally, we can use Grothendieck’s inequality
to get us a certified upper bound of the1! 1 norm in polynomial time up to a constant
factor.

For 3-XOR, the idea is to apply a Cauchy-Schwarz step to reduce the problem of
bounding a degree-4 problem, and then to flatten the resulting 4-tensor to an =2⇥=2 matrix
" such that

max
G2{�1,1}=

’
81 ,82 ,84

)81 ,82 ,83G81G82G83 6
p
= ·

r
max
G2{±1}=

(G⌦2)T"G
⌦2 6

p
= ·

r
max

H ,I2{±1}=2
H

T
"I

Unfortunately, now it is not possible any more to bound the maximum on the above
right-hand via a union bound over 22=2 cases. Indeed, for this to be possible, we would
need our distribution to have at least order of =2 bits of entropy, and so we would need to
have order of =2 constraints.

The alternative is to obtain a bound in terms of the spectral norm of ", using the fact
that

max
H ,I2{±1}=2

H
T
"I 6 =2 · | |" | | .

But for a sparse matrix to have a non-trivial bound on its spectral norm, we have to
have at least poly log = non-zero entries per row on average1, and for this to happen the
number of constraints has to be at least of the order of =1.5poly log =. In the regime of

1This is similar to the phenomenon that the quasirandomness of a ⌧= ,? random graphs can be certified in
terms of the non-trivial eigenvalues of the adjacency matrix only if the average degree is at least logarithmic.
We will return to the graph analogy shortly.

177

=
1.5poly log = random 3-XOR constraints, a spectral norm bound on " can be established

via trace methods, and this is how the results of [AOW15] are proved in the case of odd :.

In the context of designing algorithms that satisfy as-many-as-possible clauses in
the given a random CSP instance, similarly as for refutations, polynomial time approxi-
mation schemes are known [BRS11, AJT19] when the number of clauses is of the order
=
:/2(log =)$(1). Indeed the algorithmic techniques behind these PTAS are closely related

to those used for refutations and, in particular, boils down to combining bounds on the
spectrum of the flattened tensor representing the instance and ideas from sum-of-squares
relaxations.

The groundbreaking work [GKM22], showed that a similar picture holds in the signif-
icantly more general settings of smoothed CSPs: where both the literal negation patterns
and clauses are chosen arbitrarily, but then signs are randomly flipped with a small, yet
constant, probability.2.

Sharp strong refutations. Our first result of the chapter breaks the =:/2poly log = barrier
for strong refutations of random :-XOR instances, with odd :.

Theorem 6.1 (Strong refutations of random :-XOR). There exists an efficient algorithm that,
given an instance I of random :-XOR with =:/2/⌘2 constraints, with probability at least 0.99,
finds strong refutation of I , that is, a certificate that

OptI 6
1
2 + $(⌘) .

Using the known reduction of general :-CSP to :-XOR, of which we provide a simple
self-contained proof, we have the following consequence.

Theorem 6.2 (Strong refutations of random CSPs). Let % : {�1,+1}: ! {0, 1} be a Boolean
:-ary predicate, and call Ö% the probability that % is satisfied by a random assignment. There exists
a polynomial time algorithm that given a random instance ⇠(%(%) instances I , over = variables,
with at least =:/2/⌘2 constraints, with probability at least 0.99, finds a strong refutation of I , that
is, a certificate that

OptI 6 Ö% + $(⌘) .

Robust approximation algorithms against adversarial sign patterns. As already dis-
cussed, our techniques can be further applied to design efficient algorithms finding
an assignment with value Opt � $(⌘) beyond the =

:/2 polylog = barrier, even in the
semi-random settings where: first, clauses are sampled randomly, and second, given the
instance, the sign pattern of each clause is adversarially perturbed. Such perturbations
are not captured by the smooth models of [Fei07, GKM22] and hence require different

2Smoothed CSPs were first introduced in [Fei07]

178

algorithmic challenges. In the special case of even :, [Kot22] provided a PTAS whenever
? > =:/2 polylog = .

Theorem 6.3 (Algorithm for k-XOR with adversarial patterns). Let = , : be positive integers,
⌘ > 0 , = and =�:/2/⌘2 < 1. Let I be a :-XOR instance constructed through the following process:

• Sample a random :-XOR instance I 0 with at least =:/2/⌘2 constraints.

• Given I 0, arbitrarily (possibly adversarially) replace the sign of each clause in I 0 .

There exists a randomized algorithm, running in time =$(:/⌘2), that returns an assignment x̂ with
value

ValI(x̂) > OptI � $(⌘) ,

with probability at least 0.99.

As in the case of strong refutations, Theorem 6.3 can be extended to :-CSPs.

Theorem 6.4 (Restatement of Theorem 1.5). Let = , : be positive integers, ⌘ > 0 , = and
=
�:/2/⌘2 < 1. Let % : {�1,+1}: ! {0, 1} be a Boolean :-ary predicate. Let I be a ⇠(%(%)

instance constructed through the following process:

• Sample a random ⇠(%(%) instance I 0 with at least =:/2/⌘2 constraints.

• Given I 0, for each clause in I 0, replace the sign pattern with an arbitrary (possibly adversarial)
sign pattern.

There exists a randomized algorithm, running in time =$(:/⌘2), that returns an assignment x̂ with
value

ValI(x̂) > OptI � $(⌘) ,

with probability at least 0.99.

6.1 Techniques
At the heart of the chapter there are new techniques to bound3

max
G2{±1}#

G
TMG (6.1.1)

when M is a random # ⇥ # matrix with only a constant expected number of non-zero
entries per row and per column, and in which such entries are not independent.

3We use boldface to denote random variables.

179

A toy problem. Before explaining the main ideas, consider the following question, which
models some of the difficulties that we encounter: suppose that we are given a random
graph on # vertices, and such that every edge exists with probability 3/# , where 3 is a
constant, but the edges are only known to be poly log#-wise independent, and not fully
independent. Can we certify that the graph has interesting quasirandom properties, for
example can we certify that the Max Cut optimum is at most a 1/2 + $(1/

p
3) fraction of

edges?
One approach could be to bound | |A � ÖA| |1!1 where A is the adjacency matrix of

the graph. If the graph has mutually independent random edges, that is, if it is sampled
from an Erdős-Reniy distribution ⌧

,
3

#

, then we can use a union bound over 22# cases to
argue that with high probability

| |A �ÖA| |1!1 6 $(
p
3#)

which is certifiable in polynomial time, up to a constant factor loss, using Grothendieck’s
inequality and which certifies that the Max Cut optimum is at most 1/2 + $(1/

p
3).

Unfortunately, if the edges are only polylog#-wise independent, then it is not possible to
take such union bound.

Another option in the fully independent case is to use the results of Feige and Ofek
[FO05], which show that, after removing nodes of degree larger than, say, 103, the adjacency
matrix of the residual graph has second eigenvalue at most $(

p
3) with high probability.

Unfortunately the proof of Feige and Ofek also relies on a union bound over 2$(#) cases,
and so it cannot work in the polylog#-wise independent case.

A trace argument can be used to prove that, with high probability, we have

| |A �ÖA| | 6 $(
p
3 log#)

which provides a polynomial time certificate that the Max Cut optimum is at most
1/2 + $(

p
log#/

p
3), and the trace calculation only requires $(log#)-wise independence.

It does, however, introduce an extra logarithmic factor, which is unavoidable because the
spectral norm of | |A �ÖA| | is ⌦̃(

p
log#) when 3 is constant.

It is conceivable that one could prove the result of Feige and Ofek (that the adjacency
matrix has second largest eigenvalue $(

p
3) after the removal of high-degree vertices)

through a trace bound on the adjacency matrix of the truncated graph, although it seems
very difficult to deal with the conditional distribution of edges given that the edges survive
the truncation.

A solution to the toy problem. Although all standard techniques fail, there is a way to
combine certain recent results to solve our toy problem. The starting point is the fact that,
given an undirected graph ⌧ = (+ , ⇢), we can define the “non-backtracking” 2|⇢ | ⇥ 2|⇢ |
matrix ⌫ of ⌧, and that this matrix satisfies the Ihara-Bass equation

det(Id � G⌫) = (1 � G2)|⇢ |�|+ | · det(Id � G� + G2(⇡ � Id))

180

where � is the adjacency matrix of the graph, ⇡ is the diagonal matrix of degrees, and the
above equation holds as an identity of polynomials of degree 2|⇢ | in G. See the survey of
Horton [HST06] for an exposition of these definitions and results.

Fan and Montanari [FM17] show that bounds on the spectral radius of ⌫ imply useful
PSD inequalities on �. In particular, if ⌫min is the smallest real eigenvalue of ⌫, then we
have

� ⌫ �|⌫min | · Id � 1
|⌫min |

· (⇡ � Id)

In the context of their work on the Stochastic Block Model, Bordenave, Lalarge and Massoulié
[BLM15] use a trace argument to prove a result that implies that ⌫min > �(1 + >(1)) ·

p
3

in ⌧
,

3

#

random graphs, and so all these results together imply that the Max Cut of a
⌧
,

3

#

random graph is with high probability at most 1/2 + (1 + >(1))/
p
3, and that this

upper bound is efficiently certifiable, for example by the dual of the Goemans-Williamson
relaxation.

The key point is that there was never a union bound over 2$(#) cases in the above
argument and that, in fact, everything works assuming polylog#-wise independence of
the edges.4

From unweighted graphs to general symmetric matrices. Our goal is to develop an
analog of this argument where we work with the =2 ⇥ =2 matrix " that comes up in
the analysis of 3-XOR (or, in general, with the = d:/2e ⇥ = d:/2e matrix that comes up in the
analysis of :-XOR when : is odd) instead of the adjacency matrix � of the pseudorandom
graph analysed above.

The first challenge in carrying out this program is that the original notion of non-
backtracking matrix is defined only with respect to 0/1 Boolean symmetric matrices, while
we want to study matrices with positive and negative entries that can be arbitrary integers.

A certain generalization of non-backtracking matrices was already introduced in
[WF09, FM17], however for technical reasons we were not able to use it to carry out our
program. We thus introduce a novel theory of “non-backtracking” matrices associated to
any given symmetric matrix. In Section 6.3, given a symmetric # ⇥ # matrix " with #I
non-zero entries, we define an #I ⇥ #I “non-backtracking” matrix ⌫" associated to ",
and we prove (see Theorem 6.6) an Ihara-Bass-type identity

det(Id � G⌫" + G(!" � �")) = (1 � G2)#I/2�# · det(Id � G" + G2(⇡" � Id))
4Incidentally, this combination of Fan-Montanari ideas and Bordenave-Lalarge-Massouli’s bounds, also

implies that if �0 is the adjacency matrix of a graph ⌧ sampled from a distribution in which edges have
probability 3/# and are polylog# wise independent, and then truncated by removing all vertices of degree
more than, say, 103, then we have with high probability �0 ⌫ �$(

p
3) · �, proving a one-sided version of the

result of Feige and Ofek.

181

where ⇡" , !" and �" are certain matrices that are associated to ". When " is Boolean,
!" = �" and ⇡" is the diagonal matrix such that (⇡")8 ,8 =

Õ
9
"8 , 9 , so our equation

becomes the standard Ihara-Bass equation in the case of Boolean ". Conveniently, closed
non-backtracking walks, arising from the definition of ⌫" take value in {±Œ

(8 , 9)2, "89},
allowing one to easily mimic arguments used for standard non-backtracking matrices.

Now, given a bound on the spectral radius of ⌫" � !" + �" , it is possible, with an
argument in the style of Fan and Montanari, to deduce a certifiable bound on the1-to-1
norm of ".

Bounding the spectral radius via weighted hyper-walks. Studying the spectral radius
of ⌫M�!M+�M –matrices associated to the matrix M coming from random :-XOR instances–
is the main technical challenge of this work.

Our bound (Theorem 6.27) relies on a trace argument of ⌫M. However, compared to
Bordenave, Lalarge and Massoulié [BLM15] our setup presents a number of new technical
challenges.

One challenge comes from the extra terms that we have in the non-Boolean case. In
particular, our non-backtracking matrix ⌫M has entries that are the absolute values of
certain entries of M. To compute an expectation of the trace of the symmetrization of a
power of ⌫M, we replace absolute values with squares, and bound the error that we incur
because of this.

Perhaps the most important challenge comes from the fact that the trace bound ultimately
boils down to a weighted count of certain closed “hypergraph walks” performed on the
hypergraph corresponding to constraints of the :-XOR instance. These objects arise from
our notion of non-backtracking walks on the symmetric matrix M obtained from the
instance. This count is performed by showing that such walks can be encoded with a small
number of bits. It is enough to count walks in which every hyperedge is repeated at least
twice, and the crux of the argument is that the second time we see a hyperedge we can
encode that hyperedge in a compact way. A naive way of doing that would point back to
the previous step in the walk in which that hyperedge appeared, and this costs log ✓ bits
where ✓ is the length of the walk. To obtain the right result, however, repeated hyperedges
have to be represented with an amortized constant number of bits per occurrence. The
argument of Bordenave, Lalarge and Massoulié [BLM15] relies on the assumption, which
is true with high probability, that the graph is “tangle-free,” meaning that small subgraphs
have at most one cycle. We have to work with a looser notion of tangle-free hypergraph in
order to prove that it holds with high probability, but we are still able to obtain the desired
bound.

From spectral bounds to algorithms. It is clear that an algorithm certifying tight bounds
on Eq. (6.1.1) for the matrix " obtained from :-XOR instances can be used for strong
refutations. Instead, to obtain Theorem 6.3 additional ideas are needed.

182

Our starting point is the local-to-global rounding paradigm of [BRS11]. As it is often
the case, the odd settings are significantly more challenging than the regimes with : even.
Hence consider first a 2-XOR random instance I . Up to the signs of the clauses, this may
be represented as a graph G over = vertices. Now, for a distribution ⇡ over assignments,
one may define the local and global correlations as

LCG(⇡) = Ö
(a,b)⇠⇢(G)

���Cov⇡

⇣
xa
, xb

⌘���
GC(⇡) = Ö

(a,b)⇠[=]⇥[=]

���Cov⇡

⇣
xa
, xb

⌘��� .
If the local correlation is bounded by ⌘, it is possible to obtain an assignment with value
Opt

O
� $(⌘) simply looking at the first moment of ⇡. Moreover, one can always transform ⇡

into a distribution with small global correlation in polynomial time.
With these observations, the argument of [BRS11] comes down to: (i) bounding the

difference between local and global correlation in terms of the spectral radius ⌧G of the
centered adjacency matrix of the graph G, (ii) showing that one can always find, in time
=
$(1/⌘2), a degree $(1) pseudo-distribution over the hypercube with global correlation at

most ⌘. As we only required low-degree moments to obtain the desired assignment, the
argument goes through in this case as well.

To combine this approach with the bounds previously illustrated and extend the
argument to random :-XOR instances with < > ⌦(=:/2/⌘2) clauses, we need to introduce
two novel ingredients. First, we need new notions of local and global correlations which
difference can be bounded studying the matrix M arising from the instance. Second, we
need to bound this difference not in term of the eigenvalues of M but rather in terms of
Eq. (6.1.1).

A careful Cauchy-Schwarz application allows us to formulate notions of local and global
correlations in terms of M. Its squaring step, further allows us to get rid of absolute values,
thus providing an avenue to bound the difference between local and global correlation in
terms of max

G2{±1}= GTMG .

Finally, since the adversarial perturbations in Theorem 6.3 cannot alter the "hypergraph
walks" required to prove our bound, we are able to generalize our result to these settings.

Perspective. Several results on the average-case complexity of Sum-of-Square relaxations
rely on proving that sparse matrices with non-independent entries are “quasirandom” in
an appropriate sense. At its heart this chapter introduces a new approach to prove results of
this form, which applies to very sparse matrices that have only a constant expected number
of non-zero entries per row and per column. These ideas may find further application,
for example to the context of semi-random instances of constraint satisfaction problems
[GKM22] or of higher-degree Sum-of-Square relaxations of random constraint satisfaction
problems [RRS17, WEAM19].

This theory could also be useful to study problems on random weighted graphs.

183

The certificates in the chapter prove certain PSD inequalities, and can be seen as
Semidefinite Duals of certain Sum-of-Squares relaxations, but the computation of the
certificate only requires an eigenvalue computation of a certain matrix, and does not require
the solution of an SDP. There might be other ways to apply this theory so that one uses
SDP relaxations only in the analysis, but the algorithm itself is purely spectral.

6.2 Preliminaries
We reuse the notation introduced in Chapter 2, but introduce additional useful facts
and preliminary notions. We denote random variables in bold. We use lower case letters
0 , 1 , 2 , 3, . . . to denote indices or scalars (the use willl be clear from context). We use the
greek letters �, �, ◆ to denote multi-indices. The cardinality of a multi-index � is |� |. The
8-th index in � is �(8). We may thus write a monomial (with coefficient 2) in indeterminates
G1, . . . , G= as 2 · G�. For two multi indices �, � 2 [=]: we denote by (�, �) the multi-index
obtained concatenating � and �. Multi-indices �, � 2 [=]: satisfy � = � if at each position
the corresponding indices are identical. We use ((�) to denote the unordered multi-set of
indices in �. We use = to denote our ambient dimension. For functions 5 , , : í! íwe
write 5 = >(,) and , = $(5) if lim=!1

5 (=)
,(=) = 0.

Matrices. For a matrix " 2 í=⇥= , we denote by ⌫1(") > . . . > ⌫=(") its
eigenvalues. Then ⌧(") := max8 |⌫8(")| is the spectral radius of ". We write
k"k1!1 := max

G ,H2{±1}= h" , GH
Ti and k"kmax := max8 9

��
"89

��
. Furthermore, we let

k"kGr = max{h" ,-i | - ⌫ 0,-88 6 1 ,88 2 [=]} . We denote by |" | the matrix with
entries (|" |)

8 9
:=

��
"89

��.
Graphs. For a graph ⌧, +(⌧) and ⇢(⌧) denotes respectively its set of vertices and edges.
Æ⇢(⌧) := {(D , E) : D < E 2 +(⌧) , DE 2 ⇢(⌧)} is the set of all its ordered pairs such that
{D , E} 2 ⇢(⌧). For 4 2 Æ⇢(⌧), B(4) and C(4) are respectively the source and target of the
oriented edge. We write 4�1 for its inverse. We also write = for the complete graph over
= vertices. For a graph ⌧ with = vertices, we write �(⌧) 2 í=⇥= for its adjacency matrix.
For a vertex E 2 +(⌧), we denote by deg

⌧
(E) its degree. We denote by #⌧,C(E) the set of

vertices in ⌧ at distance C from E. We and drop the subscript ⌧ when the context is clear. If
the graph ⌧ is weighted with weights given by F : +(⌧)⇥+(⌧)! í, then �DE = F({DE}).
If 4 < ⇢(⌧), then we assume F(4) = 0.

Walks. A walk , in a graph ⌧ is a sequence of vertices (E1, . . . , EI+1). We refer to the
directed edges of a walk, as 41(,), . . . , 4I(,). When the context is clear we simply write
41, . . . , 4I . We use ⌧(,) to denote the subgraph of ⌧ traversed by the walk , . The set
of vertices and distinct edges in ⌧(,) are denoted by +(,) and ⇢(,). The multi-set of

184

edges in , is denoted by "(,). For 4 2 ⇢(,), <, (4) is the multiplicity of 4 in "(,).
We write �(+(,),"(,)) for the multigraph generated by, . A walk E1, . . . , EI+1 is said
to be non-backtracking if for any 8 6 I � 1, E8 < E8+2. For 4 , 5 2 Æ⇢(⌧), NBWI

4 5
(⌧) denotes

the set of non-backtracking walks in ⌧ starting with 4 and ending with 5 of length :. For
simplicity we let NBWI

4 5
:= NBWI

4 5
(=).

Hypergraphs. We use the notation �(+ , ⇢) for an hyper-graphs over +(�) with hyper-
edge set ⇢(�). We only consider hypergraphs in which edges have the same arity. The
arity of the edges will be clear from context. A multi-hyper-graph is a hyper-graph where
edges may have multiplicity more than 1, we denote its multi-set of hyper-edges by "(�)
and its set of distinct hyper-edges by ⇢(�). When clear from context, we will refer to
multi-hyper-graphs simply as hyper-graphs. Given hyper-graphs � ,�

0 we denote by
�
⇤ = � � �0 the multi-hyper-graph obtained by taking +(�⇤) as the union of the vertex

sets and "(�⇤) as the multi-set of elements either in "(�) or "(�0).

6.2.1 CSPs, k-XOR and strong refutations
k-XOR. A random :-XOR instance I with = variables and ?

�
=

:

�
(1 ± >(1)) clauses can be

generated by picking a random symmetric tensor T, with independent entries, such that
T� = 0 if the indices in the multi-index � 2 [=]: are not distinct and otherwise:

T� =

8>>><
>>>:

0 with probability 1 � ? ,
+1 with probability ?/2 ,

�1 with probability ?/2 .

We denote by< the exact number of clauses in the instance. Then I consists of the< :-XOR
predicates :-XOR(�) = 1�G�(�T)�

2 where T� is non-zero. We use F
:-XOR(= ,?) to denote such

distribution and I ⇠ F
:-XOR(= ,?) to denote a random instance. We let ValI (G) be the fraction

of constrained satisfied by the assignment G 2 {±1}= and OptI := max
G2{±1}= ValO(G). For

any assignment G 2 {±1}= we have

ValI (G) =
1
2 + 1

<(I)
’

�2[=]:

G
�T�

2 .

Notice that since < will be (1 ± >(1))?
�
=

:

�
with overwhelming probability, we blur the

distinction between these parameters. Then the max :-XOR problem is that of finding an
assignment with value

max
G2{±1}=

’
�2[=]:

T�G
�
. (6.2.1)

This is captured by the following proposition.

185

Proposition 6.5. Let I ⇠ F
:-XOR(= ,?) and let T be the associated :-th order tensor. Then with

overwhelming probability

OptI 6
1
2 + (1 + >(1))

✓✓
=

:

◆
· ?

◆�1
·

’
�2[=]:

T�G
�
.

Throughout the chapter we assume : to be an odd integer as for the even case sharp
refutation algorithms are already known (e.g see [AOW15]).

A random :-XOR instance I with = variables and exactly < clauses can be generated
by picking < times a clause at random out of the

�
=

:

�
possible :-XOR-clause. It is possible to

show that a refutation algorithm for I ⇠ F
:-XOR(= ,?) can also be used for refutation of :-XOR

instances sampled through this second process. For this reason, we blur the distinction
between these two processes. We direct the reader interested in a formal reduction to
[AOW15] (Appendix D).

CSPs. Given a predicate % : {�1, 1}: ! {0, 1}, an instance I of the CSP(P) problem
over variables G1, . . . , G= is a multi-set of pairs (2 , �) representing constraints of the form
%(2 � G�) := %(21G�(1), . . . , 2:G�(:)) = 1 where � 2 [=]: is the scope and 2 2 {±1}: is the
negation pattern. We can represent the predicate % as a multi-linear polynomial of degree
: in indeterminates 21G�(1), . . . , 2:G�(:),

%(2 � G�) =
’
36:

%3(2 � G�) ,

where %3 denotes the degree 3 part of the predicate. In particular %0 := %0(2 � G�) denotes
the constant part of the polynomial, which does not depend on the assignment.

The fraction of all possible assignments that satisfy % is given by ÖzD.0.A⇠ {±1}: [%(z)]. For
any assignment G 2 {±1}= and an instance I over < constraints we have

ValI(G) =
1
<

’
(2 ,�)2I

%(2 � G�)

and OptI = max
G2{±1}=

ValI(G) .

A random CSP(P) instance I with (1 + >(1))< = ? · 2: · =: constraints can be generated as
follows:

(i) Pick independently with probability ? each pair (c, ") where c is a random negation
pattern from {�1,+1}: and � is a multi-index from [=]: ,

(ii) For each such pair (c, ") add the constraint %(c � G") = 1 to I .

Notice that we do not rule out predicates with same multi-index but different negation
pattern as multi-indices in which an index appears multple time. We also do not assume %
to be symmetric. We denote such distribution by FCSP(P)(= , ?).

186

As in the case of :-XOR a random CSP(P) instance I with = variables and exactly <
clauses can be generated by picking < times a clause and a negation pattern at random.
Again it is possible to show that a refutation algorithm for I ⇠ FCSP(P)(= , ?) can also be
used for refutation of instances sampled through this second process (see Appendix D in
[AOW15]).

Refutation and certification. We say thatA is a ⇣-refutation algorithm for random CSP(P)
ifA has the following properties:

(i) on all instances I the output ofA si either OptI 6 1 � ⇣ or "fail",

(ii) if OptI > 1 � ⇣ thenA never outputs OptI 6 1 � ⇣.

More generally, for an set of possible inputs S and a property ? over instances in S, we say
that an algorithmA certifies ? if:

(i) on all inputs I 2 S the output ofA is either "I satisfies ?" or "fail",

(ii) if I 2 S does not satisfy ? thenA never outputs "I satisfies ?".

In the context of random CSP(P) (and hence :-XOR), a strong refutation is a ⇣-refutation
for 1 � ⇣ 6 ÖxD.0.A⇠ {±1}: [%(x)] + >(1).

6.3 A generalized Ihara-Bass formula
In this section we present an extension of the Ihara-Bass theorem (see [HST06] and
references therein) to arbitrary real symmetric matrices. We remark that our extension
differs from the one in [FM17].

Throughout the section we assume to be given a symmetric matrix � 2 í=⇥= with 2<
non-zero entries and zeroed diagonal. We use the following notation. We will use letters
D , E to denote indices in [=] and 4 , 5 for indices in [2<]. We conveniently think of � as
the adjacency matrix of a weighted undirected graph ⌧ with = vertices and 2< oriented
edges. Then DE 2 ⇢(⌧) if �DE < 0, moreover then the inverse edge ED is also in ⇢(⌧) since
�DE = �ED by definition. Recall for an edge 4 2 ⇢(⌧) we write 4�1 for its inverse and for a
vertex E 2 +(⌧) we write #+(E) (respectively #�(E)) for its set of outgoing (resp. incoming)
oriented edges in ⌧. We write �DE = sign(�DE). To reason about the spectrum of �, we
introduce several matrices: the diagonal matrices

⇡(�) 2 í=⇥= , with ⇡DE(�) =
(Õ

F
|�DF | D = E

0 otherwise.

&(�) 2 í<⇥< , with &4 5 (�) =
(
|�4 | 4 = 5

0 otherwise.

187

the block matrices

�(�) =
✓

0 Id<
Id< 0

◆
2 í2<⇥2<

!(�) =
✓

0 &(�)
&(�) 0

◆
2 í2<⇥2<

and the source, target and non-backtracking matrices

((�) 2 í=⇥2<
, with (D4(�) =

8>>><
>>>:

�DE
p
|�DE | if D is the source of 4 = DE and D < Ep

|�DE | if D is the source of 4 = DE and D > E

0 otherwise.

)(�) 2 í=⇥2<
, with)D4(�) =

8>>><
>>>:

�DE
p
|�DE | if D is the target of 4 = ED and D < Ep

|�DE | if D is the target of 4 = ED and D > E

0 otherwise.

⌫(�) 2 í2<⇥2<
, with ⌫4 5 (�) =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

�4� 5
q��
�4�5

�� if 4 5 is a non-backtracking walk
4 = DE, f=EF and E < D ,F

�4
q��
�4�5

�� if 4 5 is a non-backtracking walk
4 = DE, f=EF and F < E < D

� 5
q��
�4�5

�� if 4 5 is a non-backtracking walk
4 = DE, f=EF and D < E < Fq��

�4�5

��
if 4 5 is a non-backtracking walk
4 = DE, f=EF and E > D ,F

0 otherwise.

When the context is clear we simply write ⌫ for ⌫(�) (analogously for the other matrices).
To gain intuition on these linear maps, it is instructive to consider the case when � is the
adjacency matrix of an unweighted graph ⌧. Then ⇡ is the degree diagonal matrix with
⇡DD = 34,⌧(D), ! = � and ⌫ corresponds to the non-backtracking matrix of ⌧.

Throughout the other sections of the chapter, for a given non-backtracking matrix
⌫ 2 í2<⇥2< , we will consider the related extension matrix ⌫⇤ 2 í2=2⇥2=2 with entries

⌫
⇤
4 5

=

(
⌫4 5 if 4 , 5 2 ⇢(⌧)
0 otherwise.

For simplicity of the notation, we will often denote ⌫⇤ simply by ⌫. The context will always
be clarified by the ambient dimension. We can now state the main result of the section.

188

Theorem 6.6 (Generalized Ihara-Bass Theorem). Let = ,< be integers and let � 2 í=⇥= be a
symmetric matrix with < non-zero entries, all off-diagonal. Let ⌫, !, � ,⇡ defined as above. Then,
for any D 2 í,

det(Id2< � D(⌫ + ! � �)) = (1 � D2)<�=
�
Id= � D� + D2

⇡ � D2Id=
�
.

Our proof of Theorem 6.6 closely resembles the proof of Bass [Bas92]. We first observe
that the matrices above satisfy several useful identities, than tackle the theorem.

Lemma 6.7. Using the definitions above:

i) (� =) and)� = (,

ii) � = ()T
,

iii) ⇡ = ((T =))T
,

iv) ⌫ + ! =)T
(.

Proof. For i), notice that (� 2 í=⇥2< and (�D4 = h(D ,�, ��,4i = (D4�1 =)D4 , where in the third
step we used symmetry of �. A similar argument can be made to show)� = (. For ii)
observe that

�DE = h(D ,�,)E ,�i =
’
4

(D4)E4

which is nonzero only when 4 = DE. In that case, by definition �DE = �DE |�DE | = (D4)E4

since either D < E or D > E. Consider now ((
T, the matrix is diagonal since each edge has

at most one source vertex, then

(((T)DD =
’
4

(
2
D4

=
’

E2#+(D)
|�DE | = ⇡DD .

A symmetric derivation shows ⇡DD = ())T)DD . It remains to prove iv). It is trivial to check
that

()T
()44 = h)�,4 , (�,4i =

’
D

)D4(D4 = 0 ,

since there are no self-loops in the graph. For distinct 4 , 5 2 [2<]

()T
()4 5 =

’
D

)D4(D 5 .

There is at most one non-zero element in the sum, corresponding to the case when D is the
target vertex of 4 and the source of 5 , which means 4 5 is a walk of length 2 in ⌧. If 4 5 is
a non-backtracking walk (that is, 4 < 5

�1) then ⌫4 5 = ()T
()4 5 and !4 5 = 0. Conversely, if

4 = 5
�1 then ⌫4 5 = 0 and !4 5 = ()T

()4 5 . Finally, signs can be checked case by case. ⇤

189

We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6. In the following identities all matrices are (= + 2<) ⇥ (= + 2<) block
matrices where the first block has size = ⇥ =. Let D 2 í,

✓
Id= 0
)

T Id2<

◆ ✓
Id=(1 � D2) (D

0 Id2< � (⌫ + ! � �)D

◆
(6.3.1)

=
✓
Id(1 � D2) (D

)
T(1 � D2))

T
(D + Id2< � (⌫ + ! � �)D

◆

=
✓
Id(1 � D2) (D

)
T(1 � D2) Id2< + �D

◆
.

On the other hand✓
Id=(1 � D2) � �D + ⇡D2

(D

0 Id2< + �D

◆ ✓
Id= 0

)
T � (T

D Id2<

◆
(6.3.2)

=
✓
Id=(1 � D2) � �D + ⇡D2 + ()T

D � ((T
D

2
(D

)
T � (T

D + �)T
D � �(T

D
2 Id2< + �D

◆

=
✓
Id=(1 � D2) (D

)
T(1 � D2) Id2< + �D

◆
.

Putting Eq. (6.3.1) and Eq. (6.3.2) together and taking determinants we get

(1 � D2)= det(Id2< � (⌫ + ! � �)D) = det
�
Id=(1 � D2) � �D + ⇡D2� det(Id2< + �D) .

Now notice that

Id2< + �D =
✓

Id< Id<D
Id<D Id<

◆

and thus det(Id2< + �D) = (1 � D2)< . Rearranging, the result follows. ⇤

6.3.1 Norm bounds via the Ihara-Bass formula
In this section we show how Theorem 6.6 can be used to study the spectrum of a real
symmetric matrix � via the spectrum of related matrices. The central tool is the theorem
below.

Theorem 6.8. Let � 2 í=⇥= a symmetric matrix with zero diagonal. Let ⌫ , ! , � ,⇡ be as defined
in Section 6.3. Let ⌫min be the smallest eigenvalue of the matrix ⌫ + ! � � 2 í2<⇥2< . Then for any
⌫ 6 ⌫min

� ⌫ �|⌫|Id= � |⌫|�1(⇡ � Id=) .

190

Proof. Let ⌫min be the smallest real eigenvalue of ⌫ + ! � �. By Theorem 6.6 we know �1 is
a real eigenvalue of ⌫ + ! � � and thus ⌫min 6 �1. Moreover, for every ⌫ < ⌫min we have
det

�
Id2< � ⌫�1

⌫ + ⌫�1
! � ⌫�1

�

�
< 0 otherwise ⌫ would be an eigenvalue smaller than ⌫min.

Define the matrix

"⌫ := Id= � ⌫�1
� + ⌫�2(⇡ � Id=) .

By the same reasoning as in Theorem 6.6, det("⌫) < 0 as long as ⌫ < ⌫min. We make the
stronger claim

8⌫, ⌫min : "⌫ � 0 .

To prove the above claim, suppose toward a contradiction that ⌫0 < ⌫min is such that "⌫0

has a negative eigenvalue. Since "⌫ tends to Id= when ⌫! �1, there is a value ⌫%⇡ < ⌫0

such that "⌫%⇡ is strictly positive definite. Consider now the smallest eigenvalue of "⌫ for
values of ⌫ in the range (⌫%⇡ ,⌫0). The smallest eigenvalue of "⌫ varies continuously with
⌫, it is positive for ⌫ = ⌫%⇡ and it is negative for ⌫ = ⌫0, so it must be equal to zero for some
⌫⇤ 6 ⌫0 < ⌫min. But this means that det("⌫⇤) = 0 and so ⌫⇤ is an eigenvalue of ⌫ + ! � �,
which contradicts the definition of ⌫min. We have thus established our claim. Rearranging
the result follows. ⇤

A crucial consequence of Theorem 6.8 is that, exploiting the diagonal structure of the
matrices ⇡ , Id= one can bound the norm k�k1!1 as a function of the smallest eigenvalue
of the associated non-backtracking matrix.

Corollary 6.9. Let � 2 í=⇥= a symmetric matrix with zero diagonal. Let ⌫min and ⌫0min be
respectively the smallest eigenvalue of the matrix ⌫(�)+!(�)��(�) 2 í2<⇥2< and ⌫(��)+!(�)�
�(�) 2 í2<⇥2< , for ⌫ , ! , � ,⇡ as defined in Section 6.3. Then, for any ⌫ > max

�
|⌫min | ,

��⌫0min
�� ,

k�k1!1 6 2 Tr
�� �⌫Id= + ⌫�1(⇡(�) � Id=)

� ��
Proof. Define

' :=
��⌫Id= + ⌫�1(⇡(�) � Id=)

��
.

By Theorem 6.8 for any G 2 {±1}= we have
��
G

T
�G

�� 6 ��
G

T
'G

��. For any H 2 {±1}= we can
write

2
��
G

T
�H

�� 6 ��(G + H)T�(G + H) � GT
�G � HT

�H

��
6

��(G + H)T�(G + H)�� + ��
G

T
�G

�� + ��
H

T
�H

��
.

Now G + H 2 {�2, 0,+2}= and thus��(G + H)T�(G + H)�� 6 4 max
I2{±1}=

I
T
'I ,

the result follows by definition of '. ⇤

191

6.4 Warm-up: spectrum of binary matrices with
dependencies

In preparation to a proof of Theorem 6.1, we show here how to use the ideas of Section 6.3.1
to study the spectrum of random symmetric matrices with entries in {�1 , 0 , 1}, even when
dependencies between the entries appear. As we may view any symmetric matrix as the
adjacency matrix of a weighted graph (up to the diagonal entries) we partially shift to the
language of graphs. In particular, we study graphs sampled from the following family of
distributions.

Definition 6.10 (✏-wise independent random binary-weighted graphs). D3,✏ is the family
of distributions %3,✏ over graphs with vertex set [=] and adjacency matrix satisfying:

1. for all DE 2 ⇢(=) , êG⇠%3,✏[�DE(G) < 0] = êG⇠%3,✏[DE 2 ⇢(G)] = 3/= .

2. for all DE 2 ⇢(=) , the distribution of �DE(G) is symmetric with support {�1 , 0 ,+1} .

3. edges in G are ✏-wise independent.

Notice that the adjacency matrix of G is a random binary symmetric matrix with ✏-wise
independent entries (up to symmetries). With a slight abuse of notation, we write G ⇠ %3,✏
and �(G) ⇠ %3,✏, respectively for a graph sampled from %3,✏ inD3,✏ and for the adjacency
matrix of a graph sampled from this distribution. We consider the associated matrices
⇡(A) , ⌫(A) as defined in Section 6.3. We prove the following theorem.

Theorem 6.11. Let = be an integer, 3 > 0 and ✏ > ⇠ log2
3
= for a large enough universal constant

⇠ > 0. Consider a distribution %3,✏ 2 D3,✏. Then for A ⇠ %3,✏

kAk1!1 6 $
⇣
=

p
3

⌘
,

with probability 0.99.

Observe that Theorem 6.11 shows how the adjacency matrix of a graph sampled from
some distribution inD3,✏ behaves –up to a universal constant– as the adjacency matrix of an
Erdős-Rényi graph with expected degree 3. As we are oblivious to the specific correlations
in the graph, the result only relies on local independence of the edges. The central tool
behind Theorem 6.11 is the following lemma.

Lemma 6.12. Consider the settings of Theorem 6.11. Let I 6 log
3
=

10 . For A ⇠ %3,✏, the associated
non-backtracking matrix satisfies��

⌫
I�1(A)

�� 6 $(3I/2) · (log =)$(log log =)
.

with probability 1 � >(1).

192

The choice of the non-backtracking matrix ⌫I�1(A) stems from the observation that
is contains more structural information about the graph, compared to ⌫(A). Indeed, the
singular values of ⌫(A) contain only information on the degree sequence of the underlying
graph. Another perspective on this can be obtained recalling that for any natural norm k·k⇤,
by Gelfand’s formula Fact 2.1, ⌧(⌫(A)) = limI!1k⌫(A)I k1/I⇤ . Hence one can expect that a
careful analysis on non-backtracking matrices of sufficiently large length, would yield a
tighter bound on the spectral radius (see [BLM15] for a more in-depth discussion). Indeed,
by Fact 2.1, a consequence of Lemma 6.12 is the following result regarding the spectral
radius of ⌫(A).

Corollary 6.13. Consider the settings of Theorem 6.11. For A ⇠ %3,✏, the associated non-
backtracking matrix satisfies

⌧(⌫(A)) 6 $(
p
3) .

with probability 1 � >(1).

We can combine Corollary 6.13 with Corollary 6.9 to obtain the theorem.

Proof of Theorem 6.11. By Corollary 6.13 for both A and �A we get ⌧(⌫(A)) 6 $(
p
3) and

⌧(⌫(�A)) 6 $(
p
3). By Lemma D.2 we have Tr⇡(A) 6 $(=3) with probability at least

0.999, where⇡(A) is the associated degree matrix as defined in Section 6.3. Finally applying
Corollary 6.9 the result follows. ⇤

The rest of the section is devoted to the proof of Lemma 6.12. We will prove the result
via the trace method.

Proposition 6.14. Let M be an =-by-= random matrix and 2 > 0. Then

Ö
M

h
Tr

�
MMT� @i 6 ✏ =) ê

⇣
kMk > 2 · ✏1/2@

⌘
6 2�2@

.

In Section 6.4.1 we illustrate how the trace computation can be reduced to a path
counting problem. In Section 6.4.2 we compute the expectation of such paths. Finally we
put things together in Section 6.4.3.

6.4.1 Powers of non-backtracking matrices
For simplicity, we will write ⌫ in place of ⌫(�) for an adjacency matrix �. Moreover we will
consider the 2=2-by-2=2 extension of ⌫(�) as described in Section 6.3. Indeed this extension
has the same eigenvalues and singular values (up to some additional zero-value ones).
We will overload our notation and simply denote it by ⌫. We now explain how to reduce
the computation of the trace of powers of non-backtracking walks to a graph counting
argument. We start by introducing additional notions.

193

For a graph ⌧ and 4 , 5 2 Æ⇢(⌧), we write NBWI

4 5
to denote the set of length I

non-backtracking walks in ⌧ starting with 4 and ending with 5 . Then NBWI(⌧) =–
4 , 5 2 Æ⇢(⌧)

NBWI

4 5
(⌧). For simplicity we let NBWI

4 5
:= NBWI

4 5
(=). A walk, 2 NBW2@ ,I over

4 distinct edges is said C-tangle-free if the number of vertices in the walk is at least 4 � C + 1.
That is, any minimum spanning tree of the subgraph traversed by the walk has 4 � C edges.
For C = 0 the definition implies the walk is a path. We remark that this definition differs
from the one in [BLM15] (which corresponds to C < 2). We adopt this different definition
in preparation of our arguments in Section 6.5. A graph ⌧ is said C-tangle-free if every
walk in NBW2@ ,I(⌧) is C-tangle-free. We use TGFI ,C

4 5
(⌧) ✓ NBWI

4 5
(⌧) to denote the subset

of C-tangle-free walks. When the value of C is clear from context we will simply say, is
tangle-free and write TGFI

4 5
(⌧) ✓ NBWI

4 5
(⌧) for the corresponding set.

We can extend the notion of closed non-backtracking matrices by introducing closed
block non-backtracking matrices. BNBW@ ,I

4
is the set of walks, of length @ · I with starting

edge 4 2 Æ⇢(⌧) and ending edge 4�1 2 Æ⇢(⌧) satisfying:

(i) , can be partitioned into @ non-backtracking walks,1, . . . ,,@ of length I.

(ii) For each pair of walks,8 ,,8+1 (with the convention,@+1 =,1) the starting edge of
,8+1 is the inverse of the ending edge of,8 . I.e. we have 4I(,8) = 4

�1
1 (,8+1).

Similarly, BTGF@ ,I ,C
4
✓ BNBW@ ,I

4
is the set of closed block non-backtracking walks such that

each block is C-tangle-free. Given , 2 BNBW@ ,I

4
, we use ,8 2 NBWI to denote the 8-th

block of, (where the first block maybe chosen arbitrarily among the ones starting at 4).
For DE 2 Æ⇢(⌧), recall we write �DE = sign(�DE), we further let

�̃DE =

(
�DE if D < E ,

1 otherwise.

This notation will be used to describe the :-th power of the non-backtracking matrix.

Fact 6.15. Let ⌧ be a weighted graph with < edges. Let � 2 í=⇥= be its adjacency matrix and
⌫ 2 í2=2⇥=2 the associated non-backtracking matrix. Let I be a positive integer and let 4 , 5 2 Æ⇢(⌧).
Then for 41 = 4 , 4I = 5

(⌫I�1)4 5 =
’

,2NBWI

4 5

�̃
4
�1
1
· �̃4I ·

p
|�41 · �4I | ·

I�1÷
B=2

�4B
.

Fact 6.15 can be checked simply by expanding ⌫I�1. We can now define the tangle-free
2=2-by-2=2 non-backtracking matrix ⌫(I�1)C associated to ⌫I�1 (we will drop the subscript C
when the context is clear). For 4 , 5 2 [2=2],

(⌫(I�1)C)4 5 :=
’

,2TGFI ,C
4 5

�̃
4
�1
1
· �̃4I ·

p
|�41 · �4I | ·

I�1÷
B=2

�4B
.

194

It will be convenient to decompose the terms (⌫I�1)4 5 as follows:

(⌫I�1)4 5 =
’

,2NBWI

4 5

�̃
4
�1
1
· �̃4I

p
|�41 · �4I | ·

I�1÷
B=1

�4B

=
’

,2TGFI ,C
4 5

�̃
4
�1
1
· �̃4I

p
|�41 · �4I | ·

I�1÷
B=2

�4B

+
’

,2NBWI

4 5
\TGFI ,C

4 5

�̃
4
�1
1
· �̃4I

p
|�41 · �4I | ·

I�1÷
B=2

�4B

= (⌫(I�1)C)4 5

+
’

,2NBWI

4 5
\TGFI ,C

4 5

�̃
4
�1
1
· �̃4I

p
|�41 · �4I | ·

I�1÷
B=2

�4B
.

Notice that for a C-tangle-free graph, ⌫I�1 = ⌫
(I�1)C

. The trace of powers of ⌫I�1 can also be
written as a sum over block non-backtracking walks. In particular, we can obtain the fact
below observing that even though ⌫ is not a normal matrix, it has some symmetry as

h⇣
⌫
(I�1

⌘
T
i
4 5

= (⌫I)
5 4

= (⌫I)
4
�1
5
�1 .

Conveniently, the factors �̃
4
�1
1
· �̃4I disappear.

Fact 6.16. Let ⌧ be a weighted graph with < edges. Let � 2 í=⇥= be its adjacency matrix and
⌫ 2 í2=2⇥2=2 the associated non-backtracking matrix. Let @ , I > 2 and C be integers. Then

Tr
⇥
⌫
I�1 �

⌫
I�1�T⇤ @ = ’

,2BNBW2@ ,I

2@÷
8=1

"q��
�
41(,8) · �4I(,8)

�� ·

I�1÷
B=2

�
4B(,8)

!#

and

Tr
h
⌫
(I�1)C

⇣
⌫
(I�1)C

⌘
T
i
@

=
’

,2BTGF2@ ,I ,C

2@÷
8=1

"q��
�
41(,8) · �4I(,8)

�� ·

I�1÷
B=2

�
4B(,8)

!#
.

6.4.2 Expectation of block non-backtracking walks
By Proposition 6.14 and Fact 6.16 we need to study the expectation of closed block non-
backtracking walks under distributions inD3,✏. First we observe that, if an edge in a walk
in BNBW2@ ,I has multiplicity one, then by symmetry the expectation of the whole walk is
zero.

195

Fact 6.17. Let = be an integer, 3 > 0 ,,0 < ✏ 6 =. Consider a distribution %3,✏ 2 D3,✏. Let
, 2 BNBW2@ ,I with I > 1 and 2@ · I 6 ✏. If there exists 4 2 ⇢(,) with multiplicity <, (4) = 1,
then

Ö
A⇠%3,✏

2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!#
= 0 . (6.4.1)

Proof. By assumption there must be 4 2 ⇢(,) with <, (4) = 1 and by construction this
cannot be any of the starting edges 4C·I+1, with 0 6 C 6 2@ � 1 in, . Let’s denote this edge
by 5 2 Ö(,). Then we may write

Ö
A⇠%3,✏

2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!#

= Ö
A⇠%3,✏

" 2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!#
· 1

A 5

#
· Ö

A⇠%3,✏
A 5 ,

where we used ✏-wise independence of the edges. By symmetry of the distributionÖA 5 = 0.
The result follows. ⇤

For any C > 0, we say that a tangle-free walk , 2 BTGF2@ ,I ,C is interesting if there is
no edge in, with multiplicity one. We denote the set of interesting walks in BTGF2@ ,I ,C

by IBTGF2@ ,I ,C . The next fact bounds the expectation of interesting closed block non-
backtracking walks.

Fact 6.18. Let = be an integer, 3 > 0 , and 0 < ✏ 6 =. Consider a distribution %3,✏ 2 D3,✏. Let
, 2 IBTGF2@ ,I ,C with I > 1, C > 0 and 2@ · I 6 ✏. Then

Ö
A⇠%3,✏

2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!#
6

✓
3

=

◆ |⇢(,)|
.

Proof. By ✏-wise independence,

Ö
A⇠%3,✏

2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!#
6

÷
42⇢(,)

Ö
A⇠%3,✏

|A4 |<, (4)

=
÷

42⇢(,)
Ö

A⇠%3,✏
|A4 |

=
÷

42⇢(,)

✓
3

=

◆
.

⇤

196

6.4.3 Bound on the spectrum of non-backtracking matrices
We are ready to tackle Lemma 6.12. Our proof consists of two main ingredients. First we
shows that, for a wide range of parameters, graphs sampled from distributions inD3,✏ are
tangle-free. Then we prove that the number of closed, tangle-free, block non-backtracking
walks is not large. Combining these results with Fact 6.18 will conclude the proof.

Lemma 6.19. Let = be a large enough integer. Let 3 > 0, I 6 log
3
= 6 ✏ 6 =. Consider a

distribution %3,✏ 2 D3,✏. Then for C > 100 log log
3
=, G ⇠ %3,✏ is C-tangle-free with probability

at least 1 � >(1).

Proof. For C0 > C, the number of non-backtracking walks over E vertices of length I with C0-
tangles is upper bounded by =EEI . Each such walk, appears in the graph with probability�
3

=

� 4
6

�
3

=

� C0+E�1. For C0 > C, by union bound the probability that such a walk appears in the
graph is at most (E3)log

3
=

=
�C+1 = >(1). ⇤

The fact that our graphs of interest are with high probability $(log log
3
=)-tangle-free

means we need only to focus on this small subset of closed block non-backtracking walks.
For the rest of the section we will fix

C = 100 log log
3
=

and drop the superscript C. We will refer to $(log log =)-tangle-free walks simply by
tangle-free walks and write B(I�1) in place of B(I�1)C . We say that a walk , 2 IBTGF2@ ,I

over E vertices is canonical if its set of vertices is [E] ✓ [=] and the vertices are first visited in
order. The use of canonical paths is convenient as, by construction, no two canonical paths
are isomorphic (so we are in fact choosing an arbitrary element for each equivalence class).
We denote the set of canonical paths byW2@ ,I ✓ IBTGF2@ ,I . Notice that for % 2 W2@ ,I ,
there are

�
=

E

�
(E)! isomorphic walks in IBTGF2@ ,I .

Lemma 6.20 (Enumeration of canonical paths). LetW2@ ,I(E , 4) be the set of canonical paths
with E vertices and 4 distinct edges. We have��W2@ ,I(E , 4)

�� 6 I4C@ · (2I@)6C@·(4�E+1)
.

We defer the proof of Lemma 6.20 to Section 6.4 and use it here to prove the main
lemma of the section.

Proof of Lemma 6.12. First notice that by Lemma 6.19, with high probability BI�1 = B(I�1),
thus it suffices to bound the spectral norm of B(I�1). Then

Ö
h
Tr

h
B(I�1)

⇣
B(I�1)

⌘
T
i
@
i

=
’

,2IBTGF2@ ,I

Ö

" 2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!##

197

6
’

,2IBTGF2@ ,I

Ö
2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!#
.

Now by Fact 6.18 and Lemma 6.20

’
,2IBTGF2@ ,I

Ö
2@÷
8=1

"q��A
41(,8) · A

4I(,8)
�� ·

I�1÷
B=2

A
4B(,8)

!#

6
’

,2IBTGF2@ ,I

✓
3

=

◆
⇢(,)

6
I·@+1’
E>3

I·@’
4=E�1

��W2@ ,I(E , 4)
�� ·

✓
=

E

◆
(E)! ·

✓
3

=

◆
4

6
I·@+1’
E>3

I·@’
4=E�1

(3 · =)E ·
�
22C
I

�2@C · (2I@)6C@·(4�E+1) ·
✓
3

=

◆
4

6
I·@+1’
E>3

I·@’
4=E�1

�
22C
I

�2@C · 34 · = ·
✓ (6I@)6C@

=

◆ 4�E+1

6
�
22C
I

�2@C · 3I@ · = ·
I·@+1’
E>3

I·@’
4=E�1

✓ (6I@)6C@
=

◆ 4�E+1

6 I$(@C) · 3I@ · = ·
I·@+1’
E>3

I·@’
4=E�1

✓ (6I@)6C@
=

◆ 4�E+1

.

For C = 100 log log
3
=, @ = log =

103 log2 log
3
=

and I 6 log
3
=

6 the series converges. Thus

Ö
h
Tr

h
B(I�1)

⇣
B(I�1)

⌘
T
i
@
i
6 $

⇣
I
$(@C) · 3I@ · =

⌘

Finally by Proposition 6.14 with probability at least 1 � >(1)
��BI�1�� 6 $(3I/2) ·

⇣
I

2C · =1/@
⌘
6 $(3I/2) ·

�
log =

�poly(log log =)
,

concluding the proof. ⇤

6.5 Strong refutations for random k-XOR
We prove here a result on strong refutation of random :-XOR instances.

198

Theorem 6.21. Consider a random :-XOR instance I ⇠ F
:-XOR(= ,?) for : > 3. For = large enough,

there exists a universal constant ⇠ > 0 and a polynomial time algorithm that, if

? >
⇠ · =�:/2

⌘2

certifies with probability at least 0.99

OptI 6
1
2 + $(⌘) .

An efficient algorithm for :-XOR refutation was already known to hold for ? >
⌦

⇣
=
�:/2 log3/2

=

⌘
or when : is even [AOW15]. Thus we only need to design an algorithm

for the settings ? 6 $

�
=
�:/2 polylog(=)

�
and : odd. We restrict our analysis to those.

Following our discussion in Section 6.2.1 and using Proposition 6.5, the theorem can be
directly obtained as a corollary to the result below.

Theorem 6.22 (Sharp bounds for random polynomials). Let T be a random tensor, with
independent entries, such that T� = 0 if the indices in the multi-index � 2 [=]: are not distinct and
otherwise:

Ö[T�] = 0
ê[T� < 0] 6 ?

ê[⌦(1) 6 |T� | 6 1 | T� < 0] = 1

For : > 3 and = large enough, there exists a universal constant ⇠ > 0 and a polynomial time
algorithm that, if

⇠ · =�:/2 6 ? 6 =�:/2 · $
⇣
log10

=

⌘
,

certifies with probability larger than 0.99

max
G2{±1}=

’
�2[=]:

T� · G� 6 $
⇣p
? · =3:/4

⌘
.

Remark 6.23. Theorem 6.22 is not strictly about strong refutations. In fact, it states that the
value of a random polynomial evaluated over the hypercube is concentrated around its
expectation.

For the reminder of the section, we assume without loss of generality that T is
symmetric. Indeed we may have this assumption without loss of generality by Fact D.6.
For any assignment of G 2 {±1}= , by Cauchy-Schwarz,

’
�2[=]:

T� · G� 6 ©≠
´
’
82[=]

G
2
8

™Æ
¨

1/2©≠≠
´
’
✓2[=]

©≠
´

’
�02[=]:�1

T(�0,✓) · G�
0™Æ
¨

2™ÆÆ
¨

1/2

199

6
p
= ·

©≠≠
´
’
✓2[=]

©≠
´

’
�02[=]:�1

T(�0,✓) · G�
0™Æ
¨

2™ÆÆ
¨

1/2

.

Consider the =:�1-by-=:�1 matrix with entries, for �1, �2, �1, �2 2 [=](:�1)/2,

A(�,�),(�0,�0) :=
’
✓2[=]

T(��0✓) · T(��0✓) (6.5.1)

we may use the rewriting

’
✓2[=]

©≠
´

’
�,�2[=]:�1

T(�,�,✓)G
(�,�)™Æ

¨

2

=
’
✓2[=]

’
�,�0,�,�02[=]:�1

T�,�,✓ · T�0,�0,✓ · G(�,�,�
0
,�0)

= hG⌦:�1
,AG⌦:�1i

6 max
I ,H2{±1}=:�1

hI ,AHi = kAk1!1 .

Thus we obtain

max
G2{±1}=

’
�2[=]:

T�G
� 6

p
= · kAk1!1 ,

which means that any algorithm computing an upper bound to kAk1!1 immediately yields a
refutation algorithm for :-XOR. In particular, by Fact 2.15 we get that there is an algorithm
(based on sum-of-squares) that certifies

max
G1 ,...,G:2{±1}=

hT, G1 ⌦ · · · ⌦ G:i 6
p
 ⌧ · = · kAk1!1 , (6.5.2)

in time $(=$(1)), where ⌧ is Grothendieck’s constant. Now, Theorem 6.22 follows com-
bining the above reasoning with the result below.

Lemma 6.24. Consider the settings of Theorem 6.22. Consider the =:�1-by-=:�1 matrix defined in
Eq. (6.5.1).Then with probability at least 0.998

kAk1!1 6 =
:�1 · $

⇣
? · =:/2

⌘
.

We may rewrite A = A0 + A00 where for any �1, �2, �1, �2 2 [=](:�1)/2

A0(�1 ,�1),(�2 ,�2) :=

(
A(�1 ,�1),(�2 ,�2) if

��
((�1, �2) \ ((�1, �2)

�� = 0
0 otherwise

(6.5.3)

and A00 = A�A0. This decomposition is convenient as, for example, nowÖA0(�1 ,�1),(�2 ,�2) = 0
for all multi-indices �1, �2, �1, �2. By triangle inequality, to prove Lemma 6.24 it suffices to
bound the norm k·k1!1 of both A0 and A00.

200

Lemma 6.25. Consider the settings of Lemma 6.24. Let A0 as defined in Eq. (6.5.3) and let
A00 = A �A0. Then with probability 1 � >(1)

kA00k1!1 6 =
:�1�⌦(1) · (: � 1)! · $(? · =:/2) .

The proof of Lemma 6.25 is straightforward as the required bound is very loose. We
defer it to Appendix D.1. The next result bounds kA0k1!1, this is the main technical
challenge of this work and the subsequent sections are dedicated to its proof.

Lemma 6.26. Consider the settings of Lemma 6.24. Let A0 as defined in Eq. (6.5.3) Then with
probability at least 0.999

kA0k1!1 6 =
:�1 · $(? · =:/2) .

6.5.1 Bounding the norm of A’
Using a reasoning similar in spirit to that shown in Section 6.4, we prove Lemma 6.26
studying the associated non-backtracking matrix.

Theorem 6.27. Consider the settings of Lemma 6.26. Let B, L, J be the matrices associated to A0 as
defined in Section 6.3. Then with probability 1 � >(1)

⌧(B + L � J) 6 $
⇣
? · =:/2

⌘
.

We can use Theorem 6.27 to prove Lemma 6.26. The argument closely resembles that
used for Theorem 6.11

Proof of Lemma 6.26. By Theorem 6.27 for both A0 and �A0 we get ⌧(⌫(A0)) 6 $
�
? · =:/2�

and ⌧(⌫(�A0)) 6 $

�
? · =:/2� . By Lemma D.4 we have Tr⇡(A0) 6 $

�
?

2 · =2:�1� with
probability at least 1 � 104, where ⇡(A0) is the associated degree matrix as defined in
Section 6.3. Finally applying Corollary 6.9 the result follows. ⇤

By definition of spectral radius, there exists a unit vector E 2 í< such that

⌧(B + L � J) 6 ET(B + L � J)E 6 ⌧(B) + kLk + kJk.

Thus, we can use next two results to obtain Theorem 6.27.

Lemma 6.28. Consider the settings of Theorem 6.27 and suppose ? 6 =�1. Then with probability
1 � >(1)

kLk + kJk 6 $(1) .

201

Proof. By construction kJk 6 1 and kLk 6 max�1 ,�1 ,�2 ,�22[=]:�1

���A0(�1 ,�1)(�2 ,�2)

���. Now, for fixed
�1, �1, �2, �2 2 [=]:�1 and C > 1

ê
⇣���A0(�1 ,�1)(�2 ,�2)

��� > C⌘ = ê©≠
´

������
’
✓2[=]

T(�1�2✓)T(�1�2✓)

������ > C
™Æ
¨

6
’
@>C

ê©≠
´
’
✓2[=]

��T(�1�2✓)T(�1�2✓)
�� = @

™Æ
¨

6
’
@>C

✓
=

@

◆
· ?2@ · (1 � ?)=�2@

6
’
@>C

✓
=

@

◆
· ?2@

6 $(1) ·
✓
4 · = · ?2

C

◆ C
.

Thus, as ? 6 =
�:/2 poly log(=) and A0 has =

2:�2 entries, by union bound
max�1 ,�2 ,�1 ,�22[=]:�1

���A0(�1 ,�1)(�2 ,�2)

��� 6 1000, with probability 1 � =�⌦(1). ⇤

Lemma 6.29. Consider the settings of Theorem 6.27. Then with probability 1 � >(1)

⌧(B) 6 $
⇣
? · =:/2

⌘
.

The proof of Lemma 6.29 follows a recipe similar to the one used in Section 6.4. We
consider the extended non-backtracking (2=:�1)-by-(2=:�1) matrix B. We use the trace
method Proposition 6.14 to bound the spectral norm of the closely related non-backtracking
matrix BI�1 for large enough I, and then use Gelfand’s formula Fact 2.1 to relate the result
to the spectral radius of B. In particular, Lemma 6.29 is an immediate consequence of the
following result.

Lemma 6.30. Consider the settings of Theorem 6.27. Let @ 6 log =

(103 log log =)2 and I 6 log =
50 . Then

with probability 1 � >(1)

Tr
⇥ �

BI�1� �BI�1�T⇤ @ 6 ⇣
? · =:/2

⌘2@I
· $

✓
I

log =
10 log log =+2

◆
.

The rest of the section is dedicated to proving Lemma 6.30.

6.5.1.1 From block non-backtracking walks to block hyper non-
backtracking walks

We start our analysis by opening up the terms in
⇥ �

BI�1� �BI�1�T⇤ @ . By Fact 6.15 and Fact 6.16
we know how to represent these terms using the entries of A0. As these terms contain

202

absolute values of sums, it will be more convenient to work with simpler products in the
entries of T. In order to achieve this we need to manipulate our walks further. For each
walk in, 2 BNBW2@ ,I with, = (�1

1, �
1
1), (�1

2, �
1
2), . . . , (�1

I+1, �
1
I+1), . . . , (�

2@
I+1, �

2@
I+1) (using

multi-indices in �8
9
, �8

9
2 [=](:�1)/2), we use the rewriting

2@÷
8=1

266664

s����A0(�81 ,�81),(�82 ,�82)A0(�8I ,�8I),(�8I+1 ,�
8

I+1)

���� ·

I�1÷
B=2

A0(�8
B
,�8
B
),(�8

B+1 ,�
8

B+1)

!377775
=

2@÷
8=1

"���A0(�81 ,�82),(�81 ,�82)
��� ·

I�1÷
B=2

A0(�8
B
,�8
B
),(�8

B+1 ,�
8

B+1)

!#

=
’

✓
1
2 ,...,✓

1
I
,...,✓

2@
I
2[=]

2@÷
8=1

266664

������
’
✓
8

12[=]
T(�81�

8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!377775
, (6.5.4)

where in the first step we used the fact that the last edge of each,8 in, is the first edge of
,8+1. Elements in the sum of the form

2@÷
8=1

266664

������
’
✓
8

12[=]
T(�81�

8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!377775
such that every term with odd degree in

2@÷
8=1

"
I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!#

also appears in

2@÷
8=1

������
’
✓
8

12[=]
T(�81�

8

2✓
8

1)
T(�81�

8

2✓
8

1)

������
are called annoying. We denote the set of annoying terms by AN(,). If a term is not
annoying it is said to be nice. AN(,) is the set of nice terms in Eq. (6.5.4). We can upper
bound the expectation of nice terms with the expectation of a related polynomial. The next
result formalizes this idea, we defer its proof to Appendix D.1.

Lemma 6.31. Consider the settings of Theorem 6.27. Let, 2 BNBW2@ ,I . Then for any term in
AN(,)

Ö
2@÷
8=1

266664

������
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!377775
203

6 $(1)2@ · Ö
2@÷
8=1

266664
©≠
´
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)
™Æ
¨

2
I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!377775
. (6.5.5)

Instead, for each annoying term in AN(,) we bound the expectation as

Ö
2@÷
8=1

266664

������
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
0
8

B+1✓
8

B
)T�8

B
1
8

B+1✓
8

B

!377775
6

’
✓
8

1 ,...,✓
2@
1

Ö

�����
2@÷
8=1

"
T(�81�

8

2✓
8

1)
T(�81�

8

2✓
8

1)

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!#�����

6
’

✓
8

1 ,...,✓
2@
1

Ö
2@÷
8=1

"���T(�81�
8

2✓
8

1)

������T(�81�
8

2✓
8

1)

���

I�1÷
B=2

���T(�8
B
�8
B+1✓

8

B
)

������T(�8
B
�8
B+1✓

8

B
)

���
!#

6 $(1)2@
’

✓
8

1 ,...,✓
2@
1

Ö
2@÷
8=1

"
T2
(�81�

8

2✓
8

1)
T2
(�81�

8

2✓
8

1)

I�1÷
B=2

���T(�8
B
�8
B+1✓

8

B
)

������T(�8
B
�8
B+1✓

8

B
)

���
!#

(6.5.6)

We will encode every term in Eq. (6.5.5) and Eq. (6.5.6) as a sequence / of multi-indices
(�1

1, �
1
1, ✓

1
1 , �

2
1, �

1
2, ✓

1
2 , . . . , ✓

2@
I
, �

2@
I+1, �

2@
I+1), where the ✓ 8

B
’s are indices and �8

B
, �8

B
’s are multi-

indices of cardinality (I � 1)/2. For a subsequence /, we will use ((/) to denote the set of
its indices (without repetitions). Lemma 6.31 together with these observations allows us to
upper bound the contribution of each walk, 2 BNBW2@ ,I to the expectation of the trace
of

⇥ �
BI�1� �BI�1�T⇤ @ as

Ö
2@÷
8=1

"���A0(�81 ,�82),(�82 ,�82))
��� ·

I�1÷
B=2

A0(�8
B
�8
B
),(�8

B+1�
8

B+1)

!#

6$(1)2@ · Ö
’

�1
1 ,...,�

1
I+1 ,...�

2@
I+1 ,

�1
1 ,...,�

1
I+1 ,...�

2@
I+1 ,

✓
1
1 ,...,✓

2@
I

in C

T(�1
1�

1
2✓

1
1)
· · ·T(�2@

I
�

2@
I+1✓

2@
I
) , (6.5.7)

+ $(1)2@ · Ö
’

�1
1 ,...,�

1
I+1 ,...�

2@
I+1 ,

�1
1 ,...,�

1
I+1 ,...�

2@
I+1 ,

✓
1
1 ,...,✓

2@
I

in C⇤

���T(�1
1�

1
2✓

1
1)

��� · · · ���T(�2@
I
�

2@
I+1✓

2@
I
)

��� . (6.5.8)

204

Here C is the set of conditions (using the convention 8 + 1 = 1 for 8 = 2@)

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

pre-processing:
���((�8

9
�8
9+1) \ ((�89�89+1)

��� = 0

all distinct in (�8
9
, �8

9+1, ✓
8

9
)

all distinct in (�8
9
, �8

9+1, ✓
8

9
)

block: �8
I
= �8+1

2
�8
I+1 = �8+1

1
�8
I+1 = �8+1

1
�8
I
= �8+1

2
non-backtracking: �8

9
< �8

9+2 or �8
9
< �8

9+2

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(C)

and C⇤ is the set of conditions in C with the addition of
�
88 2 [2@] , ✓ 8

I
= ✓ 8+1

1

and

• If a tuple /0 in
n
(�8

9
, �8

9+1, ✓
8

9
) , (�8

9
, �8

9+1, ✓
8

9
)
o

appears an odd number of times in the
whole sequence then there exists 80 such that

��
((/) \ ((�801 , �8

0+1
1 , ✓

8
0

1)
�� > : � 1 or��

((/) \ ((�801 , �8
0

2 , ✓
8
0

1)
�� > : � 1.

Let’s try to unravel the meaning of C and C⇤. The set of conditions C are meant to captures
products arising from terms in AN(,) for , 2 BNBW2@ ,I . Notice the block condition
correspond to the observation that in each, 2 BNBW2@ ,I partitioned in non-backtracking
walks,1, . . . ,,2@ , for any consecutive,8 ,,8+1 the first edge traversed in,8+1 is the last
edge traversed in ,8 . The pre-processing condition allows to exclude corner cases5 as
these where handled with A00. A consequence of this condition is that the underlying
hyper-graph cannot have self-loops. Finally, the crucial non-backtracking conditions will
help us upper bound the number of terms in the sum.

The terms appearing in C⇤ correspond to the ones generated by AN(,) for , 2
BNBW2@ ,I . As such the first additional condition captures the fact that we don’t take the
square of the first and last edges in each non-backtracking walk ,8 in , . The second
condition captures the fact that these terms are annoying, and thus only few specific
elements in the product may have odd degree. While our bound for annoying terms is
tough, the number of such terms will be small. We remark that every sequence satisfying
C⇤ also satisfies C.

Block non-backtracking hyper walks. Recall we can encode every term in Eq. (6.5.7) and
Eq. (6.5.8) as a sequence / of multi-indices (�1

1, �
1
1, ✓

1
1 , �

2
2, �

1
2, ✓

1
2 , . . . , ✓

2@
I
, �

2@
I+1, �

2@
I+1) where

�8
9
, �8

9
’s have cardinality : � 1 and ✓ 8

9
’s are indices. We denote the set of sequences over 2@

blocks of size I satisfying C as the set of block non-backtracking hyper-walks / and denote

5The experienced reader may recognize the pre-processing condition in C implies the no self-loop condition
from [AOW15].

205

it by HBNBW2@ ,I . We denote by HBNBW2@ ,I(C⇤) ✓ HBNBW2@ ,I the subset of sequences in
HBNBW2@ ,I which also satisfies C⇤. We will interchangeably use the terms hyper-walk and
sequence. Notice that each hyper-walk / 2 HBNBW2@ ,I generates a multi-hyper-graph6

�(/) over vertices in [=]. For simplicity we will say "hyper-graph" instead of "multi-hyper-
graph". We then call �(/) the underlying hyper-graph of /.We denote with +(/) its set
of vertices (corresponding to the set of distinct indices in the sequence). An hyper-edge
((�, �0, ✓) is in �(/) if T(�,�0,✓) appears in the product encoded by /. We use ⇢(�(/)) to
denote the set of distinct hyper-edges in �(/). For each 4 2 ⇢(/)we denote by <4(�(/))
the multiplicity of 4 in �(/). We say �(/) is the underlying multi-hyper-graph of /. For
/ 2 HBNBW2@ ,I we can graphically represent each such �(/) as depicted in Fig. 6.1.

Furthermore, each / 2 HBNBW2@ ,I can be further split into subsequences /1, . . . , /2@
such that /8 = (�81, �81, ✓ 81, �82, �82, . . . , ✓ 8I , �8I+1, �

8

I+1) for all 8 2 [=]. We say /1, . . . , /2@ are
non-backtracking hyper-walks and denote the set of such walks as HNBW2@ ,I . We use
HNBW2@ ,I(/) to denote the non-backtracking hyper-walks corresponding to / (picking
one arbitrary such partition) and �(/8) to denote the underlying hyper-graph of each such
sequence. We refer to /1, . . . , /2@ simply as the subsequences of /.

�1

✓1

�1

�2

�2

✓2

�3

�3

Figure 6.1: Representation of part of a hyper-walk satisfying C for 3-XOR.

Using our newly introduced notation, we can thus write

Ö
’

,2BNBW2@ ,I

2@÷
8=1

I÷
B=1

A0
4B(,8)

6$(1)2@ · Ö
’

/2HBNBW2@ ,I

T(�1
1(/)�

1
2(/)✓

1
1 (/))

· · ·T(�2@
I
(/)�2@

I+1(/)✓
2@
I
(/))

+ $(1)2@ · Ö
’

/2HBNBW2@ ,I(C⇤)

���T(�1
1(/)�

1
2(/)✓

1
1 (/))

· · ·T(�2@
I
(/)�2@

I+1(/)✓
2@
I
(/))

��� . (6.5.9)

A useful observation, formalized in the following fact, is that for any / 2 HBNBW2@ ,I \
HBNBW2@ ,I(C⇤), if the underlying hyper-graph has a hyper-edge with multiplicity 1 then
its expectation is 0.

6That is, a hyper-graph in which hyper-edges may have multiplicity larger than 1.

206

Fact 6.32. Consider the settings of Theorem 6.27. Let / 2 HBNBW2@ ,I and let � be the underlying
hyper-graph of /. If � contains a hyper-edge 4 of multiplicity 1, then

Ö
÷

42⇢(�(/))
T<4 (�(/))
4

= 0 .

Proof. By independence of hyper-edges and symmetry of their distribution

Ö
÷

42⇢(�(/))
T<4 (�(/))
4

=
÷

42⇢(�(/))
ÖT<4 (�(/))

4
= 0 .

⇤

6.5.1.2 Encoding tangle-free block non-backtracking hyper walks
Our goal in this section is to define a meaningful notion of tangle-freeness for hyper-walks
in HBNBW2@ ,I and then obtain results along the lines of Lemma 6.19 and Lemma 6.20. For
this we need to introduce additional notions.

Recall each / in HBNBW2@ ,I is a sequence (�1
1, �

1
1, ✓

1
1 , . . . , ✓

2@
I
, �

2@
I+1, �

2@
I+1), which we can

decompose it into subsequences /1, . . . , /2@ 2 HNBW2@ ,I . We can imagine each /8 being
revealed through the following discovering process:

1. At time C8 = 0 we are given multi-indices �81, �
8

1,

2. At time C8 = 9 > 0 we reveal the multi-indices ✓ 8
9
�8
9+1�

8

9+1.

In other words, having �81, �
8

1 as our starting indices, we reveal at each time the multi-
indices involved in the next two hyper-edges of the underlying hypergraph �(/8) of
the subsequence /8 . For each time 1 6 9 6 I, we denote by '89 ✓ [=]3 the sequence of
multi-indices in /8 revealed at time 9, we also use '89 to denote the corresponding multi-set.
We will also refer to '89 as a tuple (of size :). We denote the two hyper-edges revealed with
'89 by ⇢89 =

�
48 , 9 ,1, 48 , 9 ,2

and by �(/8 , 9) the underlying hyper-graph of /8 revealed up to

time 9. We can now extend this idea to /. We discover / by revealing in order /1, . . . , /2@ as
described above. Notice that due to the block condition in Cwe have

–
82[2@] , 92[I] '89 = +(/).

We define the collection of sets '11, . . . , '2@ ,I as R(/). We provides two partitions of R(/).

• For 0 6 B 6 :, '89 2 GB if exactly B indices in '89 did not appear in the sequence /
before. For a subsequence /8 of / we write GB(/8) ✓ GB for the subset of tuples in GB
corresponding to reveals in /8 .

The second partition is:

• For 0 6 B 6 2, '89 2 PB if for the hyper-graph
…

8
0<8 �(/8) � �(/8 , 9 � 1) with

hyper-edge set ⇢ we have
��
⇢ \ ⇢89

�� = 2 � B. That is, '89 2 PB if it reveals B new
hyper-edges.

207

We are now ready to define C-tangle-free non-backtracking hyper-walk. Given / 2
HBNBW2@ ,I we say that the subsequence /8 2 HNBW2@ ,I is C-tangle free if

��T8 :=
�
'89 2 (P2 [P1) \ G0(/8)

 �� 6 C . (6.5.10)

In words, Eq. (6.5.10) is saying that for each /8 the number of tuples '89 that reveal
multi-indices containing indices all already seen in /8 , but which reveal at least one new
hyper-edge, is at most C. We denote by HTGF2@ ,I ,C ✓ HNBW2@ ,I ,C the set of C-tangle-free
non-backtracking hyper-walks. We also use HBTGF2@ ,I ,C ✓ HBNBW2@ ,I to denote the set
of block non-backtracking hyper-walks in which each /8 is in HTGF2@ ,I ,C . If the block
non-backtracking walks in BNBW2@ ,I over A0 only yields C-tangle free sequences, we say A0
is C-tangle-free. Using a similar approach as the one shown in the context of sparse graphs
in Lemma 6.19, we will only need to consider walks in HBTGF2@ ,I ,C

C
for C 6 100 log log =.

Lemma 6.33 (Sparse hyper-graphs are tangle-free). Consider the settings of Theorem 6.27.
Let =�:/2 6 ? 6 =�:/2 log10

= and I 6 log =
50 . Then for C > 100 log log =, A0 is C-tangle free with

probability 1 � >(1).

Proof. Let / 2 HNBW2@ ,I be C-tangled and let E = |+(�(/))|, 4 = |⇢(�(/))|. The probability
that

Œ
42⇢(�(/)) T4 < 0 is ?4 . Now by definition

4 > C +
’

16B<(:+1)/2
|G1(/)| + 2

’
(:+1)/26B6:

|GB(/)| ,

E 6 2 +
’
B6:

B |GB(/)| .

Combining the two we get 4 > C � 3 + 2
:
E . The number of sequences in HNBW2@ ,I over E

indices is at most =E · E:I+(:�1). Thus by union bound

ê

8>><
>>:
9/ 2 HNBW2@ ,I \ HTGF2@ ,I ,C :

÷
42⇢(�(/))

T4 < 0
9>>=
>>;
6

’
C
06C

’
E6:(I+1)�1

=
E · E:(I+1)�1 · ?C�3+ 2

:
E

6
’
C
06C

’
E6:(I+1)�1

⇣
=?

2/:
⌘
E

· E:(I�1)�1 · ?C0�3

6
’
C
06C

⇣
=?

2/:
E

⌘2:I
· ?C0/2

6 2 ·
�
: log =11� : log =

11 · 225:·log(=)·log log =

6 21+ : log =
10 log log =�25: log(=)·log log =

6 >(1) .

⇤

208

For the remainder of the section we set C = 100 log log =. For simplicity we will say that
C-tangle free sequences in HNBW2@ ,I are simply tangle-free, we will drop the superscript C.

Next, we define canonical tangle-free block non-backtracking hyper walks. We use
lexicographic order for the multi-indices: � � � if at each position 8 6 min

�
|� |, |� |

we

have �(8) 6 �(8). We say that / 2 HBTGF2@ ,I is canonical if �1 = (1, . . . , (: � 1)/2) and for
every other multi-index � (including ✓ ’s of multiplicity 1) in the sequence one the following
applies:

(i) all the indices in � already appeared in the sequence,

(ii) indices in � are ordered and consecutive (that is for 8 6
����� � 1, �(8) = �(8 + 1) � 1),

moreover the index �(0) � 1 already appeared in the sequence.

We use H 2@ ,I to denote the set of canonical sequences. As in the context of graphs,
canonical hyper-walks are convenient as each correspond to a representative for a
class of isomorphic hyper-walks. For any canonical sequence over E vertices there are
at most

�
=

E

�
E! 6 =

E isomorphic sequences in HBTGF2@ ,I . We use tuples of the form
 = (E , ,0, . . . , ,: , A0, A1, A2, 31, 32, 4⇤) to encode parameters. Then H2@ ,I(4 ,) is the set
of canonical sequences / such that the underlying hyper-graph �(/) has 4 distinct
hyper-edges, 4⇤ hyper-edges of multiplicity 1 and:’

B6:

B |G |
B
(/) =E

0 6 B 6 : , |GB(/)| =,B
0 6 B 6 2 , |PB(/)| =AB�����

ÿ
16B62

PB(/) \ (
ÿ

16B06:
GB0(/))

����� =31

�����
ÿ

16B62
PB(/) \ G:(/)

����� =32 .

The next result, similar in spirit to Lemma 6.20, upper bounds the number of canonical
sequences.

Lemma 6.34 (Enumeration of canonical sequences). We have

��H 2@ ,I(4 ,)
�� 6

" ÷
16B6:�1

✓✓
:

B

◆
E
B

◆,B #
· E:31 · :4@C · I16@C(32+4)+31

Proof. We can encode each / 2 H2@ ,I(4 ,) by encoding each of the tuple '11, . . . , '2@ ,I .
Notice that since / is canonical we can encode / simply by encoding reveals in

–
B6:�1 GB

(and their position) as for each '89 2 GB we only have one choice for the indices. We can
encode tuples as follows:

209

• For '89 2 GB for 1 6 B < : we have
�
:

B

�
E
B choices for the indices that appeared already.

We need not to specify other indices as the sequence is canonical. There are I ways to
position such tuples in /8 so overall

�
:

B

�
E
B
I possibilities for each such '89 . In conclusion

fixing the cardinalities of G1, . . . ,G: there are
Œ

16B6:�1

⇣ �
:

B

�
E
B
I

⌘ |GB |
choices over /.

• For '89 2 T8 , there are :I possible choices for the vertices in '89 , there are I ways to
position such tuples. So overall there are at most (:I2) choices. By tangle-freeness
there are at most C such '89’s in each /8 and thus

�
:I

2�2@C possibilities over /.

• For '89 2
��–16B62 PB \ (

–
16B06: GB0)

�� we have E: candidate indices and I · 2@ ways
to position the tuple. Overall there are

�
E
:
I2 · @

� |–16B62 PB\(
–

16B063 GB0)| =
�
2E:I@

�
31

possibilities over /.

• For any subsequence '89 , . . . , '8(9+A) of tuples in P0, we only need to encode the
tuples '

8(9+A0) with 0 6 A0 6 A for which at least one of the hyper-edges in ⇢
8(9+A0)

appeared for the first time in the sequence in some '80 90 2
–

16B62 PB \ G: . In
fact we can reconstruct the whole subsequence '89 , . . . , '8(9+A) by the position and
the hyper-edges of these tuples. Each of these '80 90 can only appear at most 2C
times in the subsequence '89 , . . . , '8(9+A) since by assumption /8 is C-tangle-free. For
convention if the subsequence ends in '8I we also specify the hyper-edges revealed
by this tuple. Each subsequence '89 , . . . , '8(9+A) can be position in I different ways
in /8 and has length at most I. Since there are 2@ such /8’s in /, overall we have
I

8@C·2(|–16B62 PA\G: |+1) = I
16@C |–16B62 PA\G: |+2 = I

16@C(32+2) distinct choices.

We deduce that for any valid = (E , ,0, . . . , ,: , A0, A1, A2, 31, 32, 4⇤)

|H (4 ,)| 6
" ÷
16B62

✓✓
:

B

◆
E
B
I

◆,B #
· (:I2)2@C

⇣
2E:I@

⌘
31
I

16@C(32+2)

=

" ÷
16B62

✓✓
:

B

◆
E
B

◆,B #
· E:31 · :4@C · I16@C(32+4)+31

.

⇤

6.5.1.3 Putting things together
We are finally ready to prove Lemma 6.30.

Proof of Lemma 6.30. For /HBNBW2@ ,I we write �8
9
in place of �8

9
(/) to denote multi-indices

in the sequence /. By definition

Tr
⇥ �

BI�1� �BI�1�T⇤ @

210

=
’

/2HBNBW2@ ,I

2@÷
8=1

266664

������
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
,�8
B+1✓

8

B
)

!377775
.

By Lemma 6.33 with probability 1 � >(1),

’
/2HBNBW2@ ,I

2@÷
8=1

266664

������
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
,�8
B+1✓

8

B
)

!377775
=

’
/2HBTGF2@ ,I

2@÷
8=1

266664

������
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
,�8
B+1✓

8

B
)

!377775
.

Now as shown in Eq. (6.5.9)

Ö
’

/2HBTGF2@ ,I

2@÷
8=1

266664

������
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
,�8
B+1✓

8

B
)

!377775
6$(1)2@ · Ö

’
/2HBTGF2@ ,I

T(�1
1 ,�

1
2 ,✓

1
1)
· · ·T(�2@

I
,�

2@
I+1 ,✓

2@
I
) (6.5.11)

+ $(1)2@ · Ö
’

/2HBTGF2@ ,I(C⇤)

���T(�1
1 ,�

1
2 ,✓

1
1)
· · ·T(�2@

I
,�

2@
I+1 ,✓

2@
I
)

��� . (6.5.12)

We start by studying Eq. (6.5.11). By Fact 6.32 we only need to consider hyper-walks
/ 2 HBTGF2@ ,I with at most 2@: distinct hyper-edges since each hyper-edge must have
multiplicity at least 2 in the underying hyper-graph �(/). Thus we can upper bound
Eq. (6.5.11) with ’

462@I ,E>0
,: ,... ,,1>0
A2 ,A1 ,A0>0
31 ,32>0

=
E · ?4 · |H (4 ,)| =

’
462@I ,

=
E · ?4 · |H (4 ,)| ,

where the right-hand side is a simple rewriting for compactness. Since for any / 2
HBTGF2@ ,I we have

E =
’
86:

B |GB |

4 = 2
’

(:+1)/26B6:
|GB | +

������
ÿ

16B62
PB 6

©≠
´

ÿ
(+1)/26B063

GB0™Æ
¨

������ ,
it follows using Lemma 6.34’
462@I ,

=
E · ?4 · |H (4 ,)|

211

6
’

462@I ,
=
E · ?4 ·

" ÷
16B6:�1

✓✓
:

B

◆
E
B

◆,B #
· E:31 · :4@C · I16@C(32+4)+31

6 2
’

462@I ,

÷
(:+1)/26B6:

✓✓
:

B

◆
E
B
=
B
?

2
◆,B

·
÷

16B<(:+1)/2

✓✓
:

B

◆
E
B
=
B
?

◆,B
·
⇣
E
:
?

⌘
31
· :4@C · I16@C(32+4)+31

| {z }
=:!(4 ,)

.

It is easy to see that this is a geometric sum. Using the assumptions ? > =
�3/2

= , I 6
log = , @ 6 log =

(103 log log =)2 and C = 100 log log =, as : 6 $(log =) we have that decreasing ,B in

 and increasing ,B�1 with (: + 1)/2 < B 6 : to obtain 0 we have

!(4 ,)
!(4 , 0) >

=

E · : · I8@C > $(1) .

Similarly, decreasing ,B in and increasing ,B�1 with 1 < B < (: + 1)/2 to obtain 0 we
have

!(4 ,)
!(4 , 0) >

=

E · : · I8@C > $(1) .

Finally, decreasing ,: in and increasing any ,B with 1 6 B < (: + 1)/2 to obtain 0 we get

!(4 ,)
!(4 , 0) >

=
:�(:�1)/2

?�
:

:�1
2

�
· E: · : · I8@C

>
p
=

(2E): · I8@C
> $(1) .

Thus as
Õ
B6: |G: | 6 @I we have

’
462@I ,

=
E · ?4 · |H (4 ,)| 6

⇣
=
:
?

2
⌘
@I

· $
�
I

65@C �
,

where we also accounted for the $(1)2@ multiplicative factor. The argument for Eq. (6.5.12)
is similar. We can upper bound Eq. (6.5.12) by

’
4
⇤62@I

’
462@I+4⇤ ,

=
E�:4⇤ · ?4 · |H (4 ,)| ·

�
2(:!)@:=

�
4
⇤

where we used the crucial fact that for any / 2 HBTGF2@ ,I(C⇤) any tuple (�, �, ✓)
appearing an odd number of times must satisfy

��
((�, �, ✓) \ ((�81, �82, ✓ 81)

�� > : � 1 or��
((�, �, ✓) \ ((�81, �82, ✓ 81)

�� > : � 1 and thus the number of possible choices for those indices
is at most (2(:!)@:=). Repeating the analysis above the result follows. ⇤

212

6.6 Strong refutations for random CSPs
Theorem 6.22 can also be used to obtain strong refutations for random CSPs. Similar
reductions appeared already in the literature (e.g. [AOW15]), however we crucially exploits
the sharp novel bound in Theorem 6.22 to obtain stronger results as in Theorem 6.2. We
use the notation introduced in Section 6.2.1.

Theorem 6.35. Let % : {�1,+1}: ! {0, 1} be a predicate. Consider a random instance I ⇠
FCSP(P)(= , ?) for odd : > 3. For = large enough, there exists a universal constant ⇠ > 0 and a
polynomial time algorithm that, if

? >
⇠ · =�:/2

⌘2

certifies with probability 0.99 that

OptI 6 Ö
zD.0.A⇠ {±1}:

[%(z)] + $(⌘) .

Recall from Section 6.2.1 that we can represent the predicate % as a multi-linear
polynomial of degree :,

%(2 � G�) =
’
36:

%3(2 � G�) ,

where %3 denotes the degree 3 part of the predicate. In particular %0 := %0(2 � G�) denotes
the constant part of the polynomial, which does not depend on the assignment and the
negative pattern. For a instance I with < constraints, we define

(I(G) :=
’

(2 ,�)2I

’
1636:

%3(2 � G�) .

Notice that by definition, for any fixed G 2 {±1}= it holds

(I(G) = < · (ValI(G) � %0) = < ·

ValI(G) � Ö

zD.0.A⇠ {±1}:
[%(z)]

!
,

where we used the fact that for every 1 6 3 6 :, ÖzD.0.A⇠ {±1}: [%3(z)] = 0 by symmetry. Thus
to obtain Theorem 6.35 it suffices to obtain a tight upper bound on max

G2{±1}= (I (G) for
I ⇠ FCSP(P)(= , ?). We further write (I ,3(G) to denote the degree 3 6 : part of (I(G). We
then have (I(G) =

Õ
36: (I ,3(G). We can write (I ,3(G) as a = b3/2c-by-= d3/2e matrix "I ,3 such

that (I ,3(G) = hG⌦b3/2c
,"I ,3G⌦d3/2ei for any G 2 í= . The next lemma, provides a rough

bound on the spectral norm of each "I ,3 when I ⇠ FCSP(P)(= , ?). We remark that these
bounds on (I ,3(G) are significantly less sharp than Theorem 6.22, nevertheless they will be
good enough for our needs.

213

Lemma 6.36. Consider the settings of Theorem 6.35. For some 3 < : let "I ,3 be the = b3/2c-by-
=
d3/2e matrix representing (I ,3. Then with probability 1 � =⌦(1),

��
"I ,3

�� 6 $
✓q
? · 2: · =:�b3/2c + 1

◆p
log = , .

Proof. Let 0 6 � 6 $(1) be the largest coefficient in absolute value in the polynomial %(I),
for any I 2 {±1}: . For each � 2 [=]: and 2 2 {±1}: let M(2 ,�) be the = b3/2c ⇥ = d3/2e matrix
flattening of %3(2 � G�) so that

%3(2 � G�) = hG⌦b3/2c
,M(2 ,�)G

⌦d3/2ei ,

for any G 2 í= . We use the decomposition

"I ,3 =
’

(2 ,�)2{±1}:⇥[=]:
M(2 ,�) .

Now each M(2 ,�) satisfies, for any �1, �01 2 [=]b3/2c and �2, �02 2 [=]d3/2e

Ö
h �

M(2 ,�)
�
�1�2

i
= 0

if (�1, �2) < � , ê
h �

M(2 ,�)
�
�1�2

< 0
i
= 0

if (�1, �2) = � , ê
h �

M(2 ,�)
�
�1�2

< 0
i
6 ?��� �M(2 ,�)

�
�1�2

��� 6 �

for �1 < �01 and �2 < �02 , Ö[
�
M(2 ,�)

�
�1�2

�
M(2 ,�)

�
�01�

0
2
] = 0 .

We can thus apply Bernstein’s inequality for matrices as in Theorem D.7. We have

�2 :=max
8>><
>>:

������
’
(2 ,�)
ÖM(2 ,�)MT

(2 ,�)

������ ,
������
’
(2 ,�)
ÖMT

(2 ,�)M(2 ,�)

������
9>>=
>>;

6? · �2 · 2: · =:�b3/2c
.

Thus choosing C = $

⇣p
? · �2 · 2: · =:�b3/2c + �

⌘p
log = the result follows. ⇤

We can now prove the main theorem of the section.

Proof of Theorem 6.35. As for Theorem 6.21, we focus on the case ? 6 =�:/2 polylog(=) as for
larger ? results are known already [AOW15]. Moreover with high probability the number
of clauses in I is < = (1 + >(1))?=: . For any G 2 {±1}= we have

ValI (G) = Ö
zD.0.A⇠ {±1}:

[%(z)] + 1
<

’
1636:

(I ,3(G) .

214

By Lemma 6.36, with probability at least 1 � :=�⌦(1) = 1 � >(1),

max
G2{±1}=

1
<

’
163<:

(I ,3(G) 6
1
<

’
163<:

=
3/2 ·

��
"I ,3

��

6
1
<

’
163<:

=
3/2 · $

✓q
? · 2: · =:�b3/2c + 1

◆p
log =

6
’

163<:
=
�:/2+3/2�:/4+:/2� b3/2c

2 · 2:/2 · polylog(=)

6 $
⇣
=
� :4+

d3/2e
2

⌘
polylog(=)

6 >(1) .

Applying Theorem 6.22 to max
G2{±1}= (I ,:(G) the desired bound on OptI follows. Finally,

we also immediately obtain a polynomial time applying any efficient method to certify the
spectral norm of

Õ
3<: "I ,3. ⇤

6.7 Algorithm for k-XOR with adversarial signs
In this section, we exploit the bounds obtained in Section 6.5 to design a polynomial time
algorithm that, given a semi-random :-XOR instance I with = variables and arbitrary
(possibly adversarial) signs, achieves a (1 � ⌘)-approximation in time =$(:/⌘2). We start by
defining the semi-random model of interest.

Definition 6.37 (Semi-random :-XOR). A semi-random :-XOR instance I with = variables
and < := ?

�
=

:

�
(1 ± >(1)) clauses can be generated through the following process:

(i) Pick a random symmetric tensor T0, with independent entries, such that T0� = 0 if the
indices in the multi-index � 2 [=]: are not distinct and otherwise:

T0� =

8>>><
>>>:

0 with probability 1 � ? ,
+1 with probability ?/2 ,

�1 with probability ?/2 .

(ii) Given T0, pick an arbitrary binary function (possibly chosen adversarially from T0)
� : [=]: ! {±1} and let) be the tensor with entries)� := �(�)T0� .

I consists of the :-XOR predicates :-XOR(�) = 1�G�(�))�
2 = 1��(�)·G�(�T0)�

2 where T0� is
non-zero.

For a semi-random instance I, we denote by <(I) the exact number of clauses in the
instance. For convenience, we denote by T0I and �I respectively the random tensor and
the adversarial binary function associated to I. We also use)I to denote the tensor with

215

entries ()I)� := �(�)(T0I)� . When the context is clear we drop the subscripts. The max
:-XOR problem is that of finding an assignment with value

OptI := 1
<(I) max

G2{±1}=

’
�2[=]:

)�G
� =

1
<(I) max

G2{±1}=

’
�2[=]:

�(�) · T0�G� .

With the above objective and adversarial model and in mind, we prove the following
theorem, which implies Theorem 6.3.

Theorem 6.38. Let = , : be positive integers, ⌘ > 0 , = and =�:/2/⌘2 < ?(=) := ? < 1. Let I be a
semi-random :-XOR instance with parameters = , ? as in Definition 6.37. There exists a randomized
algorithm (Algorithm 6.41), running in time =$(:/⌘2), that returns an assignment x̂ satisfying

ValI(x̂) > OptI � $(⌘) ,

with probability at least 0.99.

Before proving the result, we introduce some additional notation. We focus on the
settings with odd :, since for even : Theorem 6.38 is implied by [AJT19]. We denote by QC
the set of degree-C pseudo-distributions in indeterminates G1, . . . , G= satisfying

�
G

2
8
= 1 ,88 2 [=]

.

We write G = (G1, . . . , G=). Let I be a :-XOR instance for odd : > 3 and let)I 2 í=
⌦: be the

associated tensor. As usual, when the context is clear we drop the subscript. Throughout
the rest of the section we also use the symbols �, � to denote multi-indices in [=]@ , for
some @ 2 é. For an index ✓ 2 [=] and multi-indices �, �0 2 [=] :�1

2 , we write (", "0, ◆) ⇠)
to denote an entry picked uniformly at random among the non-zero entries of). For an
assignment G 2 {±1}= ,Ö(","0,◆)⇠) G("."

0
,◆) is the expectation of the monomial G("."0,◆) for the

uniform distribution over all non-zero entries of) . For a fixed ✓ 2 [=], we write (", "0) ⇠)✓
to denote a non-zero entry in) picked uniformly at random among those containing index
✓ . Furthermore, we denote by ⇡()) the distribution over [=] such that, for each ✓ 2 [=], its
probability is proportional to the number of non-zero entries in) with index ✓ . Therefore,
we have

Ö
(","0,◆)⇠)

G
(","0,◆) = Ö

◆⇠⇡())
Ö

(","0)⇠)◆
G
(","0,◆)

.

Finally, we introduce the following crucial definitions.

Definition 6.39 (Local correlation). Let C > 2. Let) 2 í=⌦: be a symmetric tensor. Let
⇠ 2 QC , we define the local correlation of ⇠ on) to be

LC)(⇠) := Ö
◆⇠⇡())

Ö
(","0)⇠)◆
(#,#0)⇠)◆

Ö̃
⇣
G
(","0,#,#0) � 2G(","0)Ö̃G#Ö̃G#0 + Ö̃G"Ö̃G"0Ö̃G#Ö̃G#0

⌘

216

For an instance I as in Definition 6.37 we interchangeably use LCI(⇠), LCT0(⇠) and
LC)(⇠).

Definition 6.40 (Global correlation). Let C > 2. Let ⇠ 2 QC , we define the global correlation
of ⇠ to be

GC(⇠) := Ö
◆⇠[=]

Ö
(","0)⇠[=]:�1

(#,#0)2[=]:�1

���Cov⇠

⇣
G
(","0)

, G
(#,#0)

⌘��� + ��Cov⇠
�
G
"
, G

#� �� + ���Cov⇠

⇣
G
"0
, G

#0
⌘��� .

Our proof of Theorem 6.38 will be inspired by the local correlation to global correlation
approach of [BRS11]. First, we show that if we can find a pseudo-distribution in QC with
local correlation at most ⌘2, then we can obtain the desired approximation. Second, we
argue that we can always find a pseudo-distribution in QC with low global correlation.
Finally, using Theorem 6.22, we show that high local correlation implies high global
correlation. This will yield the desired result.

We start by present the algorithm behind Theorem 6.38. Its correctness is then analyzed
in the subsequent sections.

Algorithm 6.41 (Algorithm for semi-random :-XOR).
Input: A :-XOR instance I as in Definition 6.37, ⌘ > 0 , C > ⌦(:/⌘2).
Output: assignment x̂ 2 {±1}=
Operations:

1. Find a pseudo-distribution ⇠ 2 QC maximizing Ö(","0,◆)⇠) Ö̃⇠G
(","0,◆), for large

enough C > ⌦(:/⌘2) .

2. If GC(⇠) > ⌘2, let -0 be the pseudo-distribution returned by Algorithm 6.43 on
input ⇠.

3. For each 8 2 [=], set x̂8 = 1 with probability 1+Ö̃-0G8
2 and �1 otherwise. Return x̂ .

Remark 6.42 (Running time). Finding a pseudo-distribution in QC requires time =$(:/⌘2)
.

Step 2 is repeated at most $(1) times. The first part can be checked in time =$(:/⌘2) and
the second depends on the running time ' of Algorithm 6.43. Finally, step 3 requires time
$(=). All in all the algorithm takes time =$(:/⌘2) + ' .

A crucial building block of Algorithm 6.41 is the subroutine below, used to find a
pseudo-distribution in QC with low global correlation. The idea behind its approach is
that, conditioning our pseudo-distribution, we can obtain a new pseudo-distribution
"significantly closer" to a product distribution. We analyze the guarantees of Algorithm 6.43
in Section 6.7.2.

217

Algorithm 6.43 (Driving down global correlation).
Input: pseudo-distribution ⇠ 2 QC
Output: pseudo-distribution -0 2 Q

C�:/⌘2

Operations:

0. Set ⇠0 = ⇠ . Sequentially repeat for both 2 2
�
: � 1, :�1

2

on input ⇠0.

(a) Pick uniformly at random "1, . . . , "⇠/⌘2 2 [=]2 , for a large enough constant
⇠.

(b) Sequentially set

x"8 =

(
1 , with prob. 1+Ö̃⇠[G"8 |x"1 ,...,x"8�1]

2
�1 , otherwise.

(c) For 8 2 [⇠/⌘2], let -8 be the pseudo-distribution obtained from -0 condition-
ing on the sampled values of x"1

, . . . , x"8�1 .
(d) Find -0 among {-8}82[⇠/⌘2] minimizing

Ö
","02[=]c

Cov-0

⇣
G
"
, G

"0
⌘2

�
.

1. Return -0 .

Remark 6.44 (Running time). It suffices to consider steps (0)-(3). The first two steps of the
algorithm require time $(=$(:)

⇠/⌘2). In the third step we can compute each -8 in time
=
$(:/⌘2) and there are $(⇠/⌘2) of them. The last step also takes time =$(:/⌘2).

6.7.1 Rounding with low local correlation
We show here that, given a pseudo-distribution with low local correlation, the rounding
step provides nearly optimal guarantees.

Lemma 6.45 (Low local correlation rounding). Consider the settings of Theorem 6.38. Let C > 2:
and ⇠ 2 QC . Let I be a semi-random :-XOR instance with parameters = , ? as in Definition 6.37.
Let) be the associated tensor. Suppose LC)(⇠) 6 ⌘2

. Then the last step in Algorithm 6.41 outputs
an assignment x̂ satisfying

ValI(x̂) > OptI � $(⌘) ,

with probability at least 0.99.

218

Proof. By Markov’s inequality, it will suffices to show that

Ö
(","0,◆)⇠)

�(", "0, ◆)
⇣
Ö̃G(","

0
,◆) � Ö̃G"Ö̃G"0Ö̃G◆

⌘
6 $(⌘) .

So applying Fact 2.12, since C > 2: and for any 0 6 2 6 1 we have 22 6 2 ,

Ö
(","0,◆)⇠)

�(", "0, ◆)
⇣
Ö̃G(","

0
,◆) � Ö̃G"Ö̃G"0Ö̃G◆

⌘

= Ö̃ Ö
◆⇠⇡())

Ö
(","0)⇠)◆

�(", "0, ◆)
⇣
G
(","0,◆) � Ö̃G"Ö̃G"0Ö̃G◆

⌘

= Ö̃ Ö
◆⇠⇡())

Ö
(","0)⇠)◆

�(", "0, ◆)G◆
⇣
G
(","0) � Ö̃G"Ö̃G"0

⌘

6

s
Ö̃ Ö

◆⇠⇡())

✓
Ö

(","0)⇠)◆
�(", "0, ◆)G◆

◆2
s
Ö̃ Ö

◆⇠[=]

✓
Ö

(","0)⇠)◆
G
(","0) � Ö̃G"Ö̃G"0

◆2

6

s
Ö̃ Ö

◆⇠⇡())

✓
Ö

(","0)⇠)◆
G
(","0) � Ö̃G"Ö̃G"0

◆2

= LC)(⇠)1/2
.

⇤

6.7.2 Driving down global correlation
Here we show that, via Algorithm 6.43, we can always efficiently obtain a pseudo-
distribution in QC with low global correlation. Concretely, we prove the following statement.

Lemma 6.46 (Driving down global correlation). Consider the settings of Theorem 6.38. Let
C > ⇠ · :/⌘2, for a large enough constant ⇠ . Let ⇠ 2 QC be the pseudo-distribution in input for Step
2 of Algorithm 6.41 and let -0 2 Q: be its output. Then with probability at least 0.998, it holds that
GC(-0) 6 ⌘2

.

We need an intermediate observation to prove the lemma: a simple, yet crucial, statement
about the covariance of (pseudo)distributions after conditioning [BRS11, RT12, MR16].

Lemma 6.47 (See [Sch22]). Let 0 6 @ < C � 2 and let 0 < 2 < (C � @)/2 . Let ⇠ be a
pseudodistribution in QC . Let i1, . . . , i✓ be indices sampled uniformly at random from [=] without
replacement. Suppose we sequentially set, for all @ 6 ✓ ,

xi@ =

8>><
>>:

1 , with prob.
1+Ö̃⇠

h
xi@

���xi1 ,...,xi
@�1

i
2

�1 , otherwise.

Then there exists some @ 6 ✓ such that

Ö
xi1 ,...,xi@

Ö
","02[=]2

⇣
Ö̃⇠

⇥
x"x"0 � Ö̃x"Ö̃x"0

�� xi1 , . . . xi@
⇤2⌘
6

2 log 2
✓

.

219

We can use this result to argue that Algorithm 6.43 decreases global correlation. Thus
proving Lemma 6.46.

Proof of Lemma 6.46. Consider without loss of generality the iteration of Algorithm 6.43
with 2 = :�1. The argument for 2 = :�1

2 is analogous. Let ⇠ 2 QC be the pseudo-distribution
in input and let -0 2 Q

C�:/⌘2 be its output. It suffices to show that for a large enough constant
⇠ > 1, chosen by Algorithm 6.43, with probability at least 0.999, it holds:

Ö
","0⇠[=]:�1

Cov-0

⇣
G
"
, G

"0
⌘2

�
6

1
10⌘2 .

This follows immediately by Lemma 6.47 and Markov’s inequality.By union bound over
the two iterations of the algorithm, the result follows. ⇤

6.7.3 From local correlation to global correlation
In this section we obtain Theorem 6.38. We start introducing some additional notation. Let
@ 2 é, let ⇠ 2 QC for some C > 2@. For each �, �0 2 [=]@ , let H(�,�0) = G

(�,�0) � Ö̃⇠G
�Ö̃⇠G

�0.
Furthermore, recall that we may specify any semi-random instance I by the pair (�,T0)
where � : [=]: ! {±1} and T0 is a random symmetric tensor in í=⌦@ , as specified in
Definition 6.37. Then we may write

LCT0(⇠) = Ö
◆2⇡(T0)

Ö
(","0)⇠T0◆
(#,#0)⇠T0◆

Ö̃
⇣
G
(","0,#,#0) � 2G(","0)Ö̃G#Ö̃G#0 + Ö̃G"Ö̃G"0Ö̃G#Ö̃G#0

⌘

= Ö
✓⇠⇡(T0)

Ö̃
✓
Ö

(","0)⇠T0
✓

H
(","0)

◆2

= Ö
✓⇠⇡(T0)

Ö
(","0)⇠T0◆
(#,#0)⇠T0◆

Ö̃H(","
0)
H
(#,#0)

. (6.7.1)

Now, Eq. (6.7.1) can be rewritten as the matrix product hA,-i where - 2 í=:�1⇥=:�1 is the
positive semidefinite matrix with entries -(�,�),(�0,�0) := Ö̃H(�,�0)H(�,�0) and A is a random
matrix with entries

A(�,�),(�0,�0) /
’
✓

T0(�,�0,✓)T
0
(�,�0,✓) . (6.7.2)

Similarly, we may rewrite

Ö
◆⇠[=]

Ö
(","0)⇠[=]:�1

(#,#0)⇠[=]:�1

Ö̃
⇣
G
(","0,#,#0) � 2G(","0)Ö̃G#Ö̃G#0 + Ö̃G"Ö̃G"0Ö̃G#Ö̃G#0

⌘
= h�̄ ,-i ,

where �̄ is the normalization of the all-ones matrix �. We can now use this notation to prove
the following two statements, which will allow us to relate local and global correlation.

220

Lemma 6.48. Consider the settings of Theorem 6.38. Let - 2 í=:�1⇥=:�1 be a positive semi-definite
matrix satisfying k-kmax 6 $(1) . For a semi-random instance I as in Definition 6.37, let A be
the associate matrix as defined in Eq. (6.7.2). Then, with probability at least 0.999

hA � �̄ ,-i 6 $(⌘2) .

Proof. Recall, for any matrix " we used the notation k"kGr =
max{h" ,-i | - ⌫ 0,-88 6 1 ,88 2 [=]} . Observe that by Cauchy-Schwarz and
Grothendieck’s inequality

hA � �̄ ,-i 6 k-kmax ·
��A � �̄

��
Gr 6 $(

��A � �̄
��
1!1) .

Thus it remains to bound
��A � �̄

��
1!1. Define A⇤ to the be matrix with entries

A⇤(�,�),(�0,�0) =

(
(A � �̄)(�,�),(�,�0) if |((�, �0) \ ((�, �0)| = ;
0 otherwise.

By the triangle inequality��A � �̄
��
1!1 6 kA

⇤k1!1 +
��A � �̄ �A⇤

��
1!1 .

Now ��A � �̄ �A⇤
��
1!1 6

’
�,�,�0,�

��A � �̄ �A⇤
��
(�,�),(�0,�0)

6
’

�,�,�0,�
s.t. ((�,�0)\((�,�0)<;

��A(�,�),(�0,�0)
�� + ��

�̄(�,�),(�0,�0)
��
.

The first term can be shown to be >(1) repeating the argument of Lemma 6.25. The second
term is a sum of at most =2:�3 elements of value at most $(=�2:+2) and thus also >(1). It
remains to bound kA⇤k1!1. Here A⇤ satisfies the premises of Lemma 6.24 and thus for
? > =�:/2/⌘2 we immediately get��A � �̄ �A⇤

��
1!1 6 $(⌘2) + >(1)

with probability at least 0.999 over the draw of T. ⇤

Next we show that h�̄ ,-i is a lower bound to the global correlation.

Lemma 6.49. For a semi-random instance I as in Definition 6.37, let A be the associate matrix as
defined in Eq. (6.7.2). Let ⇠ be a pseudo-distribution of degree at least 2:, and let - 2 í=:�1⇥=:�1 be
the positive semi-definite matrix satisfying

LCT(⇠) = hA,-i .

Then

h�̄ ,-i = Ö
◆⇠[=]

Ö
(","0)⇠[=]:�1

(#,#0)⇠[=]:�1

Ö̃
⇣
G
(","0,#,#0) � 2G(","0)Ö̃G#Ö̃G#0 + Ö̃G"Ö̃G"0Ö̃G#Ö̃G#0

⌘
6 GC(⇠) .

221

Proof. For fixed ✓ , �, �0, �, �0 we may rewrite

Ö̃
⇣
G
(�,�0,�,�0) � 2G(�,�0)Ö̃G�Ö̃G�0 + Ö̃G�Ö̃G�0Ö̃G�Ö̃G�0

⌘

6 Ö̃
⇣
G
(�,�0,�,�0) � G(�,�0)Ö̃G�Ö̃G�

⌘
� Cov⇠

⇣
G
�
, G

�0
⌘

6 Ö̃
⇣
G
(�,�0,�,�0) � G(�,�0)Ö̃G�Ö̃G�

⌘
+

���Cov⇠

⇣
G
�
, G

�0
⌘��� .

Furthermore

Ö̃
⇣
G
(�,�0,�,�0) � G(�,�0)Ö̃G�Ö̃G�

⌘

= Ö̃
⇣
G
(�,�0,�,�0) � G(�,�0)Ö̃G�Ö̃G�

⌘
+ Ö̃G(�,�0)Ö̃G(�,�0) � Ö̃G(�,�0)Ö̃G(�,�0)

= Cov⇠

⇣
G
(�,�0),G(�,�0)

⌘
� Ö̃G(�,�0)Cov⇠

⇣
G
�
, G

�0
⌘

6
���Cov⇠

⇣
G
(�,�0),G(�,�0)

⌘��� + ���Cov⇠

⇣
G
�
, G

�0
⌘��� .

The result follows. ⇤

We are finally ready to prove the theorem.

Proof of Theorem 6.38. Let - be the pseudo-distribution used by Algorithm 6.41 in the last
step. By Lemma 6.46, with probability at least 0.999, it satisfies GC(-) 6 ⌘2. Combining
Lemma 6.48 and Lemma 6.49 it follows that LCI(-) 6 $(⌘2). We obtain the desired result
applying Lemma 6.45. ⇤

6.8 Algorithm for CSPs with adversarial signs
patterns

We sketch here how to extend Theorem 6.38 to arbitrary predicates –with adversarial sign
patterns– on : Boolean variables. We start by introducing the model.

Definition 6.50. Let % : {�1, 1}: ! {0, 1}. A semi-random :-CSP instance I with =

variables and < := ? · 2: · =:(1 ± >(1)) constraints can be generated as follows.

(i) Pick independently with probability ? each pair (c0, ") where c0 is a random negation
pattern from {±1}: and " is a multi-index from [=]: ,

(ii) Given the < pairs, replace each such c0 with an arbitrary, possibly adversarially
chosen, negation pattern 2.

(iii) For each pair (2 , ") add the constraint %(2 � G") = 1 to I.

We prove the following theorem, which implies Theorem 6.4.

222

Theorem 6.51. Let = , : be positive integers, ⌘ > 0 , = and =�:/2/⌘2 < ?(=) := ? < 1. Let
% : {±1}: ! {0, 1} be a predicate. Let I be a ⇠(%(%) instance with parameters = , ? as in
Definition 6.50. There exists a randomized algorithm (Algorithm 6.52), running in time =$(:2/⌘2),
that returns an assignment x̂ satisfying

ValI(x̂) > OptI � $(⌘) ,

with probability at least 0.99.

Given a predicate % : {±1}: ! 0, 1, for each 2 2 {±1}: and � 2 [=]: we may rewrite

%(2 � �) =
’
�✓�

@� · �(�) · G� ,

where @� is a constant coefficient and �(�) 2 {±1} . For an instance I, and 3 6 :, let
"(3,I) 2 í=⌦3 be the tensor with entries "�(3,I) = @ where @ is the number of pairs such
that (2 , �) 2 I with � ✓ � and the corresponding coefficient @� in %(2 � �) is non-zero.
Furthermore, let ⇡(I , 3) be the distribution over indices in [=] such that the probability
of ✓ 2 [=] is proportional to the fraction of pairs (2 , �) 2 I with ✓ ✓ �. Then we write
)(3,I)✓ for the set of multi-indeces (�, ✓) corresponding to non-zero in)(3,I) . We can
now introduce new notions of local and global correlation. Let ⇠ 2 QC for some C > 2:. For
even 3 6 : let

LCI(⇠, 3) :=
✓

Ö
(","0)⇠)(3,I)

���Cov⇠

⇣
G
"
, G

"0
⌘���
◆2

GC(⇠, 3) :=
✓

Ö
","0⇠[=]3/2

���Cov⇠

⇣
G
"
, G

"0
⌘���
◆2

.

For odd 3 6 : let

LCI(⇠, 3) := Ö
◆⇠⇡(I ,3)

Ö
(","0)⇠)(3,I)✓
(#,#0)⇠)(3,I)✓

Ö̃
⇣
G
(","0,#,#0) � 2G(","0)Ö̃G(#,#0) + Ö̃G"Ö̃G"0Ö̃G#Ö̃G#0

⌘

GC(⇠3) := Ö
◆2[=]

Ö
(","0)⇠[=]3�1

(#,#0)⇠[=]3�1

���Cov⇠

⇣
G
"
, G

"0
⌘��� + ���Cov⇠

⇣
G
#
, G

#0
⌘��� + ���Cov⇠

⇣
G
(","0)

, G
(#,#0)

⌘��� .

Both the algorithm and the proof structure closely resemble the ones used for Theo-
rem 6.38, so we only discuss the steps that differ. We start by presenting the algorithm.

223

Algorithm 6.52 (Algorithm for semi-random :-XOR).
Input: A :-CSP instance I as in Definition 6.50, ⌘.
Output: assignment x̂ 2 {±1}=
Operations:

1. Find a pseudo-distribution ⇠ 2 QC maximizing Ö(2 ,")⇠I Ö̃⇠%(2 � "), for large
enough C > ⌦(:/⌘2) .

2. If GC(⇠) > ⌘2, let -0 be the pseudo-distribution returned by Algorithm 6.53 on
input ⇠.

3. For each 8 2 [=], set x̂8 = 1 with probability 1+Ö̃-0G8
2 and �1 otherwise. Return x̂ .

Algorithm 6.53 (Driving down global correlation).
Input: pseudo-distribution ⇠ 2 QC
Output: pseudo-distribution -0 2 Q

C�:/⌘2

Operations:

0. Set ⇠0 = ⇠ . Sequentially repeat for 3 2 [:] on input ⇠0.

(a) Let ⇠ be a large enough constant. Let @ = ⇠ · :/⌘2. Pick uniformly at random
"1, . . . , "@ 2 [=]3.

(b) Sequentially set

x"8 =

(
1 , with prob. 1+Ö̃⇠[G"8 |x"1 ,...,x"8�1]

2
�1 , otherwise.

(c) For each 8 2 [@], let -8 be the pseudo-distribution obtained from -0 condi-
tioning on the sampled values of x"1

, . . . , x"8�1 .
(d) Find -0 among

�
-8

82[@] minimizing

Ö
","02[=]3

Cov-0

⇣
G
"
, G

"0
⌘2

�
.

1. Return -0 .

Remark 6.54 (Running time). The running time of steps (a)-(d) is at most $(=:2/⌘2). The
steps are called : times so overall the running time is $(=:2/⌘2).

Rounding with low local correlation. The next result is the CSP version of Lemma 6.45.

224

Lemma 6.55 (Low local correlation rounding). Consider the settings of Theorem 6.51. Let C > 2:
and ⇠ 2 QC . Let I be a semi-random :-CSP instance with parameters = , ? as in Definition 6.50.
Let) be the associated tensor. Suppose

Õ
36: LCI(⇠, 3) 6 ⌘2. Then the last step in Algorithm 6.52

outputs an assignment x̂ satisfying

ValI(x̂) > OptI � $(⌘) ,

with probability at least 0.99.

Proof. By Markov’s inequality it suffices to show that

Ö
(c,")⇠I

��Ö̃⇠%(c � ") � %
�
c � ", ⇠

� �� 6 $
 ’
36:

q
LCI(⇠, 3)

!
6 $(⌘) .

To do so we may rewrite

Ö
(c,")⇠I

��Ö̃⇠%(c � ") � %
�
c � ", ⇠

� �� 6 Ö
(c,")⇠I

’
�✓"

$(1)

������Ö̃G
� �

÷
12�
Ö̃G1

������ .
Now, using a derivation as in Lemma 6.45 the result follows. ⇤

Driving down global correlation. Next we analyze the guarantees of Algorithm 6.53
and obtain a statement resembling Lemma 6.46.

Lemma 6.56 (Driving down global correlation). Consider the settings of Theorem 6.51. Let
C > ⇠ · :2/⌘2, for a large enough constant ⇠. Let ⇠ 2 QC be the pseudo-distribution in input for
Step 2 of Algorithm 6.52 and let -0 2 Q: be its output. Then with probability at least 0.998, it holds
that

Õ
36: GC(-0, 3) 6 ⌘2

.

Proof. For the iteration with 3 = :, we know by the proof of Lemma 6.46 that with
probability at least 0.999 it holds:

Ö
","0⇠[=]:�1

Cov-0

⇣
G
"
, G

"0
⌘2

�
6

1
10⌘2 .

So consider now the other iterations. Repeating the analysis as in the previous case, we
have that in expectation, for each 3 < :

Ö
","0⇠[=]3

Cov-0

⇣
G
"
, G

"0
⌘2

�
6

1
10000:⌘2 .

By linearity of expectations, applying Markov’s inequality we get
’
36:

Ö
","0⇠[=]3

Cov-0

⇣
G
"
, G

"0
⌘2

�
6

1
10⌘2 ,

with probability at least 0.998. ⇤

225

From local correlation to global correlation. As in the case of k-XOR, for odd 3 6 : we
may rewrite

LCI ,3(⇠) = hA3 ,-3i

for a positive semidefinite matrix -3 and a matrix A with entries

A(�,�),(�0,�0) /
’
✓

"(�,�,✓)(3, I 0) ·"(�,�0,✓)(3, I 0) .

Similarly we may write

Ö
◆⇠[=]

Ö
(","0)⇠[=]:�1

(#,#0)⇠[=]:�1

Ö̃
⇣
G
(","0,#,#0) � 2G(","0)Ö̃G(#,#0) + Ö̃G"Ö̃G"0Ö̃G#Ö̃G#0

⌘
= h�̄ ,-3i .

Moreover, by the analysis in Lemma 6.49, we have for all odd 3 6 :

h�̄ ,-3i 6 GC(⇠, 3) .

It remains to prove an analogue of Lemma 6.48.

Lemma 6.57. Consider the settings of Theorem 6.38. Let ⇠ be a pseudo-distribution in QC for
some C > 2: . Suppose GC(⇠, 3) 6 ⌘2 for all 3 6 :. Then, with probability at least 0.998 over the
randomness of the instance I, for all 3 6 :,

LCI(⇠, 3) 6 $(⌘2) . (6.8.1)

Proof. By Lemma 6.57, Eq. (6.8.1) holds with probability 0.999 for 3 = : . Now, for odd
3 < :, a similar analysis combined with the bounds of Lemma 6.36 implies Eq. (6.8.1)
with probability 1 � >(1). For even 3 we instead combine Eq. (6.8.1) with the standard
local-to-global correlation result (e.g. see Lemma 4.1 in [BRS11]). Taking a union bound
over all 3 6 : the result follows. ⇤

Finally, Theorem 6.51 immediately follows combining Lemma 6.55, Lemma 6.56 and
Lemma 6.57.

226

Part II

Privacy from robustness

227

Chapter 7

Private algorithms for stochastic block
models and mixture models

In this chapter, based on [CCAd+23], we continue our discussion around the relationship
between privacy and robustness, proving Theorem 1.9 and Theorem 1.8. We restate the
theorems and the state-of-the-art to provide a more detailed comparison.

Stochastic Block model. We consider the two-community model already discussed in
Chapter 1, Chapter 4 and Chapter 5. We restate it here in the form of a marginal distribution
over graphs, given the vector of communities.1

Model 7.1 (Marginal distribution of stochastic block model). The stochastic block model
describes the distribution2 of an =-vertex graph G ⇠ SBM=(3, ✏, G), where G is a vector of
= binary labels, 3 2 é, ✏ > 0, and for every pair of distinct vertices 8 , 9 2 [=] the edge {8 , 9}
is independently added to the graph G with probability (1 + ✏ · G8 · G9) 3

=
.

Note that for distinct vertices 8 , 9 2 [=], the edge {8 , 9} is present in G with probability
(1 + ✏) 3

=
if the vertices have the same label G8 = G9 and with probability (1 � ✏) 3

=
if the

vertices have different labels G8 < G9 .3 In Chapter 4 and Chapter 5 we studied the weak
recovery problem, which amounts to finding a partition Ĝ(G) correlated with the true
partition. Here we mostly focus on exact recovery, where the goal is to actually recover the
true partition with high probability. Recall the statistical and computational landscape of
these objectives:

1Note that, we changed the notation of the parameters, as we reserve ⌘ for differential privacy.
2We use bold characters to denote random variables.
3At times we may write 3= , ✏= to emphasize that these may be functions of =. We write >(1), $(1) for

functions tending to zero (resp. infinity) as = grows.

228

Objective can be achieved (and
efficiently so) iff

weak recovery êG⇠SBM=(3,✏,G)
⇣

1
=
|hG , Ĝ(G)i | > ⌦3,✏(1)

⌘
> 1 � >(1) ✏2 · 3 > 1

exact recovery êG⇠SBM=(3,✏,G)
⇣
Ĝ(G) 2 {G ,�G}

⌘
> 1 � >(1) 3

log =

⇣
1 �

p
1 � ✏2

⌘
> 1

The next result is a formal version of Theorem 1.9

Theorem 7.2 (Restatement of Theorem 1.9). Let G 2 {±1}= be balanced4. For any ✏, 3, ⌘, ⇣ > 0
satisfying

3

log =

✓
1 �

q
1 � ✏2

◆
> ⌦(1) and

✏3
log = > ⌦

✓
1
⌘2 ·

log(1/⇣)
log = + 1

⌘

◆
,

there exists an (⌘, ⇣)-differentially private5 algorithm that, on input G ⇠ SBM=(3, ✏, G), returns
Ĝ(G) 2 {G ,�G} with probability 1 � >(1). Moreover, the algorihtm runs in polynomial time.

For any constant ⌘ > 0, Theorem 7.2 states that (⌘, ⇣)-differentially private exact
recovery is possible, in polynomial time, already a constant factor close to the non-private
threshold. Previous results [MNVT22] could only achieve comparable guarantees in time
$(=$(log =)). It is also important to observe that the theorem provides a trade-off between
signal-to-noise ratio of the instance (captured by the expression on the left-hand side
with ✏, 3) and the privacy parameter ⌘ . In particular, we distinguish two regimes: for
3 > ⌦(log =) one can achieve exact recovery with high probability and privacy parameters
⇣ = =

�⌦(1)
, ⌘ = $(1/✏ + 1/✏2). For 3 > $(log =) one can achieve exact recovery with high

probability and privacy parameters ⌘ = >(1), ⇣ = =
�$(1)

.

Further, we present a second, exponential-time, algorithm based on the exponential
mechanism [MT07] which improves over the above in two regards: First, it gives pure
privacy guarantees, i.e., ⇣ = 0, and second, provides strong privacy guarantees for a larger
range of graph parameters. In fact, we will also prove a lower bound which shows that
its privacy guarantees are information theoretically optimal.6 All hidden constants are
absolute and do not depend on any graph or privacy parameters unless stated otherwise.
In what follows we denote by err(Ĝ , G) the minimum of the hamming distance of Ĝ and G,
and the one of �Ĝ and G, divided by =.

Theorem 7.3 (Informal, see Theorem 7.42). Let ✏
p
3 > ⌦(1), G 2 {±1}= be balanced, and

✓ > exp
�
�⌦

�
✏2
3

� �
. For any ⌘ > ⌦

⇣
log(1/✓)

✏3

⌘
, there exists an algorithm which on input G ⇠

SBM=(✏, 3, G) outputs an estimate Ĝ(G) 2 {±1}= satisfying err(Ĝ(G), G) 6 ✓ with probability at
least 1 � ✓. In addition, the algorithm is ⌘-private. Further, we can achieve error ⇥

⇣
1/

p
log(1/✓)

⌘
with the increased success probability 1 � 4�= .

4A vector G 2 {±1}= is said to be balanced if
Õ
=

8=1 G8 = 0.
5See Definition 7.26 for a precise definition of adjacent graphs.
6Optimality holds in the "small error" regime, otherwise it is almost optimal. See the lower bound for

more detail.

229

A couple of remarks are in order. First, the algorithm works across all degree-regimes
in the literature and matches known non-private thresholds and rates up to constants.7
In particular, for ✏2

3 = ⇥(1), we achieve weak/partial recovery with either constant or
exponentially high success probability. Recall that the optimal non-private threshold is
✏2
3 > 1. For the regime, where ✏2

3 = $(1), it is known that the optimal error rate is
exp

�
�(1 � >(1))✏2

3

�
[ZZ16] even non-privately which we match up to constants - here >(1)

denotes a function that tends to zero as ✏2
3 tends to infinity. Moreover, our algorithm

achieves exact recovery as soon as ✏2
3 = ⌦

�
log =

�
since then ✓ < 1

=
. This also matches known

non-private thresholds up to constants [ABH15, MNS15a]. We remark that [MNVT22]
gave an ⌘-DP exponential time algorithm which achieved exact recovery and has inverse
polynomial success probability in the utility case as long as ⌘ > ⌦

⇣
log =
✏3

⌘
. We recover this

result as a special case.8 In fact, their algorithm is also based on the exponential mechanism,
but their analysis only applies to the setting of exact recovery, while our result holds much
more generally. Another crucial difference is that we show how to privatize a known
boosting technique frequently used in the non-private setting, allowing us to achieve error
guarantees which are optimal up to constant factors.

As discussed in Chapter 1, our next result is an information theoretic lower bound
which shows that the trade-off of our algorithms is, to some extent, inherent.

Theorem 7.4 (Restatement of Theorem 1.10). Suppose there exists an ⌘-differentially private algo-
rithm such that for any balanced G 2 {±1}= , on input G ⇠ SBM=(3, ✏, G), outputs Ĝ(G) 2 {±1}=
satisfying

ê(err(Ĝ(G), G) < ✓) > 1 � ◆ .
Then,

⌘ > ⌦
✓
log(1/✓)

✏3
+

log(1/◆)
✓=✏3

◆
. (7.0.1)

Notice that this is a lower bound for a large range of error rates (partial to exact recovery).
For failure probability ◆ = ✓, the lower bound simplifies to ⌘ > ⌦

⇣
log(1/✓)

✏3

⌘
and hence

matches Theorem 7.3 up to constants. For exponentially small failure probability, ◆ = 4
�= ,

it becomes ⌘ > ⌦
⇣

1
✓✏3

⌘
. To compare, using the substitution

p
log(1/✓)! ✓, Theorem 7.3

requires ⌘ > ⌦
⇣

1
✓2✏3

⌘
in this regime.

Further, as shown in Chapter 1, this lower bound also suggests that the guarantees
obtained by our efficient algorithm in Theorem 7.2 might be close to optimal.

Learning mixtures of spherical Gaussians. Recall the standard Gaussian mixture model.

Model 7.5 (Restatement of Model 1.7). Let ⇡1, . . . ,⇡: be Gaussian distributions on í3
with covariance Id and means ⇠1, . . . , ⇠: satisfying

��⇠8 � ⇠9�� > � for any 8 < 9. Given a

7For ease of exposition we did not try to optimize these constants.
8With slightly worse constants.

230

set Y = {y1, . . . , y=} of = samples from the uniform mixture over ⇡1, . . . ,⇡: , estimate
⇠1, . . . , ⇠: .

It is known that when the minimum separation is � = >(
p

log :), superpolynomially
many samples are required to estimate the means up to small constant error [RV17]. Just
above this threshold, at separation :$(1/✏) for any constant ✏, there exist efficient algorithms
based on the sum-of-squares hierarchy recovering the means up to accuracy 1/poly(:)
[HL18, KSS18, ST21]. In the regime where � = $(

p
log :) these algorithms yield the same

guarantees but require quasipolynomial time. Recently, [LL22] showed how to efficiently
recover the means as long as � = $(log(:)1/2+2) for any constant 2 > 0.

Our algorithm for privately learning mixtures of : spherical Gaussians provides
statistical guarantees matching those of the best known non-private algorithms. Gaus-
sian Mixture Models have also already been studied in the context of differential pri-
vacy by [KSSU19, CKM+21, TCK+22] using the privacy framework first introduced in
[NRS07] (see also recent work for robust moment estimation in the differential-privacy
setting [KMV22, AL22]). The works of [KSSU19, CKM+21] require an explicit bound ' on
the euclidean norm of the centers as the sample complexity of these algorithms depends on
this bound. For a mixture of : Gaussians, if there is a non-private algorithm that requires
the minimum distance between the centers to be at least �, then [CKM+21, TCK+22] can
transform this non-private algorithm into a private one that needs the minimum distance
between the centers to be at least � +

p
log =, where = is the number of samples.

Theorem 7.6 (Restatement of Theorem 1.8). Consider an instance of Model 7.5. Let C > 0 be
such that � > $

⇣p
C:

1/C
⌘
. For = > ⌦

�
:
$(1) · 3$(C)�

, : > (log =)1/5
, there exists an algorithm,

running in time (=3)$(C), that outputs vectors -̂1, . . . , -̂: satisfying

max
✓2[:]

��-̂✓ � ⇠�(✓)
��

2 6 $(:�12) ,

with high probability, for some permutation � : [:]! [:] . Moreover, for ⌘ > :�10
, ⇣ > =�10

, the
algorithm is (⌘, ⇣)-differentially private9 for any input ..

Prior to this work, known differentially private algorithms could learn a mixture of
:-spherical Gaussian either if: (1) they were given a ball of radius ' containing all centers
[KSSU19, CKM+21];10 or (2) the minimum separation between centers needs an additional
additive ⌦(

p
log =) term11.

Theorem 7.6 is the first to simultaneously break both barriers. That is, the algorithm
requires no explicit upper bounds on the means (this also means the sample complexity
does not depend on ') and only minimal separation assumptions $(

p
log :). While

previous results only focused on mixtures of Gaussians, our algorithm also works for the

9Our notion of adjacent databases here is the obvious one. See Definition 7.51.
10In [KSSU19, CKM+21] the sample complexity of the algorithm depends on this radius '.
11For : 6 =>(1) our algorihtm provides a significant improvement as

p
log : = >(

p
log =).

231

significantly more general class of mixtures of Poincaré distributions. Concretely, in the
high dimensional regime : >

p
log 3, our algorithm recovers the state-of-the-art guarantees

provided by non-private algorithms which are based on the sum-of-squares hierarchy
[KSS18, HL18, ST21]:12

• If � > :1/C⇤ for some C⇤ 2 é, then by choosing C > ⌦(C⇤) the algorithm recovers the
centers, up to a 1/poly(:) error, in time poly(: , 3) and using only poly(: , 3) samples.

• If � > ⌦(
p

log :) then choosing C = $(log :) the algorithm recovers the centers,
up to a 1/poly(:) error, in quasi-polynomial time poly(:$(C)

, 3
$(C2)) and using a

quasi-polynomial number of samples poly(: , 3$(C)) .

For simplicity of exposition we will limit the presentation to mixtures of spherical Gaussians.
We reiterate that separation⌦(

p
log :) is information-theoretically necessary for algorithms

with polynomial sample complexity [RV17].

7.1 Techniques
We introduce here the main ideas behind the tools used in the chapter. The algorithms
we design have the following structure in common: First, we solve a convex optimization
problem with constraints and objective function depending on our input .. Second, we
round the optimal solution computed in the first step to a solution - for the statistical
estimation problem at hand.

We organize our privacy analyses according to this structure. In order to analyze the
first step, we prove a simple sensitivity bound for strongly convex optimization problems,
which bounds the ✓2-sensitivity of the optimal solution in terms of a uniform sensitivity
bound for the objective function and the feasible region of the optimization problem.

For bounded problems –such as recovery of stochastic block models– we use this
sensitivity bound, in the second step, to show that introducing small additive noise to
standard rounding algorithms is enough to achieve privacy.

For unbounded problems –such as learning GMMs– we use this sensitivity bound to
show that on adjacent inputs, either most entries of- only change slightly, as in the bounded
case, or few entries vary significantly. We then combine different privacy techniques to
hide both type of changes.

Privacy from sensitivity of strongly convex optimization problems. Before illustrating
our techniques with some examples, it is instructive to explicit our framework. Here we
have a set of inputs Y and a family of strongly convex functions F (Y) and convex sets

12We remark that [LL22] give a polynomial time algorithm for separation ⌦(log(:)1/2+2) for constant 2 > 0
in the non-private setting but for a less general class of mixture distributions.

232

K (Y) parametrized by these inputs. The generic non-private algorithm based on convex
optimization we consider works as follows:

1. Compute -̂ := argmin
-2K (.) 5.(-) ;

2. Round -̂ into an integral solution.

For an estimation problem, a distributional assumption on Y is made. Then one shows
how, for typical inputs Y sampled according to that distribution, the above scheme recovers
the desired structured information. Indeed many of the algorithms seen throughout the
previous chapters adhere to this description (e.g. Algorithm 4.10).

We can provide a privatized version of this scheme by arguing that, under reasonable
assumptions on F (.) and K (Y), the output of the function argmin

-2K (.) 5.(-) has low
✓2-sensitivity. The consequence of this crucial observation is that one can combine the
rounding step 2 with some standard privacy mechanism and achieve differential privacy.
That is, the second step becomes:

2. Add random noise N and round -̂ + N into an integral solution.

Our sensitivity bound is simple, yet it generalizes previously known bounds for strongly
convex optimization problems (we provide a detailed comparison later in the section). For
adjacent . ,.0 2 Y , it requires the following ingredients:

(i) For each - 2 K (.) \K (.0) it holds | 5.(-) � 5.0(-)| 6 �;

(ii) For each - 2 K (.) its projection / ontoK (.) \K (.0) satisfies | 5.(-) � 5.(/)| 6 � .

Here we think of � as some small quantity (relatively to the problem parameters). Notice,
we may think of (i) as Lipschitz-continuity of the function ,(. ,-) = 5.(-) with respect to
. and of (ii) as a bound on the change of the constrained set on adjacent inputs. In fact,
these assumptions are enough to conclude low ✓2 sensitivity. If -̂ and -̂0 are the outputs of
the first step on inputs . ,.0, then there exists / 2 K (.) \K (.0) such that

| 5.(-̂) � 5.(/)| + | 5.0(-̂0) � 5.0(/)| 6 $(�) .

By strong convexity of 5. , 5.0 this implies
���-̂ � /���2

2
+

���-̂0 � /���2

2
6 $(�)

which ultimately means k-̂ � -̂0k22 6 $(�). Thus, starting from our assumptions on the
point-wise distance of 5. , 5.0 we were able to conclude low ✓2-sensitivity of our output!

233

A simple application: weak recovery of stochastic block models. The ideas introduced
above, combined with existing algorithms for weak recovery of stochastic block models,
immediately imply a private algorithm for the problem. To illustrate this, consider Model 7.1
with parameters ✏2

3 > ⇠, for some large enough constant ⇠ > 1. Let G 2 {±1}= be balanced.
Here the input . is an =-by-= matrix corresponding to the rescaled centered adjacency
matrix of the graph:

.89 =

(
1
✏3

�
1 � 3

=

�
if 8 9 2 ⇢(⌧)

� 1
✏= otherwise.

The basic semidefinite program [GV16, MS16] can be recast as the strong constrained
optimization question of finding the orthogonal projection of the matrix . onto the set
K := {- 2 í=⇥= | - ⌫ 0 , k-k1 6 1/=} . That is:

-̂ := argmin
-2K k. � -k

2
F .

It is a standard fact that, if our input was G ⇠ SBM=(3, ✏, G), then with high probability
-(G) = argmin

-2K 5
.(G)(-) would have leading eigenvalue, eigenvector pair satisfying

⌫1(G) > 1 � $(1/✏2
3) and hE1(G), G/kGki2 > 1 � $

�
1/✏2

3

�
.

This problem fits perfectly the description of the previous paragraph. In fact, it stands to
reason that the closeness of the projections -̂ , -̂

0 of inputs . ,.0 should be proportional
to the distance between . and .0. Our sensitivity argument above formalizes this simple
intuition. Concretely, observe that the constrained setK is fixed and that for each - 2 K
it holds | 5.(-) � 5.0(-)| 6 $

�
k. � .0k2F + k. � .0k1

�
. It is easy to see that on adjacent

input we have k. � .0k2F + k. � .0k1 6 $(1/=✏3) and thus this immediately yields
k-̂ � -̂0k2F 6 $(1/=✏3).

The rounding step is now straightforward. Using the Gaussian mechanism we return the
leading eigenvector of -̂ + N where N ⇠ #

⇣
0, 1

=✏3 ·
log(1/⇣)

⌘2

⌘
=⇥=

. This matrix has Frobeinus

norm significantly larger than -̂ but its spectral norm is only

kNk 6
p
= log(1/⇣)

⌘
·
q

1
=✏3 6

1
⌘
·

s
log(1/⇣)

✏3
.

Thus by standard linear algebra, for typical instances G ⇠ SBM=(3, ✏, G), the leading
eigenvector of -̂(G) + N will be highly correlated with the true community vector G
whenever the average degree 3 is large enough. In conclusion, a simple randomized
rounding step is enough!
Remark 7.7 (From weak recovery to exact recovery). In the non-private setting, given a weak
recovery algorithm for the stochastic block model, one can use this as an initial estimate for
a boosting procedure based on majority voting to achieve exact recovery. We show that
this can be done privately. See Section 7.4.2.

234

An advanced application: learning mixtures of Gaussians. In the context of stochastic
block models our argument greatly benefited from two key properties: first, on adjacent
inputs the difference k. � .0kF was bounded; and second, the convex set K was fixed.
In the context of learning mixtures of spherical Gaussians as in Model 7.5, both these
properties are not satisfied (notice how one of this second properties would be satisfied
assuming bounded centers!). So additional ingredients are required.

The first observation, useful to overcome the first obstacle, is that before finding the
centers, one can first find the =-by-= membership matrix ,(.) where ,(.)8 9 = 1 if
8 , 9 where sampled from the same mixture component and 0 otherwise. The advantage
here is that, on adjacent inputs, k,(.) �,(.0)k2F 6 2=/: and thus one recovers the first
property.13 Here early sum-of-squares algorithms for the problem [HL18, KSS18] turns out
to be convenient as they rely on minimizing the function k, k2F subject to the following
system of polynomial inequalities in variables I11 , . . . , , I1: , . . . , I=: , with,89 =

Õ
✓
I8✓ I9✓

for all 8 , 9 2 [=] and a parameter C > 0.

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

I
2
8✓
= I8✓ 88 2 [=] , ✓ 2 [:] (indicators)’

✓2[:]
I8✓ 6 1 88 2 [=] (cluster membership)

I8✓ · I8✓ 0 = 0 88 2 [=] , ✓ 2 [:] (unique membership)’
8

I8✓ = =/: 8✓ 2 [:] (size of clusters)

⇠0
✓
=
:

=

’
8

I8✓ · H8 8✓ 2 [:] (means of clusters)

:

=

’
8

I8✓ hH8 � ⇠0
✓
, Di2C 6 (2C)C · kDkC2 8D 2 í3 , ✓ 2 [:] (subgaussianity of C-moment)

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(P(.))

For the scope of this discussion,14 we may disregard computational issues and assume we
have access to an algorithm returning a point from the convex hullK (.) of all solutions to
our system of inequalities.15 Here each indicator variable I8✓ 2 {0, 1} is meant to indicate
whether sample H8 is believed to be in cluster ⇠✓ . In the non-private settings, the idea
behind the program is that –for typical Y sampled according to Model 7.5 with minimum
separation � > :

1/Cp
C– any solution,(Y) 2 K (Y) is close to the ground truth matrix

,
⇤(Y) in Frobenius norm: k,(Y) �, ⇤(Y)k2F 6 1/poly(:) . Each row,(Y)8 may be seen as

13Notice for typical inputs Y from Model 7.5 one expect k,(Y)kF ⇡ =2/: .
14While this is far from being true, it turns out that having access to a pseudo-distribution satisfying P(.)

is enough for our subsequent argument to work, albeit with some additional technical work required.
15We remark that a priori it is also not clear how to encode the subgaussian constraint in a way that

we could recover a degree-C pseudo-distribution satisfying P(.) in polynomial time. By now this is well
understood, we discuss this in Section 7.2.

235

inducing a uniform distribution over a subset of Y.16. Thus, combining the above bound
with the fact that subgaussian distributions at small total variation distance have means
that are close, we can conclude the algorithm recovers the centers of the mixture.

While this program suggests a path to recover the first property, it also possesses a
fatal flaw: the projection, 0 of, 2 K (.) ontoK (.) \K (.0) may be far in the sense that
|k, k2F � k, 0k2F | > ⌦(k, k2F + k, 0k2F) > ⌦(=2/:) . The reason behind this phenomenon can
be found in the constraint

Õ
8
I8✓ = =/: . The set indicated by the vector (I1✓ . . . , I=✓) may

be subgaussian in the sense of P(.) for input . but, upon changing a single sample, this
may no longer be true. We work around this obstacle in two steps:

1. We replace the above constraint with
Õ
8
I8✓ 6 =/: .

2. We compute ,̂ := argmin
, solving P(.)k� �, k

2
F , where � 2 í=⇥= is the all-ones

matrix.17

The catch now is that the program is satisfiable for any input.. Moreover, we can guarantee
property (ii) (required by our sensitivity argument) for � 6 $(=/:), since we can obtain
,
0 2 K (.)\K (.0) simply zeroing out the row/column in, corresponding to the sample

differing in . and .0. Then for typical inputs Y, the correlation with the true solution is
guaranteed by the new strongly convex objective function.

From low sensitivity of the indicators to low sensitivity of the estimates. For adjacent
inputs . ,.0 let ,̂ , ,̂

0 be respectively the matrices computed by the above strongly convex
programs. Our discussion implies that, applying our sensitivity bound, we can show
k,̂ � ,̂ 0k2F 6 $(=/:) . The problem is that simply applying a randomized rounding
approach here cannot work. The reason is that even tough the vector ,̂8 induces a
subgaussian distribution, the vector ,̂8 + E for E 2 í= , might not. Without the subgaussian
constraint we cannot provide any meaningful utility bound. In other words, the root of
our problem is that there exists heavy-tailed distributions that are arbitrarily close in total
variation distance to any given subgaussian distribution.

On the other hand, our sensitivity bound implies k,̂ � ,̂ 0k21 6 >(k,̂ k1) and thus, all
but a vanishing fraction of rows 8 2 [=] must satisfy k,̂8 � ,̂ 0

8
k1 6 >(k,̂8 k1). For each row

8 , let ⇠8 , ⇠0
8
be the means of the distributions induced respectively by ,̂8 , ,̂

0
8
. We thus find

ourselves in the following settings:

1. For a set of (1 � >(1)) · = good rows
��⇠8 � ⇠0

8

��
2 6 >(1) ,

2. For the set B of remaining bad rows, the distance
��⇠8 � ⇠0

8

��
2 may be unbounded.

16More generally, we may think of a vector E 2 í= as the vector inducing the distribution given by E/kEk1
onto the set . of = elements.

17We remark that for technical reasons our function in Section 7.5.1 will be slightly different. We do not
discuss it here to avoid obfuscating our main message.

236

We hide differences of the first type as follows: pick a random subsample S of [=]
of size =2 , for some small 2 > 0, and for each picked row use the Gaussian mechanism.
The subsampling step is useful as it allows us to decrease the standard deviation of the
entry-wise random noise by a factor =1�2

. We hide differences of the second type as
follows: use the classic high dimensional (⌘, ⇣)-private histogram learner on S and for the
: largest bins of highest count privately return their average. The crux of the argument
here is that the cardinality of B \S is sufficiently small that the privacy guarantees of the
histogram learner can be extended even for inputs that differ in |B \ S | many samples.
Finally, standard composition arguments will guarantee privacy of the whole algorithm.

Comparison with the framework of Kothari-Manurangsi-Velingker. Solving an opti-
mization problem whose constraints depend on the input can cause privacy leaks, since
there could exist two adjacent inputs such that the constraints are satisfiable for one but not
for the other. [KMV22] deals with this issue via their "stable outlier rate selection" procedure
which is an instantiation of exponential mechanisms with a complicated score function.
We avoid this issue by casting the problem as a strongly convex program with constraints
that are satisfiable on any input. This shift in paradigm brings several advantages. First,
it provides a recipe that can be easily extended to other high dimensional problems of
interest: recast the program as strongly convex optimization over the whole space and add
noise to the output. For example, in the context of SBM, the framework of [KMV22] would
require one to sample from an exponential distribution over matrices. Constructing and
sampling from such distributions is an expensive operation. However, it is well-understood
that an optimal fractional solution to the basic the basic SDP relaxation we consider can
be found in near quadratic time using the standard matrix multiplicative weight method
[AK07, Ste10a]. Making the whole algorithm run in near-quadratic time. Whether our
algorithm can be speed up to near-linear time, as in [AK07, Ste10a], remains a fascinating
open question.

Comparison with previous works on empirical risk minimization. Results along the
lines of the sensitivity bound described at the beginning of the section (see Lemma 7.25 for a
formal statement) have been extensively used in the context of empirical risk minimization
[CMS11, KST12, SCS13, BST14, WYX17, MSVV21]. Most results focus on the special case of
unconstrained optimization of strongly convex functions. In contrast, our sensitivity bound
applies to the significantly more general settings where both the objective functions and the
constrained set may depend on the input.18 Most notably for our settings of interest, [CMS11]
studied unconstrained optimization of (smooth) strongly convex functions depending on
the input, with bounded gradient.We recover such a result for -0 = - in (ii). In [MSVV21],

18The attentive reader may argue that one could cast convex optimization over a constrained domain
as unconstrained optimization of a new convex function with the appropriate penalty terms. In practice
however, this turns out to be hard to do for constraints such as Definition 7.21.

237

the authors considered constraint optimization of objective functions where the domain
(but not the function) may depend on the input data. They showed how one can achieve
differential privacy while optimize the desired objective function by randomly perturbing
the constraints. It is important to remark that, in [MSVV21], the notion of utility is based
on the optimization problem (and their guarantees are tight only up to logarithmic factors).
In the settings we consider, even in the special case where 5 does not depend on the input,
this notion of utility may not correspond to the notion of utility required by the estimation
problem, and thus, the corresponding guarantees may turn out to be too loose to ensure
the desired error bounds.

Exponential time pure-DP algorithm for SBM. Our exponential time algorithm is based
on the exponential mechanism [MT07]. In particular, for a given graph ⌧, recall that
. = 1

✏3

�
�(⌧) � 3

=
�

�
, where �(⌧) is the adjacency matrix of ⌧ and � the all-ones matrix.

Define the function B : {±1}= ! í as B(G) = hG ,.Gi and � = 2
✏3 . In privacy terms, these

are called the score function and the sensitivity - the maximum amount B can change on
adjacent graphs - which can be readily seen to be 2

✏3 . The exponential mechanism then
amounts to outputting a sample from the distribution with density

?(G) / exp
� ⌘

2� B(G)
�
. (7.1.1)

Standard arguments show that this procedure is ⌘-private. Note, that it is well-known that if
G ⇠ SBM=(3, ✏, G⇤) and ✏2

3 is larger than some universal constant, . is close to 1
=
G
⇤(G⇤)> in

cut-norm (or (1! 1)-norm). That is, the quadratic form . � 1
=
G
⇤(G⇤)> is close to zero over

the hypercube [GV16]. It follows, that the maximizer of score function B over the hypercube
is close to 1p

=

G
⇤. It is not too hard to show that with exponentially high probability (in =),

this remains true also for samples from the above distribution. On an intuitive level this
follows since we assign exponentially larger mass to points achieving comparable scores as
the maximizer than to points achieving smaller scores (see Section 7.4.3).

While this algorithm matches known non-private thresholds and rates up to constants
and has close to optimal privacy guarantees (see the discusion at th ebeginning of the
chapter), there are several obstacles to making it efficient. We discuss several approaches:
First, one could try to sample from the distribution in Eq. (7.1.1) directly. Note that this
corresponds to an Ising model over the hypercube with interaction matrix � B ⌘

⇣.. However,
known samplers, e.g. [EKZ22, KLR22], require strong assumptions on the spectrum of
� which are not satisfied in our setting - in particular, � could have arbitrarly many
eigenvalues of magnitude larger than 1. A second approach would be to relax the support
of the distribution to all positive semi-definite matrices with diagonal entries equal to
1/= - similar to the set K considered for our approximate DP algorithm - and the score
function to the inner product of . with such matrices. Although such "convexification"
techniques of the exponential mechanism have recently seen success in the design of pure-
DP algorithms [HKM22] and this particular relaxation is known to work in the non-private

238

setting [GV16, FC20], it fails in this case: The volume of the set of matrices achieving large
enough score is smaller by a factor of exp

�
�=2� than the set of all feasible matrices. Hence,

the exponential boost by the reweighing of Eq. (7.1.1) is not enough to ensure outputting
such a candidate. A third strategy would be the following: In the non-private setting, for
the restricted regime of ✏2

3 > ⇠ log =, for a large enough constant ⇠ > 0, standard matrix
concentration bounds show that PCA can recover the label of a large constant fraction of
the vertices. However, known lower bounds for pure-DP PCA algorithms [KT13], prevent
us from recovering this result in the private setting: In particular, define two matrices to be
adjacent if there difference has spectral norm at most 1. In this setting, any ⌘-DP algorithm,
which outputs a vector achieving constant correlation with the top eigenvector of an = ⇥ =
input matrix needs to have spectral norm at least ⌦

�
=

⌘

�
. Translated to our scaling used

above, this would mean k.k > ⌦(=✏3⌘), whereas we have k.k 6 $(1).

Information theoretic privacy lower bounds for stochastic block models. Our infor-
mation theoretic lower bound for stochastic block models is based on the following idea.
Suppose we have an ⌘-differentially private exact recovery algorithm of SBM such that, over
the randomness of the algorithm and the input G ⇠ SBM=(3, ✏, G), the algorithm outputs
Ĝ(G) 2 {±G} with probability at least 2/3. Note for any G 2 {±1}= , SBM=(3, ✏, G) is just a
product distribution of

�
=

2
�

Bernoulli distributions. Fixing an arbitrary balanced H 2 {±1}= ,
there exist balanced H1, . . . , H= 2 {±1}= such that Ham(H , H8) = 2 for 8 2 [=]. For each 8 2 [=],
one may find a coupling $8 of distributions SBM=(3, ✏, H) and SBM=(3, ✏, H8) such that, if
(G,G0) ⇠ $8 then G and G0 typically differ by only $(✏3) edges. Then by the assumption
our algorithm is ⌘-differentially private, it follows that, on input G ⇠ SBM=(3, ✏, H), our
private algorithm outputs ±H8 with probability at least 4�⌘·$(✏3) · 2

3 for each 8 2 [=]. Since
the sum of probabilities of disjoint events does not exceed one, we get = · 4�$(⌘✏3) · 2

3 6 1,
which implies ⌘ > ⌦(log =

✏3).

7.2 Preliminaries
We reuse the notation of Chapter 2. We use boldface characters for random variables. Often
times we use the letter ⇠ do denote universal constants independent of the parameters at
play. We write >(1), $(1) for functions tending to zero (resp. infinity) as = grows.

Vectors, matrices, tensors. For a matrix ", we denote its eigenvalues by
⌫1(") , . . . ,⌫=("), we simply write ⌫8 when the context is clear. We denote by k"k
the spectral norm of ". We denote by í3⌦C the set of real-valued order-C tensors. for a
3 ⇥ 3 matrix ", we denote by "⌦C the C-fold Kronecker product " ⌦ " ⌦ · · · ⌦ "| {z }

C times

. We define

the flattening, or vectorization, of " to be the 3C-dimensional vector, whose entries are the

239

entries of " appearing in lexicographic order. With a slight abuse of notation we refer to
this flattening with ", ambiguities will be clarified form context. We denote by #

�
0, �2�3⌦C

the distribution over Gaussian tensors with 3C entries with standard deviation �. Given
D , E 2 {±1}= , we use Ham(D , E) :=

Õ
=

8=1 [D8<E8] to denote their Hamming distance. Given a
vector D 2 í= , we let sign(D) 2 {±1}= denote its sign vector. A vector D 2 {±1}= is said to
be balanced if

Õ
=

8=1 D8 = 0.

Graphs. We consider graphs on = vertices and let G= be the set of all graphs on = vertices.
For a graph ⌧ on = vertices we denote by �(⌧) 2 í=⇥= its adjacency matrix. When the
context is clear we simply write � . Given two graphs ⌧,� on the same vertex set + ,
let ⌧ \ � := (+ , ⇢(⌧) \ �(⌧)). Given a graph �, �0 ✓ � means �0 is a subgraph of �
such that +(�0) = +(�) and ⇢(�) ✓ ⇢(�). The Hamming distance between two graphs
⌧,� is defined to be the size of the symmetric difference between their edge sets, i.e.
Ham(⌧,�) := |⇢(⌧)4⇢(�)|.

7.2.1 Differential privacy
In this section we introduce standard notions of differential privacy [DMNS06].

Definition 7.8 (Differential privacy). An algorithm M : Y ! O is said to be (⌘, ⇣)-
differentially private for ⌘, ⇣ > 0 if and only if, for every (✓ O and every neighboring
datasets . ,.0 2 Y we have

ê[M(.) 2 (] 6 4⌘ · ê[M(.0) 2 (] + ⇣ .

To avoid confusion, for each problem we will exactly state the relevant notion of
neighboring datasets. Differential privacy is closed under post-processing and composition.

Lemma 7.9 (Post-processing). IfM : Y ! O is an (⌘, ⇣)-differentially private algorithm and
M0 : Y !Z is any randomized function. Then the algorithmM0(M(.)) is (⌘, ⇣)-differentially
private.

In order to talk about composition it is convenient to also consider DP algorithms whose
privacy guarantee holds only against subsets of inputs.

Definition 7.10 (Differential Privacy Under Condition). An algorithmM : Y ! O is said
to be (⌘, ⇣)-differentially private under condition (or (⌘, ⇣)-DP under condition) for
⌘, ⇣ > 0 if and only if, for every (✓ O and every neighboring datasets . ,.0 2 Y both
satisfying we have

ê[M(.) 2 (] 6 4⌘ · ê[M(.0) 2 (] + ⇣ .

It is not hard to see that the following composition theorem holds for privacy under
condition.

240

Lemma 7.11 (Composition for Algorithm with Halting, [KMV22]). LetM1 : Y ! O1 [
{?} ,M2 : O1 ⇥Y ! O2 [{?} , . . . ,MC : OC�1 ⇥Y ! OC [{?} be algorithms. Furthermore,
letM denote the algorithm that proceeds as follows (with O0 being empty): For 8 = 1 . . . , C compute
>8 =M8(>8�1,.) and, if >8 = ?, halt and output ?. Finally, if the algorithm has not halted, then
output >C . Suppose that:

• For any 1 6 8 6 C, we say that . satisfies the condition 8 if running the algorithm on .
does not result in halting after applyingM1, . . . ,M8 .

• M1 is (⌘1, ⇣1)-DP.

• M8 is (⌘8 , ⇣8)-DP (with respect to neighboring datasets in the second argument) under
condition 8�1 for all 8 = {2, . . . , C} .

ThenM is (Õ
8
⌘8 ,

Õ
8
⇣8)-DP.

7.2.1.1 Basic differential privacy mechanisms
The Gaussian and the Laplace mechanism are among the most widely used mechanisms in
differential privacy. They work by adding a noise drawn from the Gaussian (respectively
Laplace) distribution to the output of the function one wants to privatize. The magnitude
of the noise depends on the sensitivity of the function.

Definition 7.12 (Sensitivity of function). Let 5 : Y ! í3 be a function, its ✓1-sensitivity
and ✓2-sensitivity are respectively

� 5 ,1 := max
. ,.

02Y
. ,.

0 are adjacent

��
5 (.) � 5 (.0)

��
1 � 5 ,2 := max

. ,.
02Y

. ,.
0 are adjacent

��
5 (.) � 5 (.0)

��
2 .

For function with bounded ✓1-sensitivity the Laplace mechanism is often the tool of
choice to achieve privacy.

Definition 7.13 (Laplace distribution). The Laplace distribution with mean⇠ and parameter
1 > 0, denoted by Lap(⇠, 1), has PDF 1

21 4
�|G�⇠|/1

. Let Lap(1) denote Lap(0, 1).

A standard tail bound concerning the Laplace distribution will be useful throughout
the chapter.

Fact 7.14 (Laplace tail bound). Let x ⇠ Lap(⇠, 1). Then,

ê
⇥
|x � ⇠| > C

⇤
6 4�C/1 .

The Laplace distribution is useful for the following mechanism

Lemma 7.15 (Laplace mechanism). Let 5 : Y ! í3 be any function with ✓1-sensitivity at most

� 5 ,1. Then the algorithm that adds Lap
⇣
� 5 ,1
⌘

⌘⌦3
to 5 is (⌘, 0)-DP.

241

It is also useful to consider the "truncated" version of the Laplace distribution where
the noise distribution is shifted and truncated to be non-positive.

Definition 7.16 (Truncated Laplace distribution). The (negatively) truncated Laplace
distribution w with mean ⇠ and parameter 1 on í, denoted by tLap(⇠, 1), is defined as
Lap(⇠, 1) conditioned on the value being non-positive.

Lemma 7.17 (Truncated Laplace mechanism). Let 5 : Y ! í be any function with ✓1-
sensitivity at most � 5 ,1. Then the algorithm that adds tLap

⇣
�� 5 ,1

⇣
1 + log(1/⇣)

⌘

⌘
,� 5 ,1/⌘

⌘
to 5 is

(⌘, ⇣)-DP.

The following tail bound is useful when reasoning about truncated Laplace random
variables.

Lemma 7.18 (Tail bound truncated Laplace). Suppose ⇠ < 0 and 1 > 0. Let x ⇠ tLap(⇠, 1).
Then,for H < ⇠ we have that

ê
⇥
x < H

⇤
6
4
(H�⇠/1)

2 � 4⇠/1
.

In constrast, when the function has bounded ✓2-sensitivity, the Gaussian mechanism
provides privacy.

Lemma 7.19 (Gaussian mechanism). Let 5 : Y ! í3 be any function with ✓2-sensitivity at

most � 5 ,2. Let 0 < ⌘ , ⇣ 6 1. Then the algorithm that adds #
✓
0,
�2
5 ,2·2 log(2/⇣)

⌘2 · Id
◆

to 5 is (⌘, ⇣)-DP.

7.2.1.2 Private histograms
Here we present a classical private mechanism to learn a high dimensional histogram.

Lemma 7.20 (High-dimensional private histogram learner, see [KV17]). Let @ , 1 , ⌘ > 0
and 0 < ⇣ < 1/=. Let {�8}1

8=�1 be a partition of í into intervals of length 1, where �8 :=�
G 2 í

��
@ + (8 � 1) · 1 6 G < @ + 8 · 1

. Consider the partition of í3 into sets

�
⌫81 ,...,83

 1
81 ,...,83=1

where

⌫81 ,...,83 :=
�
G 2 í3

�� 89 2 [3] , G9 2 �89
Let . =

�
H1, . . . , H=

✓ í3 be a database of = points. For each ⌫81 ,...,83 , let ?81 ,...,83 =

1
=

���
9 2 [=]

��
H9 2 ⌫81 ,...,83

 ��. For = > 8
⌘� · log 2

⇣� , there exists an efficient (⌘, ⇣)-differentially
private algorithm that returns p̂1,...,1, . . . , p̂81 ,...,83 , . . . satisfying

ê

max
81 ,...,832é

|?81 ,...,83 � p̂81 ,...,83 | > �

�
6 � .

Proof. We consider the following algorithm, applied to each 81, . . . , 83 2 é on input .:

242

1. If ?81 ,...,83 = 0 set ?̂81 ,...,83 = 0 , otherwise let p̂81 ,...,83 = ?81 ,...,83 + 3 where 3 ⇠ Lap
�
0, 2

=⌘

�
.

2. If p̂81 ,...,83 6
3 log(2/⇣)

⌘= set p̂81 ,...,83 = 0.

First we argue utility. By construction we get p̂81 ,...,83 = 0 whenever ?81 ,...,83 = 0, thus we
may focus on non-zero ?81 ,...,83 . There are at most = non zero ?81 ,...,83 . By choice of = , ⇣ and
by Fact 7.14 the maximum over = independent trials 3 ⇠ Lap

�
0, 2

=⌘

�
is bounded by � in

absolute value with probability at least �.
It remains to argue privacy. Let . =

�
H1, . . . , H=

,.
0 =

�
H
0
1, . . . , H

0
=

be adjacent

databases. For 81, . . . , 83 2 é, let

?81 ,...,83 =
���
9 2 [=]

��
H9 2 ⌫81 ,...,83

 ��
?
0
81 ,...,83

=
���n 9 2 [=] ��� H0

9
2 ⌫81 ,...,83

o��� .
Since . ,.0 are adjacent there exists only two set of indices I := {81, . . . , 83} and J :=�
91, . . . , 93

such that ?I < ?0I and ?J < ?0J . Assume without loss of generality ?I > ?

0
I .

Then it must be ?I = ?
0
I + 1/= and ?J = ?

0
J � 1/= . Thus by the standard tail bound on the

Laplace distribution in Fact 7.14 and by Lemma 7.15, we immediately get that the algorithm
is (⌘, ⇣)-differentially private. ⇤

7.2.2 Explictly bounded distributions
This sections builds on Section 2.2. We will consider a subset of subgaussian distributions
denoted as certifiably subgaussians. Many subgaussians distributions are known to be
certifiably subgaussian (see [KSS18]).

Definition 7.21 (Explicitly bounded distribution). Let C 2 é. A distribution ⇡ over í3
with mean ⇠ is called 2C-explicitly �-bounded if for each even integer B such that 1 6 B 6 C
the following equation has a degree B sum-of-squares proof in the vector variable D

D

2B
⇢
Ö

x⇠⇡
hx � ⇠, Di2B 6 (�B)B · kDk2B2

�

Furthermore, we say that ⇡ is explicitly bounded if it is 2C-explicitly �-bounded for every
C 2 é. A finite set - ✓ í3 is said to be 2C-explicitly �-bounded if the uniform distribution
on - is 2C-explicitly �-bounded.

Sets that are 2C-explicitly �-bounded with large intersection satisfy certain key properties.
Before introducing them we conveniently present the following definition.

Definition 7.22 (Weight vector inducing distribution). Let . be a set of size = and let
? 2 [0, 1]= be a vector satisfying

��
?

��
1 = 1 . We say that ? induces the distribution ⇡ with

support . if

êy⇠⇡
⇥
y = H8

⇤
= ?8 .

243

Theorem 7.23 ([KSS18, HL18]). Let . ✓ í3 be a set of cardinality =. Let ? , ?0 2 [0, 1]= be
weight vectors satisfying

��
?

��
1 =

��
?
0��

1 = 1 and
��
? � ?0

��
1 6 � . Suppose that ? (respectively ?0)

induces a 2C-explicitly �1-bounded (resp. �2) distribution over . with mean ⇠(?) (resp. ⇠(?0)). There
exists an absolute constant �⇤ such that, if � 6 �⇤, then for � = �1 + �2 :

��⇠(?) � ⇠(?0)
�� 6 �1�1/2C · $

⇣p
�C

⌘
.

In the context of learning Gaussian mixtures, we will make heavy use of the statement
below.

Theorem 7.24 ([KSS18, HL18]). Let . be a 2C-explicitly �-bounded set of size =. Let ? 2 í= be
the weight vector inducing the uniform distribution over .. Let ?0 2 í= be a unit vector satisfying��
? � ?0

��
1 6 � for some � 6 �⇤ where �⇤ is a small constant. Then ?

0 induces a 2C-explicitly
(� + $(�1�1/2C))-bounded distribution over ..

7.3 Stability of strongly-convex optimization
In this section, we prove ✓2 sensitivity bounds for the minimizers of a general class of
(strongly) convex optimization problems. In particular, we show how to translate a uniform
point-wise sensitivity bound for the objective functions into a ✓2 sensitivity bound for the
minimizers.

Lemma 7.25 (Stability of strongly-convex optimization). LetY be a set of databases. LetK (Y)
be a family of closed convex subsets of í< parametrized by . 2 Y and let F (Y) be a family of
functions 5. : K (.)! í , parametrized by . 2 Y , such that:

(i) for adjacent databases . ,.0 2 Y and - 2 K (.) there exist / 2 K (.) \ K (.0) satisfying��
5.(-) � 5.0(/)

�� 6 � and
��
5.(/) � 5.0(/)

�� 6 � .

(ii) 5. is �-strongly convex in - 2 K (.).

Then for . ,.0 2 Y, -̂ := arg min
-2K (.) 5.(-) and -̂0 := arg min

-
02K (.0) 5.0(-0) , it holds

���-̂ � -̂0���2

2
6

12�
�

.

Proof. Let / 2 K (.)\K (.0) be a point such that
��� 5.(-̂) � 5.0(/)

��� 6 � and
��
5.(/) � 5.0(/)

�� 6
�. By �-strong convexity of 5. and 5.0 (Proposition E.13) it holds

���-̂ � -̂0���2

2
6 2

���-̂ � -0���2

2
+ 2

���-0 � -̂0���2

2

6
4
�

⇣
5.(/) � 5.(-̂) + 5.0(/) � 5.0(-̂0)

⌘
.

244

Suppose w.l.o.g. 5.(-̂) 6 5.0(-̂0), for a symmetric argument works in the other case. Then

5.(/) 6 5.0(/) + � 6 5.(-̂) + 2�

and

5.(-̂) 6 5.0(-̂0) 6 5.0(/) 6 5.(-̂) + � .

It follows as desired

5.(/) � 5.(-̂) + 5.0(/) � 5.0(-̂0) 6 3� .

⇤

7.4 Private recovery for stochastic block models
In this section, we present how to achieve exact recovery in stochastic block models privately
and thus prove Theorem 7.2. To this end, we first use the stability of strongly convex
optimization (Lemma 7.25) to obtain a private weak recovery algorithm in Section 7.4.1.
Then we show how to privately boost the weak recovery algorithm to achieve exact recovery
in Section 7.4.2. In Section 7.4.4, we complement our algorithmic results by providing an
almost tight lower bound on the privacy parameters. We start by defining the relevant
notion of adjacent databases.

Definition 7.26 (Adjacent graphs). Let ⌧ ,⌧
0 be graphs with vertex set [=]. We say that

⌧ ,⌧
0 are adjacent if |⇢(⌧)4⇢(⌧0)| = 1 .

Remark 7.27 (Parameters as public information). We remark that we assume the parameters
= , ✏, 3 to be public information given in input to the algorithm.

7.4.1 Private weak recovery for stochastic block models
In this section, we show how to achieve weak recovery privately via stability of strongly
convex optimization (Lemma 7.25). We first introduce one convenient notation. The error
rate of an estimate Ĝ 2 {±1}= of the true partition G 2 {±1}= is defined as err(Ĝ , G) :=
1
=
· min{Ham(Ĝ , G),Ham(Ĝ ,�G)}.19 Our main result is the following theorem.

Theorem 7.28. Suppose ✏
p
3 > 12800 , ⌘, ⇣ > 0. There exists an (Algorithm 7.29) such that, for

any G 2 {±1}= , on input G ⇠ SBM=(✏, 3, G), outputs Ĝ(G) 2 {±1}= satisfying

err(Ĝ(G), G) 6 $

1
✏
p
3

+ 1
✏3

·
log(2/⇣)

⌘2

!

with probability 1 � exp(�⌦(=)). Moreover, the algorithm is (⌘, ⇣)-differentially private for any
input graph and runs in polynomial time.

19Note |hĜ , Gi | = (1 � 2 err(Ĝ , G)) · = for any Ĝ , G 2 {±1}= .

245

Before presenting the algorithm we introduce some notation. Given a graph ⌧, let
.(⌧) := 1

✏3 (�(⌧) � 3

=
�) where �(⌧) is the adjacency matrix of ⌧ and � denotes all-one

matrices. DefineK :=
�
- 2 í=⇥=

��
- ⌫ 0 ,-88 = 1

=
88

. The algorithm starts with projecting

matrix .(⌧) to setK . To ensure privacy, then it adds Gaussian noise to the projection -1
and obtains a private matrix -2. The last step applies a standard rounding method.

Algorithm 7.29 (Private weak recovery for SBM).
Input: Graph ⌧.
Operations:

1. Projection: -1 argmin
-2K k.(⌧) � -k2�.

2. Noise addition: X2 -1 + W where W ⇠ N
⇣
0, 24

=✏3
log(2/⇣)

⌘2

⌘
=⇥=

.

3. Rounding: Compute the leading eigenvector v of X2 and return sign(v).

In the rest of this section, we will show Algorithm 7.29 is private in Lemma 7.31 and its
utility guarantee in Lemma 7.32. Then Theorem 7.28 follows directly from Lemma 7.31 and
Lemma 7.32.

Privacy analysis. Let Y be the set of all matrices .(⌧) = 1
✏3 (�(⌧) � 3

=
�) where ⌧ is a

graph on = vertices. We further define @ : Y ! K to be the function

@(.) := argmin
-2K k. � -k2F. (7.4.1)

We first use Lemma 7.25 to prove that function @ is stable.

Lemma 7.30 (Stability). The function @ as defined in Eq. (7.4.1) has ✓2-sensitivity �@ ,2 6
q

24
=✏3 .

Proof. Let , : Y⇥K ! í be the function ,(. ,-) := k-k2F�2h. ,-i. Applying Lemma 7.25
with 5.(·) = ,(. , ·), it suffices to prove that , has ✓1-sensitivity 4

=✏3 with respect to . and
that it is 2-strongly convex with respect to -. The ✓1-sensitivity bound follows by observing
that adjacent . ,.0 satisfy k. � .0k1 6 2

✏3 and that any - 2 K satisfies k-k1 6 1
=
. Thus it

remains to prove strong convexity with respect to - 2 K . Let - ,-
0 2 K then

k-0k2F = k-k2F + 2h-0 � - ,-i + k- � -0k2F
= k-k2F + 2h-0 � - ,- + . � .i + k- � -0k2F
= ,(. ,-) + h-0 � - ,r,(- ,.)i + 2h-0,.i + k- � -0k2F .

That is ,(. ,-) is 2-strongly convex with respect to -. Note any - 2 K is symmetric. Then
the result follows by Lemma 7.25. ⇤

Then it is easy to show the algorithm is private.

246

Lemma 7.31 (Privacy). The weak recovery algorithm (Algorithm 7.29) is (⌘, ⇣)-DP.

Proof. Since any - 2 K is symmetric, we only need to add a symmetric noise matrix to
obtain privacy. Combining Lemma 7.30 with Lemma 7.19, we immediately get that the
algorithm is (⌘, ⇣)-private. ⇤

Utility analysis. Now we show the utility guarantee of our priavte weak recovery
algorithm.

Lemma 7.32 (Utility). For any G 2 {±1}= , on input G ⇠ SBM=(✏, 3, G), Algorithm 7.29
efficiently outputs Ĝ(G) 2 {±1}= satisfying

err(Ĝ(G), G) 6 6400
✏
p
3

+ 7000
✏3

·
log(2/⇣)

⌘2 ,

with probability 1 � exp(�⌦(=)).

To prove Lemma 7.32, we need the following lemma which is an adaption of a well-
known result in SBM [GV16, Theorem 1.1]. Its proof is deferred to Appendix E.1.

Lemma 7.33. Consider the settings of Lemma 7.32. With probability 1 � exp(�⌦(=)),
����-1(G) � 1

=

GG
>
����

2

�

6
800
✏
p
3

.

Proof of Lemma 7.32. By Lemma 7.33, we have
����-1(G) � 1

=

GG
>
���� 6

����-1(G) � 1
=

GG
>
����
�

6

s
800
✏
p
3

=: A(✏, 3)

with probability 1 � exp(�⌦(=)). We condition our following analysis on this event
happening.

Let u be the leading eigenvector of -1(G). Let ,1 and ,2 be the largest and second largest
eigenvalues of -1(G). By Weyl’s inequality (Lemma E.10) and the assumption ✏

p
3 > 12800,

we have
,1 � ,2 > 1 � 2A(✏, 3) > 1

2 .

Let v be the leading eigenvector of -1(G) + W. By Davis-Kahan’s theorem (Lemma E.11),
we have

ku � vk 6 2kWk
,1 � ,2

6 4kWk ,
��u � G/

p
=

�� 6 2
����-1(G) � 1

=

GG
>
���� 6 2A(✏, 3).

247

Putting things together and using Fact E.5, we have

��v � G/
p
=

�� 6 ku � vk +
��u � G/

p
=

�� 6 24
p

6p
✏3

p
log(2/⇣)

⌘
+ 2A(✏, 3)

with probability 1 � exp(�⌦(=)).
Observe Ham(sign(H), G) 6 kH � Gk2 for any H 2 í= and any G 2 {±1}= . Then with

probability 1 � exp(�⌦(=)),

1
=

· Ham(sign(v), G) 6
��v � G/

p
=

��2
6

6400
✏
p
3

+ 7000
✏3

·
log(2/⇣)

⌘2 .

⇤

Proof of Theorem 7.28. By Lemma 7.31 and Lemma 7.32. ⇤

7.4.2 Private exact recovery for stochastic block models
In this section, we prove Theorem 7.2. We show how to achieve exact recovery in stochastic
block models privately by combining the private weak recovery algorithm we obtained in
the previous section and a private majority voting scheme.

Since exact recovery is only possible with logarithmic average degree (just to avoid iso-
lated vertices), it is more convenient to work with the following standard parameterization
of stochastic block models. Let � > � > 0 be fixed constants. The intra-community edge
probability is � · log =

=
, and the inter-community edge probability is � · log =

=
. In the language

of Model 7.1, it is SBM=(�+�2 · log = , ����+� , G). Our main result is the following theorem.

Theorem 7.34 (Private exact recovery of SBM, restatement of Theorem 7.2). Let ⌘, ⇣ > 0.
Suppose �, � are fixed constants satisfying20

p
� �

p
� > 16 and � � � > ⌦

✓
1
⌘2 ·

log(2/⇣)
log = + 1

⌘

◆
, (7.4.2)

Then there exists an algorithm (Algorithm 7.36) such that, for any balanced21 G 2 {±1}= , on input
G ⇠ SBM=(�+�2 · log = , ����+� , G), outputs Ĝ(G) 2 {G ,�G} with probability 1 � >(1). Moreover, the
algorithm is (⌘, ⇣)-differentially private for any input graph and runs in polynomial time.

Remark 7.35. In a standard regime of privacy parameters where ⌘ 6 $(1) and ⇣ = 1/poly(=),
the private exact recovery threshold Eq. (7.4.2) reads

p
� �

p
� > 16 and � � � > ⌦

�
⌘�2 + ⌘�1�

,

Recall the non-private exact recovery threshold is
p
� �

p
� >
p

2. Thus the non-private
part in Eq. (7.4.2), i.e. 16, is close to optimal.

20In the language of Model 7.1, for any C we have
p
� �

p
� > C if and only if 3

log = (1 �
p

1 � ✏2) > C
2

2 .
21Recall a vector G 2 {±1}= is said to be balanced if

Õ
=

8=1 G8 = 0.

248

Algorithm 7.36 starts with randomly splitting the input graph ⌧ into two subgraphs G1
and G2. Setting the graph-splitting probability to 1/2, each subgraph will contain about
half of the edges of ⌧. Then we run an (⌘, ⇣)-DP weak recovery algorithm (Algorithm 7.29)
on G1 to get a rough estimate G̃(G1) of accuracy around 90%. Finally, we boost the accuracy
to 100% by doing majority voting (Algorithm 7.37) on G2 based on the rough estimate
G̃(G1). That is, if a vertex has more neighbors from the opposite community (according to
G̃(G1)) in G2, then we assign this vertex to the opposite community. To make the majority
voting step private, we add some noise to the vote.

Algorithm 7.36 (Private exact recovery for SBM).
Input: Graph ⌧
Operations:

1. Graph-splitting: Initialize G1 to be an empty graph on vertex set +(⌧). Indepen-
dently put each edge of ⌧ in G1 with probability 1/2. Let G2 = ⌧ \ G1.

2. Rough estimation on G1: Run the (⌘, ⇣)-DP partial recovery algorithm (Algo-
rithm 7.29) on G1 to get a rough estimate G̃(G1).

3. Majority voting on G2: Run the (⌘, 0)-DP majority voting algorithm (Algo-
rithm 7.37) with input (G2, G̃(G1)) and get output x̂.

4. Return x̂.

Algorithm 7.37 (Private majority voting).
Input: Graph ⌧, rough estimate G̃ 2 {±1}=
Operations:

1. For each vertex E 2 +(⌧), let ZE = SE �DE where

• DE =
Õ

{D ,E}2⇢(⌧) [G̃D<G̃E] ,
• SE =

Õ
{D ,E}2⇢(⌧) [G̃D=G̃E] .

Set x̂E = sign(ZE + WE) · G̃(G1)E where WE ⇠ Lap(2/⌘).

2. Return x̂.

In the rest of this section, we will show Algorithm 7.36 is private in Lemma 7.39 and
it recovers the hidden communities exactly with high probability in Lemma 7.41. Then
Theorem 7.34 follows directly from Lemma 7.39 and Lemma 7.41.

Privacy analysis. We first show the differential privcay of the majority voting algorithm
(Algorithm 7.37) with respect to input graph ⌧ (i.e. assuming fixed the input rough

249

estimate).

Lemma 7.38. Algorithm 7.37 is (⌘, 0)-DP with respect to input ⌧.

Proof. Observing the ✓1-sensitivity of the degree count function / in step is 2, the (⌘, 0)-DP
follows directly from Laplace mechanism (Lemma 7.19) and post-processing (Lemma 7.9).

⇤

Then the privacy of the private exact recovery algorithm (Algorithm 7.36) is a conse-
quence of composition.

Lemma 7.39 (Privacy). Algorithm 7.36 is (⌘, ⇣)-DP.

Proof. Let A1 : G= ! {±1}= denote the (⌘, ⇣)-DP recovery algorithm in step 2. Let
A2 : G= ⇥ {±1}= ! {±1}= denote the (⌘, 0)-DP majority voting algorithm in step 3. LetA
be the composition ofA1 andA2.

We first make several notations. Given a graph � and an edge 4, �4 is a graph obtained
b adding 4 to �. Given a graph �, G1(�) is a random subgraph of � by keeping each edge
of � with probability 1/2 independently.

Now, fix two adjacent graphs ⌧ and ⌧4 where edge 4 appears in ⌧4 but not in ⌧. Also,
fix two arbitrary possible outputs G1, G2 2 {±1}= of algorithmA.22 It is direct to see,

ê(A(⌧) = (G1, G2)) =
’
�✓⌧

ê(A1(�) = G1)ê(A2(⌧ \ � , G1) = G2)ê(G1(⌧) = �). (7.4.3)

Since ê(G1(⌧) = �) = ê(G1(⌧4) = �) + ê(G1(⌧4) = �4) for any � ✓ ⌧, we have

ê(A(⌧4) = (G1, G2)) =
’
�✓⌧

ê(A1(�) = G1)ê(A2(⌧4 \ � , G1) = G2)ê(G1(⌧4) = �)

+ê(A1(�4) = G1)ê(A2(⌧4 \ �4 , G1) = G2)ê(G1(⌧4) = �4)
(7.4.4)

Since bothA1 andA2 are (⌘, ⇣)-DP, we have for each � ✓ ⌧,

ê(A1(�4) = G1) 6 4⌘ ê(A1(�) = G1) + ⇣, (7.4.5)
ê(A2(⌧4 \ � , G1) = G2) 6 4⌘ ê(A2(⌧ \ � , G1) = G2) + ⇣. (7.4.6)

Plugging Eq. (7.4.5) and Eq. (7.4.6) into Eq. (7.4.4), we obtain

ê(A(⌧4) = (G1, G2)) 6
’
�✓⌧

[4⌘ ê(A1(�) = G1)ê(A2(⌧ \ � , G1) = G2) + ⇣]ê(G1(⌧) = �)

= 4
⌘ ê(A(⌧) = (G1, G2)) + ⇣.

Similarly, we can show

ê(A(⌧) = (G1, G2)) 6 4⌘ ê(A(⌧4) = (G1, G2)) + ⇣. (7.4.7)

⇤
22We can imagine that algorithmA first outputs (G1 , G2) and then outputs G2 as a post-processing step.

250

Utility analysis. We first show the utility guarantee of the priavte majority voting
algorithm.

Lemma 7.40. Suppose G is generated by first sampling G ⇠ SBM=(�+�2 · log = , ����+� , G) for some
balanced G and then for each vertex removing at most � 6 $(log2

=) adjacent edges arbitrarily.
Then on input G and a balanced rough estimate G̃ satisfying Ham(G̃ , G) 6 =/16, Algorithm 7.37
efficiently outputs Ĝ(G) such that for each vertex E,

ê(Ĝ(G)E < GE) 6 exp
✓
� 1

64 · ⌘(� � �) · log =
◆
+ 2 · exp

✓
� 1

162 ·
(� � �)2
� + �

· log =
◆
.

Proof. Let us fix an arbitrary vertex E and analyze the probability ê(Ĝ(G)E < GE). Let
A := Ham(G̃ , G)/=. Then it is not hard to see

ê(Ĝ(G)E < GE) 6 ê(B + A0 �A � B0 + W > 0) (7.4.8)

where

• A ⇠ Binomial((1/2 � A)= � �, � log =
=

), corresponding to the number of neighbors that
are from the same community and correctly labeled by G̃,

• B0 ⇠ Binomial(A= � �, � log =
=

), corresponding to the number of neighbors that are
from the different community but incorrectly labeled by G̃,

• B ⇠ Binomial((1/2 � A)= , � log =
=

), corresponding to the number of neighbors that are
from the different community and correctly labeled by G̃,

• A0 ⇠ Binomial(A= , � log =
=

), corresponding to the number of neighbors that are from
the same community but incorrectly labeled by G̃,

• W ⇠ Lap(0, 2/⌘), independently.

The � term appearing in both A and B0 corresponds to the worst case where � “favorable”
edges are removed. If A > ⌦(1), then � = $(log2

=) is negligible to A= = ⇥(=) and we can
safely ignore the effect of removing � edges. If A = >(1), then we can safely assume G̃ is
correct on all vertices and ignore the effect of removing � edges as well. Thus, we will
assume � = 0 in the following analysis.

For any C , C0, we have

ê(A0 + B �A � B0 + W > 0) 6 ê(A0 + B + W > C) + ê(A + B0 6 C)
6 ê(A0 + B > C � C0) + ê(W > C0) + ê(A + B0 6 C).

We choose C , C0 by first picking two constants 0 , 1 > 0 satisfying 0 + 1 < 1 and then solving

• Ö[A0 + B] � C = 0 · (Ö[A + B0] �Ö[A0 + B]) and

251

• C
0 = (1 � 0 � 1) · (Ö[A + B0] �Ö[A0 + B]).

By Fact 7.14,

ê(W > C
0) 6 exp

✓
� C
0⌘
2

◆
6 exp

✓
�(1/4 � A)(1 � 0 � 1)

2 · ⌘(� � �) · log =
◆
.

By Fact E.8 and the assumption A 6 1/16, we have

ê(A + B0 6 C) 6 exp
✓
�(Ö[A + B0] � C)2

2Ö[A + B0]

◆
6 exp

✓
�(1/4 � A)202 ·

(� � �)2
� + �

· log =
◆
.

Setting 1 = 1/2, by Fact E.8 and the assumption A 6 1/16, we have

ê(A0 + B > C � C0) 6 exp
✓
�(C � C

0 �Ö[A0 + B])2
C � C0 +Ö[A0 + B]

◆
6 exp

✓
�2(1/4 � A)2

7 ·
(� � �)2
� + �

· log =
◆
.

Further setting 0 = 1/3, we have

ê(Ĝ(G)E < GE) 6 exp
✓
�1/4 � A

12 · ⌘(� � �) · log =
◆
+ 2 · exp

✓
�(1/4 � A)2

9 ·
(� � �)2
� + �

· log =
◆
.

Finally, plugging the assumption A 6 1/16 to conclude. ⇤

Then it is not difficult to show the utility guarantee of our priavte exact recovery
algorithm.

Lemma 7.41 (Utility). Suppose �, � are fixed constants satisfying

p
� �

p
� > 16 and � � � > ⌦

✓
1
⌘2 ·

log(2/⇣)
log = + 1

⌘

◆
.

Then for any balanced G 2 {±1}= , on input G ⇠ SBM=(�+�2 · log = , ����+� , G), Algorithm 7.36
efficiently outputs Ĝ(G) satisfying Ĝ(G) 2 {G ,�G} with probability 1 � >(1).

Proof. We will show the probability of a fixed vertex being misclassified is at most >(1/=).
Then by union bound, exact recovery can be achieved with probability 1 � >(1).

As the graph-splitting probability is 1/2, G1 follows SBM=(�2 · log =
=

,
�
2 · log =

=
, G). By

Theorem 7.28, the rough estimate G̃(G1) satisfies23

err(G̃(G1), G) 6 A := >(1) + 14000
(� � �)⌘2 ·

log(2/⇣)
log = . (7.4.9)

with probability at least 1 � exp(�⌦(=)). Without loss of generality, we can assume
Ham(G̃(G1), G) 6 A=, since we consider �G otherwise. By Fact E.6, the maximum degree of

23It is easy to make the output of Algorithm 7.29 balanced at the cost of increasing the error rate by a factor
of at most 2.

252

G1 is at most � := 2 log2
= with probability at least 1 � = exp(�(log =)2/3). In the following,

we condition our analysis on the above two events regarding G̃(G1) and G1.
Now, let us fix a vertex and analyze the probability ?4 that it is misclassified after majority

voting. With ⌧1 being fixed, G2 can be thought of as being generated by first sampling G
and then removing ⌧1 from G. To make A 6 1/16, it suffices to ensure � � � > 5002

⌘2 · log(2/⇣)
log =

by Eq. (7.4.9).Then by Lemma 7.40, we have

?4 6 exp
✓
� 1

64 · ⌘(� � �) · log =
◆
+ 2 · exp

✓
� 1

162 ·
(� � �)2
� + �

· log =
◆
.

To make ?4 at most >(1/=), it suffices to ensure

1
64 · ⌘(� � �) > 1 and 1

162 ·
(� � �)2
� + �

> 1.

Note (� � �)2/(� + �) > (
p
� �

p
�)2 for � > �. Therefore, as long as

p
� �

p
� > 16 and � � � >

5002

⌘2 ·
log(2/⇣)

log = + 64
⌘
,

Algorithm 7.36 recovers the hidden communities exactly with probability 1 � >(1). ⇤

Proof of Theorem 7.34. By Lemma 7.39 and Lemma 7.41. ⇤

7.4.3 Inefficient recovery using the exponential mechanism
In this section, we will present an inefficient algorithm satisfying pure privacy which
succeeds for all ranges of parameters - ranging from weak to exact recovery. The algorithm
is based on the exponential mechanism [MT07] combined with the majority voting scheme
introduced in section Section 7.4.2. In particular, we will show

Theorem 7.42 (Full version of Theorem 7.3). Let ✏
p
3 > 12800 and G 2 {±1}= be balanced.

Let ✓ > 2 exp
⇣
�✏2

3

512

⌘
. For any ⌘ > 64 log(2/✓)

✏3 , there exists an algorithm, Algorithm 7.43, which on
input G ⇠ SBM=(✏, 3, G⇤) outputs an estimate Ĝ(G) 2 {±1}= satisfying

err(Ĝ(G), G⇤) 6 ✓

with probability at least 1� ✓. In addition, the algorithm is ⌘-private. Further, by slightly modifying
the algorithm, we can achieve error 20/

p
log(1/✓) with probability 1 � 4�= .24

24The first, smaller, error guarantee additionally needs the requirement that ✓ 6 exp(�640). The second
one does not.

253

A couple of remarks are in order. First, our algorithm works across all degree-regimes
in the literature and matches known non-private thresholds and rates up to constants. We
remark that for ease of exposition we did not try to optimize these constants. In particular,
for ✏2

3 a constant we achieve weak recovery. We reiterate, that ✏2
3 > 1 is the optimal

non-private threshold. For the regime, where ✏2
3 = $(1), it is known that the optimal

error rate is exp
�
�(1 � >(1))✏2

3

�
even non-privately [ZZ16], where >(1) goes to zero as

✏2
3 tends to infinity. We match this up to constants. Moreover, our algorithm achieves

exact recovery as soon as ✏2
3 > 512 log = since then ✓ < 1

=
. This also matches known

non-private threshholds up to constants [ABH15, MNS15a]. Also, our dependence on the
privacy parameter ⌘ is also optimal as shown by the information-theoretic lower bounds in
Section 7.4.4.

We also emphasize, that if we only aim to achieve error on the order of

1
✏
p
3

= ⇥

1p

log(1/✓)

!
,

we can achieve exponentially small failure probability in =, while keeping the privacy
parameter ⌘ the same. This can be achieved, by ommitting the boosting step in our algorithm
and will be clear from the proof of Theorem 7.42. We remark that in this case, we can also
handle non-balanced communities.

Again, for an input graph ⌧, consider the matrix .(⌧) = 1
✏3

�
�(⌧) � 3

=
�

�
. For G 2 {±1}=

we define the score function
B⌧(G) = hG ,.(⌧)Gi .

Since the entries of �(⌧) are in [0, 1] and adjacent graphs differ in at most one edge, it
follows immediately, that this score function has sensitivity at most

� = max
⌧⇠⌧0 ,
G2{±1}=

|B⌧(G) � B⌧0(G)| =
2
✏3

· max
⌧⇠⌧0 ,
G2{±1}=

|hG , (�(⌧) � �(⌧0))Gi | 6 2
✏3

.

254

Algorithm 7.43 (Inefficient algorithm for SBM).
Input: Graph ⌧, privacy parameter ⌘ > 0
Operations:

1. Graph-splitting: Initialize G1 to be an empty graph on vertex set +(⌧). Indepen-
dently assign each edge of ⌧ to G1 with probability 1/2. Let G2 = ⌧ \ G1.

2. Rough estimation on G1: Sample G̃ from the distribution with density

?(G) / exp
⇣ ⌘
2� hG ,.(G1)Gi

⌘
,

where � = 2
✏3 .

3. Majority voting on G2: Run the ⌘-DP majority voting algorithm (Algorithm 7.37)
with input (G2, G̃(G1)). Denote its output by x̂.

4. Return x̂.

We first analyze the privacy guarantees of the above algorithm.

Lemma 7.44. Algorithm 7.43 is ⌘-DP.

Proof. For simplicity and clarity of notation, we will show that the algorithm satisfies 2⌘-DP.
Clearly, the graph splitting step is 0-DP. Step 2 corresponds to the exponential mechanism.
Since the sensitivity of the score function is at most � = 2

✏3 it follows by the standard
analysis of the mechanism that this step is ⌘-DP [MT07]. By Lemma 7.38, the majority
voting step is also ⌘-DP. Hence, the result follows by composition (cf. Lemma 7.11). ⇤

Next, we will analyze its utility.

Lemma 7.45. Let ✏
p
3 > 12800 and G 2 {±1}= be balanced. Let exp(�640) > ✓ >

2 exp
⇣
�✏2

3

512

⌘
, ⌘ > 64 log(2/✓)

✏3 , and G ⇠ SBM=(✏, 3, G⇤), the output Ĝ(G) 2 {±1}= of Algorithm 7.43
satisfies

err(Ĝ(G), G⇤) 6 ✓

with probability at least 1 � ✓.

Proof. We will first show that the rough estimate G̃ obtained in step 2 achieves

err(G̃ , G⇤) 6 20p
log(1/✓)

with probability 4�= . This will prove the second part of the theorem - for this we don’t need
that ✓ 6 exp(�640). In fact, arbitrary ✓ works. The final error guarantee will then follow by

255

Lemma 7.40. First, notice that similar to the proof of [GV16, Lemma 4.1], using Bernstein’s
inequality and a union bound, we can show that (cf. Fact E.2 for a full proof)

max
G2{±1}=

����hG ,

.(G) � 1

=

G
⇤(G⇤)>

�
Gi

���� 6 100=
✏
p
3

6
5p

log(1/✓)

with probability at least 1 � exp�10= . Recall that BG(G) = hG ,.(G)Gi. Let � = 5p
log(1/✓)

. We

call G 2 {±1}= good if BG(G) > (1 � 3�)=. It follows that for good G it holds that

1
=

· hG , G⇤i2 > hG ,.(G)Gi �
����
⌧
G ,

.(G) � 1

=

G
⇤(G⇤)>

�
G

����� > (1 � 4�)= .

Which implies that

2 err(G , G⇤) 6 1 �
p

1 � 4� = 1 � 1 � 4�p
1 � 4�

6 1 � 1 � 4�
1 � 2� =

2�
1 � 2� 6 4� ,

where we used that � 6 1/4 and that
p

1 � 4G 6 1 � 2G for G > 0. Hence, we have for good
G that

err(G , G⇤) 6 20p
log(1/✓)

.

Since BG(G⇤) > (1 � �)=,there is at least one good candidate. Hence, we can bound the
probability that we do not output a good G as

exp
� ⌘

2�(1 � 3�)=
�
· 4=

exp
� ⌘

2�(1 � �)=
�
· 1

= exp
✓✓

1 � 2⌘�
�

◆
=

◆
6 4�= ,

where we used that

2⌘�
�
>

64 log(2/✓)
✏3

· 5✏3p
log(1/✓)

> 320
q

log(1/✓) > 2 .

We will use Lemma 7.40 to proof the final conclusion of the theorem. In what follows,
assume without loss of generality that Ham(G , G⇤) < Ham(G ,�G⇤). The above discussion
implies that

Ham(G , G⇤) 6 8�= 6 40=p
log(1/✓)

6
=

16 ,

where the last inequality uses ✓ 6 4�640. Further, by Fact E.6 it also follows that the maximum
degree of G2 is at most $

⇣
log2

=

⌘
(by some margin). Recall that G2 ⇠ SBM(3, ✏, G⇤). In the

parametrization of Lemma 7.40 this means that

� =
(1 + ✏)3

log = , � =
(1 � ✏)3

log = ,

256

� � � =
2✏3
log = , � + � =

23
log = .

Thus, it follows that the output Ĝ of the majority voting step satisfies for every vertex E

ê(Ĝ(G)E < GE) 6 exp
✓
� 1

64 · ⌘(� � �) · log =
◆
+ 2 · exp

✓
� 1

162 ·
(� � �)2
� + �

· log =
◆

6 exp
✓
� 1

32 · ⌘✏3
◆
+ exp

✓
� 1

162 · ✏2
3

◆

6 ✓2/4 + ✓2/4 6 ✓2
.

By Markov’s Inequality it now follows that

ê(err(Ĝ(G), G⇤) > ✓) 6 ✓ .

⇤

7.4.4 Lower bound on the parameters for private recovery
In this section, we prove a tight lower bound for private recovery for stochastic block
models. Recall the definition of error rate, err(D , E) := 1

=
· min{Ham(D , E),Ham(D ,�E)} for

D , E 2 {±1}= . Our main result is the following theorem.

Theorem 7.46 (Full version of Theorem 7.4). Suppose there exists an ⌘-differentially private algo-
rithm such that for any balanced G 2 {±1}= , on input G ⇠ SBM=(3, ✏, G), outputs Ĝ(G) 2 {±1}=
satisfying

ê(err(Ĝ(G), G) < ✓) > 1 � ◆,
where25 1/= 6 ✓ 6 0.04 and the randomness is over both the algorithm and stochastic block models.
Then,

4
2⌘ � 1 > ⌦

✓
log(1/✓)

✏3
+

log(1/◆)
✓=✏3

◆
. (7.4.10)

Remark 7.47. Both terms in lower bound Eq. (7.4.10) are tight up to constants by the
following argument. Considering typical privacy parameters ⌘ 6 1, then 42⌘ � 1 ⇡ 2⌘. For
exponentially small failure probability, i.e. ◆ = 2�⌦(=), the lower bound reads ⌘ > ⌦(1

✏3 · 1
✓),

which is achieved by Algorithm 7.43 without the boosting step - see the discussion after
Theorem 7.42. For polynomially small failure probability, i.e.◆ = 1/poly(=), the lower
bound Eq. (7.4.10) reads ⌘ > ⌦(1

✏3 · log 1
✓), which is achieved by Theorem 7.42.

By setting ✓ = 1/= in Theorem 7.46, we directly obtain a tight lower bound for private
exact recovery as a corollary.

25Error rate less than 1/= already means exact recovery. Thus it does not make sense to set ✓ to any
value strictly smaller than 1/=. The upper bound ✓ 6 0.04 is just a technical condition our proof needs for
Eq. (7.4.12).

257

Corollary 7.48. Suppose there exists an ⌘-differentially private algorithm such that for any balanced
G 2 {±1}= , on input G ⇠ SBM=(3, ✏, G), outputs Ĝ(G) 2 {±1}= satisfying

ê(Ĝ(G) 2 {G ,�G}) > 1 � ◆,

where the randomness is over both the algorithm and stochastic block models. Then,

4
2⌘ � 1 > ⌦

log(=) + log 1

◆

✏3

!
. (7.4.11)

Remark 7.49. The lower bound Eq. (7.4.11) for priavte exact recovery is tight up to constants,
since there exists an (inefficient) ⌘-differentially priavte exact recovery algorithm with
⌘ 6 $(log =

✏3) and ◆ = 1/poly(=) by Theorem 7.42 and [MNVT22, Theorem 3.7].
In rest of this section, we will prove Theorem 7.46. The proof applies the packing lower

bound argument similar to [HKM22, Theorem 7.1]. To this end, we first show err(·, ·) is a
semimetric over {±1}= .

Lemma 7.50. err(·, ·) is a semimetric over {±1}= .

Proof. Symmetry and non-negativity are obvious from the definition. We will show err(·, ·)
satisfies triangle inequality via case analysis. Let D , E ,F 2 {±1}= be three arbitrary sign
vectors. By symmetry, we only need to consider the following four cases.

Case 1: Ham(D , E),Ham(D ,F),Ham(E ,F) 6 =/2. This case is reduced to showing
Hamming distance satisfies triangle inequality, which is obvious.

Case 2: Ham(D , E),Ham(D ,F) 6 =/2 and Ham(E ,F) > =/2. We need to check two
subcases. First,

err(D , E) 6 err(D ,F) + err(E ,F), Ham(D , E) + Ham(E ,F) 6 Ham(D ,F) + =
(Ham(D , E) + �(D , E) + �(D ,F) 6 Ham(D ,F) + =
, Ham(D , E) 6 =/2.

Second,

err(E ,F) 6 err(D , E) + err(D ,F), = 6 Ham(E ,F) + Ham(D , E) + Ham(D ,F)
(= 6 2 Ham(E ,F).

Case 3: Ham(D , E) 6 =/2 and Ham(D ,F),Ham(E ,F) > =/2. This case can be reduced
to case 1 by considering D , E ,�F.

Case 4: Ham(D , E),Ham(D ,F),Ham(E ,F) > =/2. This case can be reduced to case 2 by
considering �D , E ,F. ⇤

Proof of Theorem 7.46. Suppose there exists an ⌘-differentially private algorithm satisfying
the theorem’s assumption.

258

We first make the following notation. Given a semimetric ⌧ over {±1}= , a center
E 2 {±1}= , and a radius A > 0, define ⌫⌧(E , A) := {F 2 {±1}= : 1>F = 0, ⌧(F , E) 6 A}.

Pick an arbitrary balanced G 2 {±1}= . Let " = {G1
, G

2
, . . . , G

<} be a maximal 2✓-
packing of ⌫err(G , 4✓) in semimetric err(·, ·). By maximality of ", we have ⌫err(G , 4✓) ✓
[<
8=1⌫err(G8 , 2✓), which implies

|⌫err(G , 4✓)| 6
<’
8=1

��
⌫err(G8 , 2✓)

��

=) |⌫Ham(G , 4✓)| 6
<’
8=1

2 ·
��
⌫Ham(G8 , 2✓)

�� = 2< · |⌫Ham(G , 2✓)|

=) 2< > |⌫Ham(G , 4✓=)|
|⌫Ham(G , 2✓=)| =

�
=/2
2✓=

�2

�
=/2
✓=

�2 >

⇣
1

4✓

⌘4✓=

⇣
4

2✓

⌘2✓= =
✓

1
84✓

◆2✓=
(7.4.12)

For each 8 2 [<], define .8 := {F 2 {±1}= : err(F , G
8) 6 ✓}. Then .8’s are pairwise

disjoint. For each 8 2 [<], let %8 be the distribution over =-vertex graphs generated by
SBM=(3, ✏, G8). By our assumption on the algorithm, we have for any 8 2 [<] that

ê
G⇠%8

(Ĝ(G) 2 .8) > 1 � ◆.

Combining the fact that .8’s are pairwise disjoint, we have
<’
8=1

ê
G⇠%1

(Ĝ(G) 2 .8) = ê
G⇠%1

�
Ĝ(G) 2 [<

8=1.8
�
6 1 =)

<’
8=2

ê
G⇠%1

(Ĝ(G) 2 .8) 6 ◆. (7.4.13)

In the following, we will lower bound êG⇠%1(Ĝ(G) 2 .8) for each 8 2 [<] \ {1} using group
privacy.

Note each %8 is a product of
�
=

2
�

independent Bernoulli distributions. Thus for any
8 , 9 2 [<], there exists a coupling $8 9 of %8 and %9 such that, if (G,H) ⇠ $, then

Ham(G,H) ⇠ Binomial(#89 , ?),

where ? = 2✏3/= and #89 = Ham(G8 , G9) · (= �Ham(G8 , G9)). Applying group privacy, we
have for any two graphs ⌧,� and for any (✓ {±1}= that26

ê(Ĝ(⌧) 2 () 6 exp(⌘ · Ham(⌧,�)) · ê(Ĝ(�) 2 (). (7.4.14)

For each 8 2 [<], taking expectations on both sides of Eq. (7.4.14) with respect to coupling
$81 and setting (= .8 , we have

Ö
(G,H)⇠$81

ê(Ĝ(G) 2 .8) 6 Ö
(G,H)⇠$81

exp(⌘ · Ham(G,H)) · ê(Ĝ(H) 2 .8). (7.4.15)

26In Eq. (7.4.14), the randomness only comes from the algorithm.

259

The left side of Eq. (7.4.15) is equal to

Ö
(G,H)⇠$81

ê(Ĝ(G) 2 .8) = ê
G⇠%8

(Ĝ(G) 2 .8) > 1 � ◆.

Upper bounding the right side of Eq. (7.4.15) by Cauchy-Schwartz inequality, we have

Ö
(G,H)⇠$81

exp(⌘ · Ham(G,H)) · ê(Ĝ(H) 2 .8)

6
✓

Ö
(G,H)⇠$81

exp(2⌘ · Ham(G,H))
◆1/2

·
✓

Ö
(G,H)⇠$81

ê(Ĝ(H) 2 .8)2
◆1/2

=
✓

Ö
X⇠Binomial(#81 ,?)

exp(2⌘ · X)
◆1/2

·
✓
Ö

H⇠%1
ê(Ĝ(H) 2 .8)2

◆1/2
.

Using the formula for the moment generating function of binomial distributions, we have

Ö
X⇠Binomial(#81 ,?)

exp(2⌘ · X) = (1 � ? + ? · 42⌘)#81
,

and it is easy to see

Ö
H⇠%1

ê(Ĝ(H) 2 .8)2 = Ö
H⇠%1

�
Ö [Ĝ(H)2.8]

�2 6 ê
H⇠%1

(Ĝ(H) 2 .8).

Putting things together, Eq. (7.4.15) implies for each 8 2 [<] that

ê
H⇠%1

(Ĝ(H) 2 .8) >
(1 � ◆)2

(1 � ? + ? · 42⌘)#81
. (7.4.16)

Since G8 2 ⌫err(G , 4✓) for 8 2 [<], by assuming ✓ 6 1/16, we have

#81 = Ham(G8 , G1) · (= �Ham(G1
, G

8)) 6 8✓=(= � 8✓=). (7.4.17)

Recalling ? = 2✏3/= and combining Eq. (7.4.12), Eq. (7.4.13), Eq. (7.4.16) and Eq. (7.4.17),
we have

(< � 1) ·
(1 � ◆)2

(1 � ? + ? · 42⌘)8✓=(=�8✓=) 6 ◆.

By taking logarithm on both sides, using C > log(1 + C) for any C > �1, and assuming
✓ 6 1/(84), we have

4
2⌘ � 1 &

log 1
84✓

✏3
+

log 1
◆

✓=✏3
.

⇤

260

7.5 Private algorithms for learning mixtures of
spherical Gaussians

In this section we present a private algorithm for recovering the centers of a mixtures of :
Gaussians (cf. Model 7.5). LetY ✓

�
í3

�⌦= be the collection of sets of = points in í3. We
consider the following notion of adjacency.

Definition 7.51 (Adjacent databases). We say that. ,.0 2 Y are adjacent if |. \ .0| > =�1 .

Remark 7.52 (Problem parameters as public information). We consider the parameters
= , : ,� to be public information given as input to the algorithm.

Next we present the main theorem of the section.

Theorem 7.53 (Privately learning spherical mixtures of Gaussians). Consider an instance
of Model 7.5. Let C 2 é be such that � > $

⇣p
C:

1/C
⌘
. For = > ⌦

�
:
$(1) · 3$(C)�

, : > (log =)1/5
,

there exists an algorithm, running in time (=3)$(C), that outputs vectors -̂1, . . . , -̂✓ satisfying

max
✓2[:]

��-̂✓ � ⇠�(✓)
��

2 6 $(:�12) ,

with high probability, for some permutation � : [:]! [:] .27 Moreover, for ⌘ > :�10
, ⇣ > =�10

,

the algorithm is (⌘, ⇣)-differentially private for any input ..

We remark that our algorithm not only works for mixtures of Gaussians but for all
mixtures of 2C-explicitly bounded distributions (cf. Definition 7.21).

Our algorithm is based on the sum-of-squares hierarchy and at the heart lies the
following sum-of-squares program. The indeterminates I11, . . . , I1: , . . . , I=: and vector-
valued indeterminates ⇠01, . . . , ⇠

0
:
, will be central to the proof of Theorem 7.53. Let = , : , C

be fixed parameters.

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

I
2
8✓
= I8✓ 88 2 [=] , ✓ 2 [:] (indicators)’

✓2[:]
I8✓ 6 1 88 2 [=] (cluster mem.)

I8✓ · I8✓ 0 = 0 88 2 [=] , ✓ 2 [:] (uniq. mem.)’
8

I8✓ 6 =/: 8✓ 2 [:] (size of clusters)

⇠0
✓
=
:

=

’
8

I8✓ · H8 8✓ 2 [:] (means of clusters)

8E 2 í3 : :
=

=’
8=1

I8✓ hH8 � ⇠0
✓
, Ei2B +

��
&E
⌦B��2 = (2B)B · kEk2B2 8B 6 C , ✓ 2 [:] (C moment)

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(P= ,: ,C(.))
27We remark that we chose constants to optimize readibility and not the smallest possible ones.

261

We remark that the moment constraint encodes the 2C-explicit 2-boundedness constraint
introduced in Definition 7.21. Note that in the form stated above there are infinitely many
constraints, one for each vector E. This is just for notational convenience. This constraint
postulates equality of two polynomials in E. Formally, this can also be encoded by requiring
there coefficients to agree and hence eliminating the variable E. It is not hard to see that
this can be done adding only polynomially many constraints. Further, the matrix variable
& represents the SoS proof of the 2C-explicit 2-boundedness constraint and we can hence
deduce that for all 0 6 B 6 C

P 2B
E

(
:

=

=’
8=1

I8✓ hH8 � ⇠0
✓
, Ei2B 6 (2B)B kBk2B2

)
.

Before presenting the algorithm we will introduce some additional notation which
will be convenient. We assume C , = , : to be fixed throughout the section and drop the
corresponding subscripts. For. 2 Y, letZ(.) be the set of degree-10C pseudo-distributions
satisfying P(.). For each ✓ 2 Z(.) define,(✓) as the =-by-= matrix satisfying

,(✓)8 9 = Ö̃✓

266664
’
✓2[:]

I8✓ · I9✓
377775
.

We letW(.) := {,(✓) | ✓ 2 Z(.)} .
Recall that � denotes the all-ones matrix. We define the function , : í=⇥= ! í as

,(,) = k, k2F � (10)10
:

300h� ,,i

and let
,(✓̂(.)) B argmin

,2W(.) ,(,) .
We also consider the following function

Definition 7.54 (Soft thresholding function). We denote by) : [0, 1]! [0, 1] the function

)(G) =
8>>><
>>>:

0 if G 6 0.8 ,

1 if G > 0.9 ,

G�0.8
0.9�0.8 otherwise .

Notice that)(·) is 1
0.9�0.8 = 10 Lipschitz. Next we introduce our algorithm. Notice the

algorithm relies on certain private subroutines. We describe them later in the section to
improve the presentation.

262

Algorithm 7.55 (Private algorithm for learning mixtures of Gaussians).
Input: Set of = points . ✓ í3 , ⌘ , ⇣ > 0 , : , C 2 é , 3

⇤ = 100 log = , 1 = :
�15

.

1. Compute, =,(✓̂(.)).

2. Pick 3 ⇠ tLap
⇣
�=1.6

⇣
1 + log(1/⇣)

⌘

⌘
,
=

1.6

⌘

⌘
.

3. If |3| > =1.7 or
��)(,)

��
1 6

=
2

:
·
⇣
1 � 1

=
0.1 � 1

:
100

⌘
+ 3 reject.

4. For all 8 2 [=] , compute the =-dimensional vector

⇡(8) =

(
0 if

��)(,8)
��

1 = 0��)(,8)
���1

1
Õ
9
)(,89) · H9 otherwise.

5. Pick a set S of =0.01 indices 8 2 [=] uniformly at random.

6. For each 8 2 S let .̄(8) = ⇡(8) + w where w ⇠ #
⇣
0, =�0.18 · log(2/⇣)

⌘2 · Id
⌘
.

7. Pick � ⇠ #
�
0, 1

3
⇤
�
3
⇤⇥3

, q D.0.A .⇠ [0, 1] and run the histogram learner of Lemma 7.20
with input �.̄(1)

, . . . ,�.̄(=0.01) and parameters

q, 1 , � = :
�10

, � = =
�10

, ⇣⇤ =
⇣
=

, ⌘⇤ = ⌘ · 10:50

=
0.01 .

Let B1, . . . ,B: be the resulting 3⇤-dimensional bins with highest counts. Break
ties randomly.

8. Reject if min
82[:]

���
9

�� �.̄(9) 2 B8

 �� < =
0.01

2: .

9. For each ; 2 [:] output

-̂; B
1���

9

�� �.̄(9) 2 B8

 �� · ©≠´
’

�.̄(9)2B;

.̄(9)™Æ
¨
+ w0 ,

where w0 ⇠ #
⇣
0,#

⇣
0, 32 · :�120 · log(2:=/⇣)

⌘2 · Id
⌘⌘

.

For convenience, we introduce some preliminary facts.

Definition 7.56 (Good .). Let Y be sampled according to Model 7.5. We say that Y is good
if:

1. for each ✓ 2 [:], there are at least =

:
� =0.6 and most =

:
+ =0.6 points sampled from ⇡✓

in Y. Let Y✓ ✓ Y be such set of points.

263

2. Each Y✓ is 2C-explicitly 2-bounded.

It turns out that typical instances Y are indeed good.

Lemma 7.57 ([HL18, KSS18]). Consider the settings of Theorem 7.53. Then Y is good with high
probability. Further, in this case the setsZ(.) andW(.) are non-empty.

7.5.1 Privacy analysis
In this section we show that our clustering algorithm is private.

Lemma 7.58 (Differential privacy of the algorithm). Consider the settings of Theorem 7.53.
Then Algorithm 7.55 is (⌘, ⇣)-differentially private.

We split our analysis in multiple steps and combine them at the end. On a high level,
we will argue that on adjacent inputs . ,.0 many of the vectors ⇡(8) by the algorithm are
close to each other and a small part can be very far. We can then show that we can mask
this small difference using the Gaussian mechanism and afterwards treat this subset of the
vectors as privatized (cf. Lemma E.4). Then we can combine this with known histogram
learners to deal with the small set of ⇡(8)’s that is far from each other on adjacent inputs.

7.5.1.1 Sensitivity of the matrix W
Here we use Lemma 7.25 to reason about the sensitivity of)(,(✓̂(.))). For adjacent
datasets . ,.0 2 Y we let ✓̂ , ✓̂0 be the pseudo-distribution corresponding to,(✓̂(.)) and
,(✓̂(.0)) computed in step 1 of the algorithm, respectively. We prove the following result.

Lemma 7.59 (✓1-sensitivity of)(,)). Consider the settings of Theorem 7.53. Let , ,,
0 be

respectively be the matrices computed in step 1 by Algorithm 7.55 on adjacent inputs . ,.0 2 Y.
Then

��)(,) �)(, 0)
��

1 6 =
1.6

.

For all but =0.8 rows 8 of)(,),)(, 0), it holds
��)(,)8 �)(, 0)8

��
1 6 =

0.8
.

Proof. The second inequality is an immediate consequence of the first via Markov’s
inequality. Thus it suffices to prove the first. Since)(·) is 10-Lipschitz, we immediately
obtain the result if ���,(✓̂(.)) �,(✓̂(.0))

���
1
6 =1.55

.

264

Thus we focus on this inequality. To prove it, we verify the two conditions of Lemma 7.25.
First notice that , is 2-strongly convex with respect to its input, . Indeed for, ,,

0 2 W(.),
since 88 , 9 2 [=] ,,89 > 0 it holds that

k, 0k2F = k, k2F + k, �, 0k2F + 2h, 0 �, ,,i
= k, k2F + k, �, 0k2F + 2h, 0 �, ,,i + h, 0 �, , (10)10

:
300(� � �)i

= ,(,) + k, �, 0k2F + h, 0 �, ,r,(,)i + h, 0, (10)10
:

300
�i ,

where we used that r,(,) = 2, � (10)10
:

300
�. Thus it remain to prove (i) of Lemma 7.25.

Let ✓̂ 2 Z(.) , ✓̂0 2 Z(.0) be the pseudo-distributions such that ,.(✓̂) = , and
,.(✓̂0) =, 0. We claim that there always exists ✓adj 2 Z(.) \Z(.0) such that

1. |,(,(✓)) � ,(,(✓adj)| 6 2=
:
·
�
(10)10

:
300 + 1

�
6 3 · (10)10

:
300
= ,

2. |,.0(,(✓adj)) � ,(,(✓adj)| = 0 .

Note that in this case the second point is always true since , doesn’t depend on .. Together
with Lemma 7.25 these two inequalities will imply that

���,(✓̂(.)) �,(✓̂(.0))
���2

F
6 18 · (10)10

:
300
= .

By assumption on =, an application of Cauchy-Schwarz will give us the desired result.
So, let 8 be the index at which. ,.0 differ. We construct ✓adj as follows: for all polynomials

? of degree at most 10C we let

Ö̃✓adj

⇥
?

⇤
=

(
Ö̃✓

⇥
?

⇤
if ? does not contain variables I8✓ for any ✓ 2 [:]

0 otherwise.

By construction ✓adj 2 Z(.)\Z(.0). Moreover,,(✓),,(✓adj) differ in at most 2=/: entries.
Since all entries of the two matrices are in [0, 1], the first inequality follows by definition of
the objective function. ⇤

7.5.1.2 Sensitivity of the resulting vectors
In this section we argue that if the algorithm does not reject in step 3 then the vectors ⇡(8)

are stable on adjacent inputs. Concretely our statement goes as follows:

Lemma 7.60 (Stability of the ⇡(8)’s). Consider the settings of Theorem 7.53. Suppose Algorithm 7.55
does not reject in step 3, on adjacent inputs . ,.

0 2 Y. Then for all but 6=
:

50 indices 8 2 [=], it holds:
���⇡(8)
.
� ⇡(8)

.
0

���
2
6 $

�
=
�0.1�

.

The proof of Lemma 7.60 crucially relies on the next statement.

265

Lemma 7.61 (Covariance bound). Consider the settings of Theorem 7.53. Let, be the matrix
computed by Algorithm 7.55 on input . 2 Y. For 8 2 [=], if

��)(,8)
��

1 >
=

:
·
⇣
1 � 10

:
50

⌘
then ⇡(8)

induces a 2-explicitly 40-bounded distribution over ..

Proof. First, by assumption notice that there must be at least =

:
·
⇣
1 � 10

:
50

⌘
entries of)(,8)

larger than 0.8. We denote the set of 9 2 [=] such that,89 > 0.8 by G . Let ✓ 2 Z(.) be the
degree 10C pseudo-distribution so that, =,(✓(.)). Since ✓ satisfies P(.), for ✓ 2 [:] it
follows from the moment bound constraint for B = 1 that for all unit vectors D it holds that

P 4

8>><
>>:

0 6 :

=

=’
9=1

I9✓ hy9 � ⇠0
;
, Di2 6 2

9>>=
>>;
,

Using the SoS triangle inequality (cf. Fact E.14) 2
0 ,1 (0 + 1)2 6 2(02 + 12) it now follows that

0 � Ö̃✓

266664
:

2

=
2

’
9 , 9
02[=]

I9✓ I90✓ ·
�
H9 � H90

�⌦2
377775
� 8Id

and thus

0 � Ö̃✓

266664
:

2

=
2

’
✓2[:]

’
9 , 9
02[=]

I8✓ I9✓ I90✓ ·
�
H9 � H90

�⌦2
377775
� 8Id .

Furthermore using P(.) 2 {I8✓ I8✓ 0 = 0} for ✓ < ✓ 0 we have

Ö̃✓

266664
’
✓2[:]

’
9 , 9
02[=]

I8✓ I9✓ I90✓

377775
= Ö̃✓

266664
©≠
´

’
✓2[:] , 92[=]

I8✓ I9✓

™Æ
¨
· ©≠
´

’
✓
02[:] , 902[=]

I8✓ 0I90✓ 0
™Æ
¨
377775
.

Now, for fixed 9 , 9
0 2 [=], using�

0
2 = 0 , 1

2 = 1

$(1)
�
1 + 01 � 0 � 1 = 1 � 01 � (0 � 1)2 > 0

with 0 =

Õ
✓2[:] I8✓ I9✓ and 1 =

Õ
✓
02[:] I8✓ 0I90✓ 0 we get

Ö̃✓

266664
©≠
´
’
✓2[:]

I8✓ I9✓

™Æ
¨
©≠
´
’
✓
02[:]

I8✓ 0I90✓ 0
™Æ
¨
377775
> Ö̃✓

266664
’
✓2[:]

I8✓ I9✓ +
’
✓
02[:]

I8✓ 0I90✓ 0

377775
� 1

=,89 +,89
0 � 1 .

Now if 9 , 90 2 G we must have

’
✓2[:]

Ö̃✓
⇥
I8✓ I9✓ I90✓

⇤
= Ö̃✓

266664
©≠
´
’
✓2[:]

I8✓ I9✓

™Æ
¨
©≠
´
’
✓
02[:]

I8✓ 0I90✓ 0
™Æ
¨
377775
> 0.6 .

266

Since)(,89) 6 1 by definition and
��)(,8)

��
1 >

=

:
·
⇣
1 � 10

:
50

⌘
, we conclude

��)(,8)
��

1
�2

266664
’

9 , 9
02[=]

)(,89))(,89
0)
�
H9 � H90

�⌦2
377775

� 5 · :
2

=
2

’
9 , 9
02[=] ,✓2[:]

Ö̃✓
⇥
I8✓ I9✓ I90✓

⇤
·
�
H9 � H90

�⌦2

� 40Id .

as desired. ⇤

We can now prove Lemma 7.60.

Proof of Lemma 7.60. Let, ,,
0 be the matrices computed by Algorithm 7.55 in step 1 on

input . ,.0, respectively. Let G ✓ [=] be the set of indices 8 such that��)(,)8 �)(, 0)8
��

1 6 =
0.8

.

Notice that |G | > = � =0.8 by Lemma 7.59. Since on input . the algorithm did not reject in
step 3 we must have

��)(,)
��

1 >
=

2

:

·
✓
1 � 1

=
0.1 �

1
:

100

◆
� =1.7 >

=
2

:

·
✓
1 � 2

:
100

◆
.

Let ,, be the number of indices 8 2 G such that
��)(,)8

��
1 >

=

:
·
⇣
1 � 1

:
50

⌘
. It holds that

=
2

:

·
✓
1 � 2

:
100

◆
6 ,, · =

:

+ (= � |G |) · =
:

+
�
|⌧ | � ,F

� =
:

·
✓
1 � 1

:
50

◆

6 ,, · =
:

· 1
:

50 + =
1.8

:

+ =
2

:

·
✓
1 � 1

:
50

◆

6 ,, · =
:

· 1
:

50 + =
2

:

·
✓
1 + 1

:
100 �

1
:

50

◆
.

Rearring now yields

,, > = ·
✓
1 � 3

:
50

◆
.

Similarly, let ,,0 be the number of indices 8 2 G such that
��)(, 0)8��1 >

=

:
·
⇣
1 � 1

:
50

⌘
. By an

analogous argument it follows that ,,0 > = ·
⇣
1 � 3

:
50

⌘
. Thus, by the pigeonhole principle

there are at least ,, > = ·
⇣
1 � 6

:
50

⌘
indices 8 such that

1.
��)(,)8

��
1 >

=

:

⇣
1 � 1

:
50

⌘
,

267

2.
��)(, 0)8��1 >

=

:

⇣
1 � 1

:
50

⌘
,

3.
��)(,)8 �)(, 0)8

��
1 6 =

0.8
.

Combining these with Lemma 7.61 we may also add

4. the distribution induced by
��)(,8)

���1
1)(,8) is 2-explicitly 40-bounded,

5. the distribution induced by
��)(, 0

8
)
���1

1)(, 0
8
) is 2-explicitly 40-bounded.

Using that for non-zero vectors G , H it holds that
��� G

kGk �
H

kHk

��� 6 2
kGk

��
G � H

�� points 1 to 3
above imply that

�����)(,8)
���1

1)(,8) �
��)(, 0

8
)
���1

1)(, 0
8
)
���

1
6

2=0.8

=

:
·
⇣
1 � 1

:
50

⌘ = $

�
=
�0.2�

.

Hence, applying Theorem 7.23 with C = 1 it follows that���⇡(8)
.
� ⇡(8)

.
0

���
2
6 $

�
=
�0.1�

.

⇤

7.5.1.3 From low sensitivity to privacy
In this section we argue privacy of the whole algorithm, proving Lemma 7.58. Before doing
that we observe that low-sensitivity is preserved with high probability under subsampling.

Fact 7.62 (Stability of S). Consider the settings of Theorem 7.53. Suppose Algorithm 7.55 does
not reject in step 3, on adjacent inputs . ,.

0 2 Y. With probability at least 1 � 4�=⌦(1) over the
random choices of S, for all but 10=0.01

:
50 indices 8 2 S, it holds:
���⇡(8)
.
� ⇡(8)

.
0

���
2
6 $

�
=
�0.1�

.

Proof. There are at most 6=
:

50 such indices in [=] by Lemma 7.60. By Chernoff’s bound, cf.
Fact E.8, the claim follows. ⇤

Finally, we prove our main privacy lemma.

Proof of Lemma 7.58. For simplicity, we will prove that the algorithm is (5⌘, 5⇣)-private.
Let . ,.0 2 Y be adjacent inputs. By Lemma 7.17 and Lemma 7.59 the test in step 3 of
Algorithm 7.55 is (⌘, ⇣)-private.

Thus suppose now the algorithm did not reject in step 3 on inputs. ,.0. By composition
(cf. Lemma 7.11) it is enough to show that the rest of the algorithm is (⌘, ⇣)-private with
respect to . ,.0 under this condition. Next, let ⇡(1)

.
, . . . , ⇡(=)

.
and ⇡(1)

.
0 , . . . , ⇡

(=)
.
0 be the vectors

268

computed in step 4 of the algorithm and S be the random set of indices computed in step
5.28 By Lemma 7.60 and Fact 7.62 with probability 1 � 4�=⌦(1) over the random choices of S
we get that for all but 10=0.01

:
50 indices 8 2 S, it holds that���⇡(8)

.
� ⇡(8)

.
0

���
2
6 $

�
=
�0.1�

.

Denote this set of indices by G. Note, that we may incorporate the failure probability
4
�=⌦(1) 6 min{⌘/2, ⇣/2} into the final privacy parameters using Fact E.15.

Denote by V,V0 the |S |-by-3 matrices respectively with rows ⇡(81)
.

, . . . , ⇡
(8 |S |)
.

and
⇡(81)
.
0 , . . . , ⇡

(8 |S |)
.
0 , where 81, . . . , 8 |S | are the indices in S . Recall, that |G | rows of V and

V0 differ by at most $
�
=
�0.1� in ✓2-norm. Thus, by the Gaussian mechanism used in step 6

(cf. Lemma 7.19) and Lemma E.4 it is enough to show that step 7 to step 9 of the algorithm
are private with respect to pairs of inputs+ and+0 differing in at most 1 row.29 In particular,
suppose these steps are (⌘1, ⇣1)-private. Then, for < = =

0.01 � |G | 6 10=0.01

:
50 , by Lemma E.4 it

follows that step 6 to step 9 are (⌘0, ⇣0)-differentially private with

⌘0 B ⌘ + <⌘1 ,

⇣0 B 4
⌘
<4

(<�1)⌘1⇣1 + ⇣ .

Consider steps 7 and 8. Recall, that in step 7 we invoke the histogram learner with
parameters

1 = :
�15

, q D.0.A .⇠ [0, 1], � = :
�10

, � = =
�10

, ⇣⇤ =
⇣
=

, ⌘⇤ = ⌘ · 10:50

=
0.01 .

Hence, by Lemma 7.20 this step is (⌘⇤, ⇣⇤)-private since

8
⌘⇤�

· log
✓

2
⇣⇤�

◆
6

200 · :10 · =0.01

10 · :50 · ⌘ · log = =
20 · =0.01

:
40 · ⌘ · log = 6 = ,

for ⌘ > :�10. Step 8 is private by post-processing.
Next, we argue that step 9 is private by showing that the average over the bins has

small ✓2-sensitivity. By Lemma 7.11 we can consider the bins B1, . . . ,B: computed in the
previous step as fixed. Further, we can assume that the algorithm did not reject in step 8,
i.e., that each bin contains at least =

0.01

2: points of + and +0 respectively. As a consequence,
every bin contains at least two (projections of) points of the input + or +0 respectively. In
particular, it contains at least one (projection of a) point which is present in both + and +0.
Fix a bin B; and let ⇡̄⇤ be such that it is both in + and +0 and �⇡̄⇤ 2 B; . Also, define

(; B
���n 9 ��� �⇡̄

(9)
.
2 B8

o��� ,
28Note that since this does not depend on . or .0, respectively, we can assume this to be the same in both

cases. Formally, this can be shown, e.g., via a direct calculation or using Lemma 7.11.
29Note that for the remainder of the analysis, these do not correspond to V and V0, since those differ in <

rows. Lemma E.4 handles this difference.

269

(
0
;
B

���n 9 ��� �⇡̄
(9)
.
0 2 B8

o��� .
Assume + and +0 differ on index 9. We consider two cases. First, assume that �⇡̄

(9)
.

and
�⇡̄

(9)
.
0 both lie in B; . In this case, (; = (0

;
and using Lemma E.9 it follows that with probability

=
�100 6 min{⌘/2, ⇣/2} it holds that���⇡̄(9)

.
� ⇡̄

(9)
.
0

���
2
6

���⇡̄(9)
.
� ⇡̄⇤

���
2
+

���⇡̄⇤ � ⇡̄
(9)
.
0

��� 6 10 ·
⇣����⇡̄

(9)
.
��⇡̄⇤

���
2
+

����⇡̄
(9)
.
0 ��⇡̄⇤

���
2

⌘
6 20 ·

p
3
⇤ · 1 6 200 · :�12

.

And hence we can bound�������
1
(;

·
©≠≠
´

’
�⇡̄

(9)
.
2B;

⇡̄
(9)
.

™ÆÆ
¨
� 1
(
0
;

·
©≠≠
´

’
�⇡̄

(9)
.
0 2B;

⇡̄
(9)
.
0

™ÆÆ
¨

�������
2

6

���⇡̄(9)
.
� ⇡̄

(9)
.
0

���
2

(;

6
400 · :�11

=
0.01 .

Next, assume that �⇡̄
(9)
.
8 B; and �⇡̄

(9)
.
0 2 B; (the other case works symetrically). It follows

that (; = (0
;
� 1 and we can bound�������

1
(;

·
©≠≠
´

’
�⇡̄

(9)
.
2B;

⇡̄
(9)
.

™ÆÆ
¨
� 1
(
0
;

·
©≠≠
´

’
�⇡̄

(9)
.
0 2B;

⇡̄
(9)
.
0

™ÆÆ
¨

�������
2

=
1

(; · (0
;

·

�������(
0
;

©≠≠
´

’
�⇡̄

(9)
.
2B;

⇡̄
(9)
.

™ÆÆ
¨
�

�
(
0
;
� 1

�©≠≠
´

’
�⇡̄

(9)
.
0 2B;

⇡̄
(9)
.
0

™ÆÆ
¨

�������
2

=
1

(; · (0
;

·

�������(
0
;
· ⇡̄(9)

.
0 +

©≠≠
´

’
�⇡̄

(9)
.
0 2B;

⇡̄
(9)
.
0

™ÆÆ
¨

�������
2

=
1
(;

·

�������⇡̄
(9)
.
0 �

1
(
0
;

©≠≠
´

’
�⇡̄

(9)
.
0 2B;

⇡̄
(9)
.
0

™ÆÆ
¨

�������
2

6
p
3
⇤ · 1
(;

6
20 · :�11

=
0.01 .

Hence, the ✓2-sensitivity is at most � B 400·:�11

=
0.01 . Since

2�2 ·
log(2/(⇣⇤/:))

(⌘⇤/:)2 = 32 · :�120 ·
log(2:=/⇣)

⌘2

and w0 ⇠ #
⇣
0, 32 · :�120 · log(2:=/⇣)

⌘2 · Id
⌘

it follows that outputing -̂; is (⌘⇤/: , ⇣⇤/:)-DP by
the Gaussian Mechanism that. By Lemma 7.11 it follows step 9 is (⌘⇤, ⇣⇤)-private.

Hence, by Lemma 7.11 it follows that step 7 to step 9 are (2⌘⇤, 2⇣⇤)-differentially private.
Using < 6 10=0.01

:
10 it now follows by Lemma E.4 that step 6 to step 9 are (⌘0, ⇣0)-private for

⌘0 = ⌘ + 2<⌘⇤ 6 3⌘ ,

270

⇣0 = 24⌘<4(<�1)2⌘⇤⇣⇤ + ⇣ 6 2<43⌘ · ⇣
=

+ ⇣ 6 3⇣ .

Thus, combined with the private check and Fact E.15 in step 3 the whole algorithm is
(5⌘, 5⇣)-private.

⇤

7.5.2 Utility analysis
In this section we reason about the utility of Algorithm 7.55 and prove Theorem 7.53. We
first introduce some notation.

Definition 7.63 (True solution). Let Y be an input sampled from Model 7.5. Denote by
,
⇤(Y) 2 W(Y) the matrix induced by the true solution (or ground truth). I.e., let

,
⇤(Y)8 9 =

(
1 if 8 , 9 were both sampled from the same component of the mixture,
0 otherwise.

Whenever the context is clear, we simply write W⇤ to ease the notation.

First, we show that in the utility case step 3 of Algorithm 7.55 rejects only with low
probability.

Lemma 7.64 (Algorithm does not reject on good inputs). Consider the settings of Theorem 7.53.
Suppose Y is a good set as per Definition 7.56. Then

���,(✓̂(Y))
���

1
> =

2

:
·
⇣
1 � =�0.4 � 1

(10)10
:

300

⌘
and

Algorithm 7.55 rejects with probability at most exp
�
�⌦

�
=

1.7� � .
Proof. Since Y is good, there exists W⇤ 2 W(Y), corresponding to the indicator matrix of
the true solution, such that

,(W⇤) = kW⇤k2F � 1010
:

300h� ,W⇤i 6 =
2

:

+ =1.6 � (10)10
:

300
✓
=

2

:

� =1.6
◆

=
=

2

:

✓
1 + :

=
0.4 � (10)10

:
300

✓
1 � :

=
0.4

◆◆
.

Since ,(,(✓̂(Y))) 6 ,(W⇤) it follows that

(10)10
:

300h� ,,(✓̂(Y))i > |,(,(✓̂(Y)))| > =
2

:

✓
(10)10

:
300

✓
1 � :

=
0.4

◆
� 1 � :

=
0.4

◆
.

Since,
���,(✓̂(Y))

���
1
> h� ,,(✓̂(Y))i the first claim follows rearranging the terms. This means

that the algorithm rejects only if |3| > =1.7. Recall that 3 ⇠ tLap
⇣
�=1.6

⇣
1 + log(1/⇣)

⌘

⌘
,
=

1.6

⌘

⌘
.

Hence,by Lemma 7.18 it follows that

ê
�
|3| > =1.7� 6 exp

�
�=1.7 + ⌘ + log(1/⇣)

�
2 � exp

�
�⌘ � log(1/⇣)

� = exp
�
�⌦

�
=

1.7� �
.

⇤

271

The next step shows that on a good input Y the matrix)(,(✓̂(Y))) is close to the true
solution.

Lemma 7.65 (Closeness to true solution on good inputs). Consider the settings of Theorem 7.53.
Suppose Y is a good set as per Definition 7.56. Let ,(Y) 2 W(Y) be the matrix computed by
Algorithm 7.55. Suppose the algorithm does not reject. Then

��)(,(Y)) �W⇤
��

1 6
=

2

:

· 3
:

98 .

The proof is similar to the classical utility analysis of the sum-of-squares program
found, e.g., in [HL18, FKP+19]. We defer it to Appendix E.2.

Together, the above results imply that the vectors ⇡(8) computed by the algorithm are
close to the true centers of the mixture.

Lemma 7.66 (Closeness to true centers). Consider the settings of Theorem 7.53. Suppose Y
is a good set as per Definition 7.56. Let W 2 W(Y) be the matrix computed by Algorithm 7.55.
Suppose the algorithm does not reject in step 3. Then for each ✓ 2 [:], there exists =

:
·
⇣
1 � 2

:
47

⌘
indices 8 2 [=], such that ��⇡(8)(W) � ⇠✓

��
2 6 $

�
:
�25�

.

Proof. We aim to show that for most indices 8 2 [=] the vectors
��)(W8)

���1
1)(W8) and��W⇤

8

���1
1 W⇤

8
induce a 2-explicitly 40-bounded distribution over Y. If additionally the two

vectors are close in ✓1-norm, the result will follow by Theorem 7.23.
Note that

��W⇤
8

���1
1 W⇤

8
induces a 2-explicitly 40-bounded distribution by Lemma 7.57. By

Markov’s inequality and Lemma 7.65 there can be at most =/:48 indices 9 2 [=] such that���)(W)9 �W⇤
9

���
1
>
=

:

· 3
:

50 .

Consider all remaining indices 8. It follows that

��)(W8)
��

1 >
��W⇤

8

��
1 �

��)(W)8 �W⇤
8

��
1 >

=

:

·
✓
1 � :

=
0.4 �

3
:

50

◆
>
=

:

·
✓
1 � 10

:
50

◆
.

Hence, by Lemma 7.61 the distribution induced by
��)(W8)

���1
1)(W8) is 2-explicitly 40-

bounded distribution. Further, using
��W⇤

8

��
1 >

=

:

⇣
1 � :

=
0.4

⌘
we can bound

�����)(W8)
���1

1)(W8) �
��W⇤

8

���1
1 W⇤

8

���
1
=

��)(W8)
���1

1

��W⇤
8

���1
1 ·

����W⇤
8

��
1)(W8) �

��)(W8)
��

1W⇤
8

��
1

6
��)(W8)

���1
1

��W⇤
8

���1
1 ·

⇣����)(W8)
��

1 �
��W⇤

8

��
1

�� · ��)(W8)
��

1 +
��)(W8)

��
1 ·

��)(W8) �W⇤
8

��
1

⌘

6
��W⇤

8

���1
1 · 2

��)(W8) �W⇤
8

��
1 6

6

:
50 ·

⇣
1 � :

=
0.4

⌘ 6 7
:

50 .

272

Hence, by Theorem 7.23 for each ; 2 [:] there are at least =

:
� =0.6 � =

:
48 > =

:
·
⇣
1 � 2

:
47

⌘
indices 8 such that ������⇡

(8)(W) �
��W⇤

8

���1
1

=’
9=1

W⇤
8 , 9

y9

������
2

6 $
�
:
�25�

.

The result now follows by standard concentration bounds applied to the distribution
induced by

��W⇤
8

���1
1 W⇤

8
. ⇤

An immediate consequence of Lemma 7.66 is that the vectors .̄(8) inherits the good
properties of the vectors ⇡(8) with high probability.

Corollary 7.67 (Closeness to true centers after sub-sampling). Consider the settings of
Theorem 7.53. Suppose Y is a good set as per Definition 7.56. Let W 2 W(Y) be the matrix
computed by Algorithm 7.55. Suppose the algorithm does not reject. Then with high probability for
each ✓ 2 [:], there exists =

0.01

:
·
⇣
1 � 150

:
47

⌘
indices 8 2 S, such that

��.̄(8) � ⇠✓
��

2 6 $
�
:
�25�

.

Proof. For each ✓ 2 [:], denote by T✓ the set of indices in [=] satisfying��⇡(8)(W) � ⇠✓
��

2 6 $
�
:
�25�

.

By Lemma 7.66 we know that T✓ has size at least =

:
·
⇣
1 � 2

:
47

⌘
. Further, let S be the set of

indices selected by the algorithm. By Chernoff’s bound Fact E.8 with probability 1� 4�=⌦(1) ,
we have |S \ T✓ | > =

0.01

:
·
⇣
1 � 150

:
47

⌘
. Taking a union bound over all ✓ 2 [:] we get that with

probability 1 � 4�=⌦(1) , for each ✓ 2 [:], there exists =
0.01

:
·
⇣
1 � 150

:
47

⌘
indices 8 2 S such that

��⇡(8)(W) � ⇠✓
��

2 6 $
�
:
�25�

.

Now, we obtain the corollary observing (cf. Fact E.5 with < = 1) that with probability at
least 1 � 4�=⌦(1) , for all 8 2 S

��.̄(8) � ⇡(8)(W)
��

2 = kwk2 6 =�0.05 ·
p

log(2/⇣)
⌘

·
p
3 6 =�0.04 6 $

�
:
�25�

.

⇤

For each ✓ , denote by G
✓
✓ S the set of indices 8 2 S satisfying��.̄(8) � ⇠✓

��
2 6 $

�
:
�25�

.

Let G :=
–
✓2[:]

G
✓
. We now have all the tools to prove utility of Algorithm 7.55. We achieve

this by showing thst with high probability, each bin returned by the algorithm at step
7 satisfies G

✓
0 ✓ B✓ for some ✓ , ✓ 0 2 [:] . Choosing the bins small enough will yield the

desired result.

273

Lemma 7.68 (Closeness of estimates). Consider the settings of Theorem 7.53. Suppose Y is a
good set as per Definition 7.56. Let W 2 W(Y) be the matrix computed by Algorithm 7.55. Suppose
the algorithm does not reject. Then with high probability, there exists a permutation � : [:]! [:]
such that

max
✓2[:]

��⇠✓ � -̂�(✓)
��

2 6 $
�
:
�20�

Proof. Consider distinct ✓ , ✓ 0 2 [:]. By Corollary 7.67 for each .̄(8)
, .̄(9) 2 G

✓
it holds that

��.̄(8) � .̄(9)��
2 6 ⇠ · :�25

,

for some universal constant ⇠ > 0. Moreover, by assumption on ⇠✓ , ⇠✓ 0 for each .̄(8) 2 G
✓

and .̄(9) 2 G
✓
0 ��.̄(8) � .̄(9)��

2 > � � $
�
:
�25�

.

Thus, by Lemma E.9 with probability at least 1 � 4⌦(3⇤) > 1 � =�100 it holds that or each
.̄(8)

, .̄(9) 2 G
✓

and .̄A 2 G✓ 0 with ✓ 0 < ✓ ,
���.̄(8) ��.̄(9)��

2 6 ⇠
⇤ · :�25 and

���.̄(8) ��.̄(A)��
2 > � � ⇠

⇤ · :�25

for some other universal constant ⇠⇤ > ⇠. Let &�(G
✓
) ✓ í3⇤ be a ball of radius ⇠⇤ ·

�
:
�25�

such that 88 2 G
✓

it holds �.̄(8) 2 &�(G
✓
). That is, &�(G

✓
) contains the projection of all

points in G
✓
.

Recall that 3⇤ = 100 log(=) 6 100:5 and 1 = :
�15. Let B = {B8}18=1 be the sequence of

bins computed by the histogram learner of Lemma 7.20 for í3⇤ at step 7 of the algorithm.
By choice of 1, and since q is chosen uniformly at random in [0, 1], the probability that
there exists a bin B 2 B containing &�(G

✓
) is at least

1 � 3⇤ · ⇠
⇤

1

·
�
:
�25� > 1 � 100⇠⇤

1

· :�20 > 1 � $
�
:
�5�

,

where we used that 3⇤ = 100 log = 6 100:5. A simple union bound over ✓ 2 [:] yields
that with high probability for all ✓ 2 [:] , there exists B 2 B such that &�(G

✓
) ✓ B . For

simplicity, denote such bin by B✓ .
We continue our analysis conditioning on the above events, happening with high

probability. First, notice that for all ; 2 [:]

max
D ,D
02B✓
kD � D0k22 6 3⇤ · 12 6 100:�25 6

� � ⇠⇤:�25

:
10 ,

and thus there cannot be ✓ , ✓ 0 2 [:] such that &�(G
✓
) ✓ B✓ and &�(G0

✓
) ✓ B✓ . Moreover,

by Corollary 7.67 and

min
✓2[:]

|G
✓
| > =

0.01

:

·
✓
1 � 150

:
47

◆
,

274

and hence
|S \ G | 6 =0.01 · 150

:
47 =

=
0.01

:

· 150
:

46

it must be that step 7 returned bins B1, . . . ,B: . This also implies that the algorithm does
not reject. Further, by Lemma E.9 for all .̄(8)

, .̄(9) such that �.̄(8)
,�.̄(9) 2 B; it holds that

��.̄(8) � .̄(9)��
2 6 ⇠

⇤ ·
���.̄(8) ��.̄(9)��

2 6 ⇠
⇤ ·
p
3
⇤ · 1 6 $

�
:
�12�

.

And hence, by triangle inequality, we get
��.̄(8) � ⇠;

��
2 6 $

�
:
�12�

.

Finally, recall that for each ✓ 2 [:],

-̂; B
1���

9

�� �.̄(9) 2 B8

 �� · ©≠´
’

�.̄(9)2B;

.̄(9)™Æ
¨
+ w0 ,

where w0 ⇠ #
⇣
0,#

⇣
0, 32 · :�120 · log(2:=/⇣)

⌘2 · Id
⌘⌘

. Since by choice of = , : , ⌘ it holds that

32 · :�120 ·
log(2:=/⇣)

⌘2 6 $
�
:
�90�

,

we get with probability at least 1 � 4�:⌦(1) for each ✓ 2 [:], by Fact E.5, with < = 1, and a
union bound that

kw0k 6 $
�
:
�20�

.

Since all .̄(8) such that �.̄(8) 2 B; are at most $
�
:
�12�-far from ⇠; , also their average is.

We conclude that
��-̂✓ � ⇠;��2 6 $(:�12) + kwk2 6 $(:�12) .

This completes the proof. ⇤

Now Theorem 7.53 is a trivial consequence.

Proof of Theorem 7.53. The error guarantees and privacy guarantees immediately follows
combining Lemma 7.58, Lemma 7.65, Lemma 7.64 and Lemma 7.68. The running time
follows by Fact 2.9. ⇤

275

Part III

Speeding up robust algorithms

276

Chapter 8

Fast and robust algorithm for graph
partitioning problems

In this chapter, based on [CdM23], we continue the discussion started in Section 1.1.6,
prove Theorem 1.13 and other related results. We start by considering the balanced cut
problem:

Problem 8.1 (0-balanced cut). Let 0 2 [0 , 1/2] and let ⌧ be a graph on = vertices. Find the
partition (�, ⌫) with maximum cut that also satisfies min{|�|, |⌫|} > 0=.

We restate the semi-random model introduced in [MMV12], which subsumes many
of the other semi-random models for balanced-cut considered in the literature [BCLS87,
DF86, Bop87, FK01, McS01, JS93, DI98, BL12, MMV12, MMV14, Pen20, CPRT22].

Model 8.2 (Random cut with monotone perturbations). We consider graphs over = vertices
generated through the following process. Let 0 2 (0, 1/2), ◆(=) 2 (0, 1):

(i) The adversary partition [=] into sets �, ⌫ satisfying |�|, |⌫| > 0=.

(ii) Each edge between � and ⌫ is drawn randomly and independently with probability
◆.

(iii) The adversary arbitrarily adds edges within � and within ⌫.

(iv) The adversary arbitrarily removes edges between � and ⌫.

In the worst-case, combining [AK07, She09, CKL+22] it is possible to achieve a
$(

p
log(=)/⌘)-approximation algorithm for Problem 8.1 in time $̃

�
=

1+⌘� . In contrast,
[MMV12] introduced a polynomial time $(1)-approximation algorithm for Model 8.2,
when a constant fraction of the edges in the cut are untouched. However, the algorithm runs
in time =⇠ for a large constant ⇠ > ⌦(1). Indeed it requires solving polylogarithmically
many SDPs with =3 constraints, each followed by a rounding procedure taking time $(=3) .

277

For any ⌧ > 1, our algorithm achieves an $(p⌧)-approximation with almost linear
running time, namely $̃

⇣
|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|

⌘
. 1 The lower bound on ◆ is also needed

in [MMV12]. Thus, for ⌧ 6 $(1), the error guarantees match [MMV12].

Theorem 8.3 (Restatement fo Theorem 1.13). Let ⌧ > 0. Let ⌧ be a graph over = vertices
generated through Model 8.2 with parameters 0 > 0, ◆ > ⌦((log =)2·(log log =)2

=
) . There exists an

algorithm that on input ⌧, with probability 1� >(1), outputs an⌦(0)-balanced cut of value at most
$(=2 · ◆ · ⌧), namely a cut where each side has size at least ⌦(0 · =).

Moreover, the algorithm runs in time $̃
⇣
|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|

⌘
.

As in [MMV12], Theorem 8.3 achieves constant approximation guarantees when the
true partition has a cut of size⌦(=2 ·◆). This can also be seen as assuming that the parameter
◆ is known and "tight", in the sense that the adversary leaves a constant fraction of edges
in the true cut unmodified. Furthermore, as we see next, the ideas in Theorem 8.3 can be
naturally extended to more sophisticated graph problems.

Generalizations. In [CKMM19], the authors considered the celebrated objective function
for hierarchical clustering introduced by Dasgupta [Das16] and investigate how well it can
be approximated beyond-the-worst-case. Assuming the Small Set Expansion conjecture
[Ste10b], the problem cannot be approximated within any constant factor. The authors
thus introduced a generative model for hierarchical clustering inputs called the hierarchical
stochastic block model that naturally generalizes the classic stochastic block model, and show
that one can approximate Dasgupta’s objective up to a constant factor in that model and
under semi-random perturbation (the precise definition of the model can be found in
Section 8.5). The framework introduced here can be used to improve the complexity of the
algorithm of [CKMM19].

Theorem 8.4. Let ⌧ be a graph generated from the HSM (Definition 8.40) with ?<8= =
⌦

�
log =/=2/3� . Let ⌧ > 0 be a large constant. Then, there exists a randomized algorithm that runs

in time $̃
⇣
|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|

⌘
with probability 1 � >(1) outputs a tree) such that

2>BC();⌧) = $($%)(⌧̄)), (8.0.1)

where $%)(⌧̄) denotes the value of the optimal tree for ⌧̄ and we note that $%)(⌧̄) = 2>BC(e); ⌧̄),
where e) is the generating tree. Furthermore, the above holds even in the semi-random case, i.e., when
an adversary is allowed to remove any subset of the edges from ⌧.

We leave it as an open question to understand whether the techniques presented here
could lead to further improvements for other related problems for which the beyond-worst-
case analysis has been studied (e.g.: Bilu-Linial stability for multicut [BL12, AMM17]).

1We hide multiplicative terms polylogarithmic in |+(⌧)| with the notation $̃ .

278

8.1 Techniques
We present here the main ideas contained in the proof of Theorem 8.3. Throughout the
section let G be a random graph sampled through steps (i) and (ii) of Model 8.2 and let ⌧�
be the resulting graph after steps (iii) and (iv). We let � 6 (1 + >(1)) · =2 · ◆ be the number
of edges in G and thus an upper bound on the optimal balanced cut in ⌧

� with high
probability.

Slow algorithms for balanced cut in the semi-random model. In order to see how to
design a near linear time algorithm with constant approximation factor for Model 8.2, it is
necessary to first understand how the known slow algorithm of [MMV12] works . Consider
the random graph G and let E1, . . . , E= 2 í= be the embedding corresponding to the
returned SDP solution where E8 corresponds to the embedding of the 8th vertex of G.2 Their
algorithm is an iterative procedure that cycles over two subroutines: first, the algorithm
solves the canonical balanced cut SDP as in [ARV09]; second, the algorithm carefully
removes clusters of vertices that are particularly close to each other in the embedding given
by the SDP solution.

Concretely, the latter step identifies so-called (⇣, =)-heavy vertex, namely a vertex 8 such
that its embedding E8 in the SDP solution is at distance at most ⇣ from at least 10⇣2

=

embeddings of other vertices in the SDP solution3. Then, the algorithms carves out a ball
of radius ⇣; It creates a cluster containing 8 and all the vertices 9 s.t. E9 is at distance at
most ⇣ from E8 . Here ⇣ is a parameter chosen appropriately. At the end of this process, the
algorithm has removed a set �⇣ ✓ +(G) of vertices from the instance.

The crucial observation here is that, in every feasible embedding of the random graph
⌧, the random cut restriced to the non-heavy vertices satisfies a one-sided Chebyshev-like
inequality of the form:

ê
8 9
D.0.A .⇠ ⇢(G\�⇣)

⇣��
E8 � E9

��2 6 ⇣
⌘
6 1/⇣2

.

That is, with high probability only a$(⇣2)-fraction of the edges between non-heavy vertices
is shorter than ⇣ in the embedding. This property is called geometric expansion.

Now the crux of the argument is that, given a feasible embedding E1, . . . , E= 2 í= of
⌧, if by removing heavy vertices we don’t cut more than $(�) edges, then the geometric
expansion property guarantees that the minimum balanced cut in the remaining graph
has cardinality at most $(⇣2 · �). Thus after several iterations of the algorithm we have
decreased the value of the minimum balanced cut by at least a $(1/

p
log =) factor and so a

simple application of the SDP rounding of [ARV09] returns now a cut of optimal value �.
Importantly, the geometric expansion property is robust to monotone changes – namely to

2See Section 8.3 for a definition of the program.
3Notice that a ball of radius 2⇣ centered at any heavy vertex E contains at least ⇣2

= vertices.

279

the changes that the adversary can make to the graph at the last two steps of the generative
model (Model 8.2) and thus, the exact same reasoning applies for the graph ⌧� as well.

Speeding up the approach through the matrix multiplicative weights framework. As
previously discussed, the matrix multiplicative weight method (e.g. see [AK07, She09,
Ste10a]) can be used in place of exact semidefinite programs solvers. Recall the framework
aims at obtaining a "feasible enough" solution to the SDP so that the desired rounding
argument works out (these are not approximately feasible solutions, in fact they may
appear to be far from satisfying the constraints of the program). The technique requires an
������ algorithm that efficiently answers yes if the candidate solution is feasible enough
or otherwise answers no and exhibits constraints that are violated by the current solution.
These will then be used to pick the direction of movement in the mirror descend algorithm.
The running time of the algorithm depends on the so called "width" of the oracle and the
challenge is usually to design oracles of bounded width.

We have seen that in the context of balanced cut for arbitrary graphs, this approach has
been extremely successful, leading to an $(

p
log =/⌘) approximation algorithm running

in time $(=1+⌘ log = + <) (combining [She09] with [CKL+22]). However, at each iteration
of [MMV12], to apply the rounding framework and obtain matching guarantees, it seems
needed to obtain first a feasible optimal solution. Moreover, the rounding framework is not
efficient since it requires to find out all the heavy vertices of the graph – or in other words,
all the particularly dense balls in the SDP solution. To overcome these obstacles we will
need to deviate from the canonical matrix multiplicative weights paradigm.

Approximate heavy vertices removal. Our first step is thus to speed up the procedure
that identifies all the dense balls of the SDP solution. Identifying dense balls in high-
dimensional Euclidean spaces (say of dimension ⌦(⌘�2 log =)) is a well studied problem.
We thus make use of locally-sensitive hashing (LSH) schemes to approximately solve this
problem. Namely, our procedure will recover all the heavy vertices but may yield false
positives, namely balls that are almost dense – up to a constant factor away from the target
density. Concretely, we ask for balls that contain at least 10⇣2

= vertices but are of radiusp
⌧⇣ instead of ⇣, where ⌧ is a parameter. While we can achieve this in time |+(G)|1+1/⌧+>(1),

we now have to modify the next steps of the rounding to take the false positive into account
in the rounding.

Rounding and the matrix multiplicative weights framework. The challenge here is
more important. We can show that the above approximate heavy vertex removal procedure
guarantees with constant probability that only a few edges will be cut if applied to a
feasible solution of small objective value. Note here that the procedure may cut few edges
while still being applied to a infeasible solution of high objective value, but we would still
be satisfied since we are making good progress in the graph partitioning at low cost. That is,

280

even if a candidate solution is overall far from being feasible, it turns out to be sufficiently
good for us if it is close to being feasible on the heavy vertices and their neighborhoods.
We thus mainly have to deal with the case where the procedure cuts too many edges. The
key idea here is that if the above procedure cuts too many edges, then we can show that
with reasonable probability there exists a hyperplane of small width separating our solution
from the set of feasible solution of small objective value, and moreover identify it efficiently.
Then, we can make progress and obtain a better solution through applying a step of the
matrix multiplicative weights framework.

In this case, the intuition is that on average the probability that an edge with exactly
one endpoint in these heavy balls is cut throughout the removal procedure must be larger
than for feasible embeddings with small objective value. Indeed otherwise we could have
expected our procedure to cut fewer edges. Thus we can conclude that, either the current
solution has significantly larger objective value, or several triangle inequalities must be
violated at the same time and thus we can provide a feedback matrix of small width. To
ensure that our heavy vertices removal procedure would have indeed cut fewer edges if
given a feasible solution, we repeat this process poly-logarithmically times.
Remark 8.5 (On potential practical implementations). It is important to remark that we
believe the hidden constant behind the algorithm of Theorem 8.3 to be small. In particular,
we do not try to optimize the constants appearing in our analysis and therefore they should
not be seen as an inherent barrier to practical implementations.

8.2 Preliminaries
Contrarily to Chapter 2, we hide multiplicative factors poly-logarithmic in = using the
notation $̃(·) , ⌦̃(·). Similarly, we hide absolute constant multiplicative factors using the
standard notation $(·) ,⌦(·) ,⇥(·). Often times we use the letter ⇠ to denote universal
constants independent of the parameters at play.

Vectors and matrices. For a matrix ", we denote its eigenvalues by ⌫1(") , . . . ,⌫=(");
we simply write⌫8 when the context is clear. LetS= ⇢ í= be the set of real symmetric =-by-=
matrices and let �=(A) := {- 2 S= | Tr- = A ,- ⌫ 0}. For - 2 S= , the matrix exponential
is exp(-) = Õ1

8=0
-
8

8! . We remark that exp(-) is positive semidefinite for all symmetric -
as exp(-) =

�
exp(1

2-)
�T exp(1

2-). For a vector E 2 í= , we write E > 0 if all entries of E are
non-negative. We use ì= ✓ í= to denote the unit sphere.

Graphs. For a graph ⌧ we write !⌧ for the associated combinatorial Laplacian, which is
a matrix with rows and columns indexed by the nodes of ⌧ such that (!⌧)88 =

Õ
8 92⇢(⌧) 1,

i.e. the degree of node 8, and for 8 < 9 (!⌧)8 9 is �1 if 8 9 2 ⇢(⌧) and 0 otherwise. When the
context is clear we drop the specification of ⌧. Unless specified otherwise, we use = to
denote |+(⌧)|. For a partition (�, ⌫) of the vertices of ⌧, we write ⇢(�, ⌫) ✓ ⇢ for the set of

281

edges in the �-⌫ cut. We say that a partition (�, ⌫) is 0-balanced if |�|/|⌫| > 0 assuming
|�| 6 |⌫|.

Maximum flow. Let ⌧(+ , ⇢) be a graph. For a flow which assigns value 5? to path ?

define 54 to be the flow on edge 4 2 ⇢(⌧), i.e. 54 :=
Õ
?34 5? . Define define 589 to be the

total flow between nodes 8 , 9, i.e. 589 =
Õ
?2%89 5? , where %89 is the set of paths from 8 to 9.

A valid 3-regular flow is one that satisfies the capacity constraints: 84 2 ⇢ : 54 6 1 and
88 2 + : 58 6 3. For a partition (�, ⌫) of ⌧, the maximum 3-regular flow between � and
⌫ is the maximum 3-regular flow between vertices B and C in the graph obtain from ⌧ as
follows: (1) connect all vertices in � to a new vertex B by edges of capacity 3, (2) connect all
vertices in ⌫ to a new vertex C by edges of capacity 3.

Through the chapter we always assume the capacities 3 to be integral and bounded
by $(poly(=)). We assume the algorithm used to compute the maximum flow is the near
linear time algorithm in [CKL+22], captured by the result below:

Theorem 8.6 (Maximum flow in almost linear time [CKL+22]). Let ⌧ be a graph on = vertices
and let 3 be integral of value at most$(poly(=)). There exists an algorithm computing the maximum
3-regular flow between two vertices in time at most $(|⇢(⌧)|1+>(1)).

8.2.1 The matrix multiplicative weights method for SDPs
We recall here how the matrix multiplicative method can be used to approximately
solve semidefinite programs. For a more in-depth discussion we redirect the reader to
[AK07, Ste10a]. We focus on minimization problems although the same framework applies
to maximization problems. A primal semidefinite program over =2 variables (i.e. the =-by-=
matrix variable -) and < constraints can be written in its canonical form as

8>>><
>>>:

min h!,-i
89 2 [<] , h�9 ,-i > 19

- ⌫ 0

9>>>=
>>>;

(8.2.1)

Here �1, . . . ,�< , ! are symmetric matrices. We denote the feasible set of solutions by X
and the optimal objective value by �. For simplicity we assume that �1 = �Id= and 11 = �A.
This serves to bound the trace of the solution so that X ✓ �=(A). The associated dual, with
variables H1, . . . , H< , is the following program

8>>>>><
>>>>>:

max h1 , Hi’
92[<]

�9H9 � !

H > 0

9>>>>>=
>>>>>;

(8.2.2)

where 1 is the <-dimensional vector with entries 11, . . . , 1< .

282

For a convex set X⇤ ✓ �=(A) (think of X⇤ as the set of feasible solution to a program of
the form Eq. (8.2.1) with objective value close to the optimum) a ✏-separation ������ is an
algorithm that , given a candidate matrix -, outputs one of the following:

yes the ������ determines - is "close" (the precise notion of closeness is problem
dependent) to X⇤.

no the ������ finds a hyperplane that separates - from X⇤ by a ✏-margin. That is, it
outputs a symmetric matrix " such that for all -0 2 X⇤ we have h" ,-

0i > 0 while
h" ,-i < ✏�.

A ✏-separation ������ is said to be ✓-bounded if k"k 6 ✓ for any hyperplane " found
by the ������. The boundedness of the ������ will be relevant for the running time of
our algorithms. It is important to notice that the parameters ✓, ✏ are not independent, in
particular one may increase ✏ by scaling up the corresponding matrix ". We keep them
distinct for convenience .

Concretely, given a program of the form Eq. (8.2.1) and a candidate solution -, we will
consider ������ algorithms that, in the no case, find a pair (H , �) where � is a matrix in S=
satisfying � � ! and H is a candidate solution4 for the dual program Eq. (8.2.2) such that
H 2

�
H

�� h1 , Hi > � , H > 0

and

h
’
92[<]

�9H9 � �,-i 6 �✏ · � .

It is easy to see that this is indeed a separating hyperplane as for any feasible solution -0
with objective value less than �(1 + ✏)

h
’
92[<]

�9H9 � �,-0i >
’
92[<]

19 H9 � h!,-0i > � � (1 + ✏)� = �✏ · �

, .

We will use our oracle algorithms in the following framework.

4Not necessarily feasible.

283

Algorithm 8.7 (Matrix multiplicative weights algorithm for SDPs).
Input: A program of the form Eq. (8.2.1) with optimal value �, a ✓-bounded ✏-separation
������, parameters) , ⌘, A.
Set -(1) = A

=
Id= . For C = 1, . . . ,):

1. Run the ������ with candidate solution -(C).

2. If the ������ outputs yes, return -(C).

3. Else, let (H(C), �) be the pair generated by ������. Set .
(C) =⇣Õ

92[<] �9H
(C)
9
� � + ✓Id=

⌘
/2✓.

4. Compute -(C+1) = A · exp
�
⌘
Õ
C
06C .

(C0)�/Tr exp
�
⌘
Õ
C
06C .

(C0)� and continue.

The choice of the iterative updates in step 4 is based on the matrix multiplicative weights
method. In particular, this allows one to obtain the following crucial statement.

Theorem 8.8 ([AK07]). Consider Algorithm 8.7. Let ⌘ 6 ✏�/(2✓ · A) and) > 2⌘�2 log =. If
there exists a feasible solution with value at most �(1 + ✏), then ������ will output yes within)
iterations.

8.2.1.1 Approximate matrix exponentiation, robust and reliable oracles
There are two issues with Theorem 8.8 if one aims for near linear running time: first, already
writing down -

(C) requires time quadratic in =; second, algorithms known to compute
the matrix exponentiation are slow . One can circumvent these obstacles computing the
exponentiation only approximately while also keeping only an approximate representation
of -(C). To formalize this we introduce additional notation. For a positive semidefinite
=-by-= matrix ", we let %6?(") be the degree-? approximation of the matrix exponential
exp(-):

%6?(") :=
’
86?

1
8!"

8
.

Recall that for a matrix ", the Gram decomposition of the exponential exp(") is exp(") =
exp(1

2")T exp(1
2") thus we may see %6?(⌘2

Õ
C
06C .

(C0)) as a a matrix having as columns
low-degree approximations of the Gram vectors of exp("). One can then embed these
vectors in a low dimensional space, without distorting their pair-wise distance by projecting
them onto a random 3-dimensional subspace:

Lemma 8.9 ([Joh84]). Let � be a 3-by-= Gaussian matrix, with each entry independently chosen
from #(0, 1/3). Then, for every vector D 2 í= and every ⌘ 2 (0, 1)

ê(k�Dk = (1 ± ⌘)kDk) > 1 � 4�⌦(⌘2
3)
.

284

We will follow this strategy to speed up Algorithm 8.7.

Algorithm 8.10 (Approximate matrix multiplicative weights algorithm for SDPs).
Input: A program of the form Eq. (8.2.1) with optimal value �, a ✓-bounded ✏-
separation ������, parameters) , ⌘, A , 3, ?, a 3-by-= random matrix � with i.i.d entries
from #(0, 1/3).
Set, (1) = A

=
(�Id=)/Tr(�Id=). For C = 1, . . . ,):

1. Run the ������ with candidate solution, (C).

2. If the ������ outputs yes, return, (C).

3. Else, let (H(C), �) be the pair generated by ������. Set .
(C) =⇣Õ

92[<] �9H
(C)
9
� � + ✓Id=

⌘
/2✓.

4. Sample a 3-by-= random matrix �with i.i.d entries from #(0, 1/3).

5. Compute, (C) = A · �%6?(⌘2
Õ
C
06C .

(C0))/Tr
�
�%6?(⌘2

Õ
C
06C .

(C0))
�

and continue.

Observe that %6?(⌘2
Õ
C
06C .

(C0)) corresponds to a low degree approximation of the Gram
vectors of the matrix -(C) in step 4 of Algorithm 8.7. We then compute, (C) by embedding
these vectors in a random 3-dimensional space.

The statement below shows that in many cases we can compute such matrices, (C) very
efficiently.

Lemma 8.11 ([Ste10a]). Suppose we can perform matrix-vector multiplication with the matrices
.
(C) in time T . Then, for every C, we can compute, (C) in time $(C · ? · 3 · T).

A priori it is not clear whether Algorithm 8.10 can provide the same guarantees of Algo-
rithm 8.7. However, the next result show this is the case under reasonable circumstances.

Definition 8.12 (3-robust oracle, extension of [Ste10a]). We say that a ✓-bounded ✏-
separation oracle is 3-robust if for every matrix - 2 �(A) with - =,T

,

ê�⇠#(0,1/3)3⇥=

✓
������ outputs no on input (�,)T�, and h.(C)

,-i > �3
4✏�

◆
6

(✏�/✓A)2
(log =)10 .

Lemma 8.13 ([Ste10a]). Consider Algorithm 8.10. Let ⌘ 6 ✏�/(2✓ · A),) > 2⌘�2 log = and
? > 10⌘�1 log =. Suppose we have a 3-robust ✓-bounded ✏-separation ������. If there exists a
feasible solution with value at most �(1 + 2✏), then ������ will output yes within) iterations
with probability at least 1 � $(log =)�10.

We can combine Lemma 8.13, Lemma 8.11 and Fact 8.15 to obtain a user-friendly
statement concerning the running time of Algorithm 8.10. We introduce two additional
definitions.

285

Definition 8.14 (T -lean oracle). We say that a ✓-bounded ✏-separation 3-robust is T -lean
if:

• the oracle compute its outputs in time at most $(T).

• If the oracle outputs no, the matrix-vector multiplication between an arbitrary vector
and the feedback matrix

⇣Õ
92[<] �9H9 � � + ✓Id=

⌘
/2✓ can be computed in time $(T).

We remark that one can upper bound the time needed for matrix-vector multiplication
by the number of non-zero entries in the matrix of interest.

Fact 8.15. Let " 2 í=⇥= be a matrix with < non-zero entries and let E 2 í= . There exists an
algorithm that computes "E in time $(< + =).

The next definition formalizes the idea of oracles that may find a separating hyperplane
only with certain probability.

Definition 8.16 (@-reliable). We say that a ✓-bounded, ✏-separation, 3-robust, T -lean oracle
is @-reliable if the probability (over random bits) that it outputs no for any feasible solution
with objective value at most 1(+2✏)� is at most 1 � @.

For oracles that are 1-reliable we omit mentioning their reliability. We are ready to
present a user-friendly running time statement, which we will use as a black box.

Corollary 8.17 (Running time of Algorithm 8.10). Let ������ be a ✓-bounded, ✏-separation,
3-robust, T -lean @-reliable oracle. Then, for ⌘ 6 ✏�/(2✓ · A),) > 2⌘�2 log = and ? > 10⌘�1 log =,
with probability at least 1 � $(log =)�10 � (1 � @)) over random bits, Algorithm 8.10 terminates
in time

$

�
)

2 · T · 3 · ?
�
.

Proof. The Corollary follows immediately from Lemma 8.11, Lemma 8.13, Definition 8.14
and Definition 8.16. ⇤

8.3 A fast algorithm for semi-random balanced
cut

We present here our main theorem which implies Theorem 8.3. To solve the balanced cut
problem we consider its basic SDP relaxation. Given a graph ⌧, the relaxation for the

286

0-balanced cut problem is:
8>>>>>>>>>><
>>>>>>>>>>:

min
’
8 92⇢

289

��
E8 � E9

��2

kE8 k2 = 1 88 2 [=] (unit norm)��
E8 � E9

��2 +
��
E9 � E:

��2 > kE8 � E: k2 88 , 9 , : , 2 [=] (triangle inequality)’
8 , 92[=]

��
E8 � E9

��2 > 40=2 (balance)

9>>>>>>>>>>=
>>>>>>>>>>;

(8.3.1)

which may be rewritten in its canonical form
8>>>>><
>>>>>:

minh!,-i
-88 = 1 88 2 [=] (unit norm)
h)? ,-i > 0 8 paths ? of length 2 (triangle inequality)
h + ,-i > 40=2 (balance)

9>>>>>=
>>>>>;

(8.3.2)

where ! is the combinatorial Laplacian of the graph, (is the Laplacian of the full graph
over vertex set (and, for a path ?,)? is the difference between the Laplacian of ? and
the Laplacian of the single edge connecting its endpoints. Notice that E1, . . . , E= are the
Gram vectors of -. To ease the reading we will sometimes use the vectors representation
and others the matrix representation. As in Section 8.2, we denote by � the optimal value
for a given instance of Eq. (8.3.2). In particular, we say a graph ⌧ has optimal cut � if
minimum solutions to Eq. (8.3.1) have objective value �. Notice that for graphs generated
as in Model 8.2, with high probability we have � 6 (1 + >(1))=2 · ◆ .

Before stating the main theorem we require a couple of definitions concerning the
embedding of graphs. These are based on [MMV12].

Definition 8.18 (Heavy vertex). Let ⇣, = , =0 > 0. Let ⌧(+ , ⇢) be a graph on = vertices and let
- be the Gram matrix of an embedding of ⌧ ontoí= . A vertex 8 2 + is said (⇣, =0)-heavy if���n 9 2 +(⌧)

��� ��E8 � E9��2 6 ⇣
o��� > ⇣2 · =0 .

We denote the set of (⇣, =0)-heavy vertices in the embedding - by �⇣,=0(- ,+). For a subset
of vertices +0 we let �⇣,=0(- ,+

0) be the set of vertices that are (⇣, =0) heavy in the subgraph
induced by +0.

In other words, a vertex is (⇣, =0)-heavy if it is close to ⇣2
=
0 other vertices in the given

embedding. The next structural property of graphs is what will separate semirandom
instances from worst-case instances.

Definition 8.19 (Geometric expansion). A graph⌧(+ , ⇢)on = vertices satisfies the geometric
expansion property at scale (⇣, =0, �) if, for every feasible solution - to Eq. (8.3.1) on input
⌧ and every subset +0 ✓ + such that �⇣,=0(- ,+

0) = ;, it holds���n8 9 2 ⇢ \ (+0 ⇥+0)
��� ��E8 � E9��2 6 ⇣

o��� 6 10 · ⇣2 · � .

287

That is, a graph is geometrically expanding if the uniform distribution over the edges
of non-heavy vertices satisfies a one-sided Chebyshev’s inequality. For simplicity, we say
that a graph ⌧ is geometrically expanding up to scale (100�I , = , �) if it is geometrically
expanding at scale (100�8 , = , �) for all 1 6 8 6 I . Sometimes we say that a graph is

We remark that Definition 8.19 is equivalent to the geometric expansion property
defined in [MMV12].

We are now ready to present the main theorem of the section.

Theorem 8.20 (Main theorem). There exists a randomized algorithm that on input 0 , � >
⌦(1) , � , ⇣ > 1/log = ,⌦(1) 6 ⌧ < 1/⇣ and a graph ⌧ such that:

1. there exists an 0-balanced partition (�, ⌫) with |⇢(�, ⌫)| 6 � ,

2. ⌧(+ , ⇢(�, ⌫)) is a geometric expander up to scale (100⇣, = , �),

returns a⌦(0)-balanced partition ((,))with cut |⇢((,))| 6 $(� ·⌧)(1+⇣ ·� ·
p

log =)with proba-
bility 1� >(1). Moreover, the algorithm runs in time $̃

⇣
|+(⌧)|1+$(1/⌧2)+$(1/�2) + |⇢(⌧)|1+$(1/�2)

⌘
.

Theorem Theorem 8.3 essentially follows from Theorem 8.20 observing that graphs
generated through Model 8.2 are good geometric expanders. To show this first observe
that random bipartite graphs are good geometric expanders.

Theorem 8.21 (Geometric expansion of random graphs, [MMV12]). Let G be a graph over =
vertices generated through the first two steps (i), (ii) of Model 8.2 with parameters 0 , ◆ > 0 .Then, with
probability 1�=�⌦(1), G is geometrically expanding up to scale

�
100�C , = ,⇥(=2 · ◆ + 100C · = · C2)

�
.

Second, observe that geometric expansion in bipartite graphs is a property that is to
some extend robust to changes that are monotone with respect to the bipartition.

Fact 8.22 (Robustness of geometric expansion, [MMV12]). Let G be a graph over = vertices
generated through the first two steps (i), (ii) of Model 8.2 and let⌧� be a graph obtained after applying
steps (iii), (iv). If G is geometrically expanding up to scale (⇣, = , �), then so is ⌧�(+ , ⇢(�, ⌫)).

This statement above implies that for ◆ > ⌦
⇣
(log =)2·(log log =)2

=

⌘
, with high probaility

⌧
�(+ , ⇢(�, ⌫)) is a good geometric expander. Now Theorem 8.3 immediately follows

combining Theorem 8.20 Theorem 8.21 and Fact 8.22.

8.3.1 The algorithm
We present here the algorithm behind Theorem 8.20. Since we will work using the matrix
multiplicative frame work presented in Section 8.2 our main challenge is that of designing
an appropriate oracle. For simplicity, we split ������ in three parts the first two are due to
[AK07, She09] the third part is our crucial addition. Recall we denote by � the minimum
objective of the program at hand.

288

Lemma 8.23 ([AK07]). Let 0 > ⌦(1). There exists a $̃(�/=)-bounded, ⇥(log =)2-robust, ⇥(1)-
separation oracle that, given a candidate solution to Eq. (8.3.1) with input graph ⌧ on = vertices
and 0-balanced cut of value at most �, outputs no if one of the following conditions is violated:

(flatness): , :=
n
8 2 [=]

��� kE8 k2 > 2
o
✓ [=] satisfies |, | < =

(log =)100 .

(balance): (:= [=] \, satisfies
Õ
8 , 92(

��
E8 � E9

��2 > 20=.

Moreover, the oracle is T -lean for some T 6 $((|+(⌧)| + |⇢(⌧)|)

We omit the proof of Lemma 8.23 as it can be found in [AK07]. If both the flatness and
the balance condition are satisfied, then we apply the following oracle, due to [She09].

Lemma 8.24 ([She09]). Let �, 0 > 0 , 0 < ⇣ < 1/(100⌧), 0 > ⌦(1). There exists a $̃(�/=)-
bounded, $(log =)2-robust, ⇥(1)-separation oracle that, given a candidate solution to Eq. (8.4.2)
with input graph ⌧ on = vertices and 0-balanced cut of value at most �, outputs yes only if it finds
an ⌦(0)-balanced partition (% , %0) of +(⌧) satisfying

’
82% , 92%0 ,8 92⇢(⌧)

��
E8 � E9

��2 6 $(�)

|⇢(% , %0)| 6 $(� · �) ·
p

log = .

Moreover, the oracle is T -lean for some T 6 $̃
⇣
|+(⌧)|1+$(1/�2) + |⇢(⌧)|1+$(1/�2)

⌘
.

The proof of Lemma 8.24 can be found in [She09].The improvement on the time
complexity simply follows using Theorem 8.6. The next result is the crucial addition we
need to the oracle of [AK07, She09]. We prove it in Section 8.4.1.

Lemma 8.25. Let 0 < ✓ 6 1 , ⌧, �, 0 > 0 and 0 < ⇣ 6 1/100⌧. Let ⌧ be a graph on ✓ · = vertices
such that

• it has a 0-balanced partition (�, ⌫) with |⇢(�, ⌫)| 6 � ,

• ⌧(+ , ⇢(�, ⌫)) is geometrically expanding up to scale (⇣, = , �).

There exists a $̃(�/✓ · =)-bounded, $(log =)100-robust, ⇥(1/log =)-separation oracle that,
given a candidate solution to Eq. (8.4.2) with input graph ⌧, either outputs no, or outputs a set of
edges ⇢⇤ ✓ ⇢(⌧) of cardinality $(�/⇣) and partition (%1, %2,+0) of +(⌧) such that

(1) |⇢(%1, %2,+0) \ ⇢⇤ | 6 $
⇣
�
⌧⇣

⇣
1 + ✓

⌧⇣

⌘⌘
.

(2) | |%1 | � |%2 | | 6 0 · =/2 .

(3) 88 9 2 ⇢(⌧) \ ⇢⇤ with 8 , 9 2 +0 it holds
��
E8 � E9

��2 6 ⇣ .

289

(4) �⇣,=(- ,+
0) = ; .

Moreover the oracle is T -lean for some T 6 $̃
⇣
|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|

⌘
and 1 � $(log =)�50-

reliable.

Before presenting the algorithm that uses the oracle above, let’s briefly discuss its
meaning. Notice the heavy vertices condition (4). This ensures that in the subgraph ⌧(+0, ⇢ \
⇢
⇤) any feasible embedding has weight at most 10�·⇣2 on the edges in (⇢(�, ⌫)\⇢⇤)\(+0⇥+0).

In other words, after paying the edges in the cut of the partition (%1, %2,+0), geometric
expansion of the undelrying graph guarantees that the minimum objective value of
Eq. (8.3.1) has now decrease by a 10⇣2 factor. As in Lemma 8.24, we point out the trade-off
between running time and cardinality of the set of edges ⇢⇤ found by the oracle which may
ultimately be part of the cut. This is capture by the requirement ⌧ < 1/⇣. We are ready to
present the algorithm we denote by ������ a combination of the oracles in Lemma 8.23,
Lemma 8.24 and Lemma 8.25 obtained applying them sequentially (in this order).

Algorithm 8.26 (Fast and robust algorithm for balanced cut).
Input: A graph ⌧ with minimum 0-balanced cut of value at most �,) , ⌧, �, 3, ⇣ > 0.

0. Set ⇣(0) = 1/(100⌧).

1. Repeat) times:

(a) Let 8 be the current iteration and ⌧(8) be the current remaining graph with
optimal cut value �(8) and

��
+(⌧(8))

�� =: =(8).
(b) Run Algorithm 8.10 for program 8.3.2 using ������ (with parameter ⇣(8)).

Let, ⇤ 2 í3,⇥= be the returned embedding, ⇢(8) the set of edges found and
(%(8)

, %
0(8)) , (%(8)

1 , %
(8)
2 ,+

0(8)) the partitions found by ������.
(c) Remove the edges in ⇢(8).
(d) If

��
⇢(%(8)

, %
0(8))

�� 6 $(� · ⌧)(1 + ⇣ · � ·
p

log =) break the cycle. Else remove
vertices in %(8)

1 and in %(8)
2 . Set ⇣(8+1) to ⇣(8)/100.

2. Let (% , %0) be the bipartition found by ������ in its last iteration.

3. Arbitrarily assign sets %(1)
1 , %

(1)
2 , . . . , %

(8)
1 , %

(8)
2 removed in previous iterations to

% or %0, keeping the two sides 0-balanced.

4. Return the resulting bipartition.

Remark 8.27 (On practical implementations of the algorithm). The following precautions
should be taken into account upon implementing the algorithm. First, replace the subroutine
of [She09] with a simple maximum-flow computation as in [AK07]. Note that this different

290

subroutine provides worse approximation guarantees by a $(
p

log =) factor. Nevertheless,
the algorithms still provides the same error guarantees if one increases proportionally the
number of iterations of the main procedure. Second, replace the maximum flow algorithm
of Theorem 8.6 with a more practical –even if asymptotically slower– maximum flow
algorithm. We remark that with these modifications, the algorithm amounts to a sequence
of basic computations such as: matrix-vector multiplications, hash-functions and max-flow
computations.

With Algorithm 8.26 we can now prove Theorem 8.20.

Proof of Theorem 8.20. We set) such that ⇣()) = 100⇣ where ⇣(0) = 1/(100⌧). By construction
of ������ and Corollary 8.17 the algorithm runs in time $̃

⇣
|+(⌧)|1+$(1/�2) + |⇢(⌧)|1+$(1/�2)

⌘
.

Now consider a fixed iteration 8, we assume �(0) = � , ✓
(0) = 1. Let �(8) be the cost of the

minimum feasible solution on the remaining graph ⌧(8) on ✓ (8) · = vertices. Let ⇢(8) be the
set of edges removed at iteration 8 and (%(8)

1 , %
(8)
2 ,+

0(8)) the partition at iteration 8. Notice
that if at some point �(8) 6 $(� · ⌧)(1 + ⇣ · � ·

p
log =) then the algorithm breaks the cycle

and returns a balanced partition.
So we may assume that at the current iteration 8, �(8) > $(� · ⌧)(1 + ⇣ · � ·

p
log =). Now

the result follows by showing that, at each step, it holds

�(8) 6 10 · �(8�1) ·
⇣
⇣(8�1)

⌘2
. (8.3.3)

Indeed suppose the claim holds. By construction all the edges in the final cut are in
 ÿ
8<)

⇢
(8)

!
[

 ÿ
8<)

⇢(%(8)
1 , %

(8)
2 ,+

0(8)) \ ⇢(8)
!
[⇢(%())

, %
0())) .

By Eq. (8.3.3) we can bound the first term as
�����
ÿ
86)

⇢
(8)

����� 6 $(� · ⌧) .

For the second term we have�����
ÿ
86)

⇢(%(8)
1 , %

(8)
2 ,+

0(8))
����� 6

’
86)

$

✓
�(8)

⇣(8)

✓
1 + ✓

(8)

⇣(8)

◆◆

6 $

 ’
86)

�(8)

⇣(8)
+ �(8) · ✓ (8)�

⇣(8)
�2

!

6 $

 ’
86)

�(8) ·
⇣
⇣(8) + ✓ (8+1)

⌘!

291

6 $

 ’
86)

�(8) ·
⇣
⇣(8) + ✓ (8)

⌘!

6 � · $
 ’
86)

⇣(8) + ✓ (8)
!

6 $(�) ,

where in the second step we used the inequalities

�(8)

⇣(8)
6 103 · �(8�1) · ⇣(8�1)

,

�(8) · ✓ (8)�
⇣(8)

�2 6 105 · �(8�1) · ✓ (8) ,

both following from Eq. (8.3.3). For the third term we have �()) 6 $(� · ⇣) by construction.
Thus by Lemma 8.24 we get

��
⇢(%())

, %
0()))

�� 6 $ ⇣
� · � · ⇣

p
log =

⌘
.

Thus it remains to prove Eq. (8.3.3). At each iteration 8, the set +(⌧(8)) does not contain
edges of length more than ⇣(8) in the embedding as well as (⇣(8), =) heavy vertices. Thus by
Definition 8.19, the set +(⌧(8)) has a ⌦(0)-balanced cut of value $(�(8)) . Then Eq. (8.3.3)
follows as desired. ⇤

8.4 The heavy vertices removal oracle
We prove here Lemma 8.25. In Section 8.4.1 we introduce a procedure that the oracle uses
to find either the partition or a separating hyperplane. Then in Section 8.4.2 we prove the
Lemma. Throughout the section we consider the following parameters range:

= , � > 0 ,⌦(1) 6 0 6 1 , 0 < ✓ 6 1 ,⌦(1/
p

log =) 6 ⇣ 6 1/100⌧ , ⌧ > ⌦(1) . (8.4.1)

8.4.1 The fast heavy vertices removal procedure
We introduce the main procedure used by ������. The central tool of the section is the
following statement.

Lemma 8.28. Consider the parameter settings of Eq. (8.4.1). Let ⌧ be a graph on ✓ · = vertices with
0-balanced cut of value at most � that is geometrically expanding up to scale (⇣, = , �).

292

Let - be a feasible solution for Eq. (8.3.1) on input ⌧, with objective value $(�). There exists
a randomized procedure (Algorithm 8.31) that outputs a set of vertices ⇢⇤ ✓ ⇢(⌧) of cardinality
$(�/⇣) and a partition (%1, %2,+0) of +(⌧) satisfying (2) , (3) , (4) in Lemma 8.25 and such that

Ö[|⇢(%1, %2,+
0) \ ⇢⇤ |] 6 ⇠ · �

⌧⇣

✓
1 + ✓

⌧⇣

◆
,

where ⇠ > 0 is a universal constant. Moreover, if the solution is given in the form of E1, . . . , E= 2
í$(polylog =), the procedure runs in time $̃(|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|).

The first building block towards a proof of Lemma 8.28 is the result below, which
introduces a subroutine to identify heavy vertices.

Lemma 8.29. Consider the settings of Lemma 8.28. Let ⌧ > 1. There exists a randomized procedure
that outputs a set of vertices +⇤ and a mapping 5 : + ! +

⇤ [{(⇤)} such that

1. Each vertex 8 of +⇤ satisfies
���n 9 2 + ��� ��E8 � E9��2 6 ⌧⇣

o��� > 10⇣2
=; and

2. The set , := {8 | 5 (8) = (⇤)} does not contain a vertex 8 such that���n 9 2, ��� ��E8 � E9��2 6 ⇣
o��� > 10⇣2

=.

and

1. 5 (8) = 9 if there exists some 9 2 +⇤ with
��
E8 � E9

��2 6 ⌧⇣ ,

2. 5 (8) = (⇤) otherwise.

Moreover, if the solution is given in the form of E1, . . . , E= 2 í$(polylog =), the procedure runs in
time $

⇣
1
⇣2 · |+(⌧)|1+$(1/⌧2)

⌘
.

Proof. We will make use of locality sensitive hash functions to solve the spherical range
counting problem, namely the problem of, given a set of point E1, . . . , E= 2 í$(polylog =) and a
distance ⇣, estimating for each element E8 , the number of elements of E1, . . . , E= at distance
at most ⇣ from E8 . For each point E8 and distance G, let F(E8 , G) be the number of points at
distance at most G from E8 .

We provide a procedure with running time 1
10⇣2 · =1+1/⌧2+>(1) that constructs the desired

+
⇤ and 5 by iteratively finding “heavy balls” and removing them from the instance. For

each point E8 , the procedure computes an estimate F̂8 such that F(E8 , G) 6 F̂8 6 F(E8 , ⌧G)
and take an arbitrary vertex 8 such that F̂8 > 10⇣2

= if there is one, or otherwise stops
and set 5 (9) = (⇤) for all the remaining vertices. If there exists such a vertex 8, then by a
linear scan of the vertices, the procedure identifies the set (8 of all the vertices 9 such that��
E8 � E9

��2 6 ⌧⇣, sets 5 (9) = 8 for each of them, and removes (8 from the instance. Then,
the algorithm repeats the above procedure on the remaining vertices. Since the procedure
removes at least 10⇣2

= vertices at each step, the procedure stops after 1
10⇣2 steps.

293

We now provide more details on how to perform each step. We show that each step
takes time =1+1/⌧2+>(1). Defining 5 (9) for all the vertices in (8 takes linear time. The bulk
of the computation comes from computing the estimate F̂8 for each vertex 8. We now
provide more details on the spherical range counting problem. Let � be a family of hash
functions mapping í3 to some universe* . We say that � is (◆, ⌧◆, ?1, ?2)-sensitive if for
any G , H 2 í3 it satisfies the following properties:

1. If
��
G � H

��2 6 ◆ then Pr⌘2�[⌘(G) = ⌘(H)] > ?1.

2. If
��
G � H

��2 > ⌧◆ then Pr⌘2�[⌘(G) = ⌘(H)] 6 ?2.

We will use the following lemma.

Lemma 8.30 ([AI06]). For any “scale” ◆ > 0, dimension 3 > 0, and ⌧ > 1, there exists a
(◆,$(⌧◆), 1/=1/22

, 1/=3)-sensitive family of hash functions for í3.

Following the reduction from the spherical range counting problem to (⌧, A)-approximate
nearest neighbors provided by Indyk [Ind01] (see also [AAP17]). The reduction makes
$(log2

=/(⌧ � 1)3) queries, which, using the above family take time $(=1/⌧2), resulting in a
total running time of =1+1/⌧2+>(1). ⇤

We use the procedure in Lemma 8.29 as a subroutine of the one presented next, which
for feasible embeddings finds a paritition satisfying (2) , (3) , (4) in Lemma 8.25 and (1) in
expectation.

294

Algorithm 8.31 (Fast heavy vertex removal procedure).
Input: A graph ⌧ on ✓ · = vertices, a candidate solution - to Eq. (8.3.1) on input ⌧,
parameters 0 , ⌧, ⇣ > 0 , ⇠ > 100 .

1. Remove all edges of length at least ⇣ in the embedding. Let ⇢⇤ be the set of such
edges.

2. Find the set +⇤ via the subroutine in Lemma 8.29.

3. Pick a maximal set* of vertices in +⇤ at pairwise distance at least 10 · ⇠⌧⇣ in the
embedding.

4. If |* | > 0

⇠·⌧⇣ :

(a) Pick A D.0.A .⇠ [1, 2].
(b) For each 8 2 * , remove 8 and all vertices at distance 6 A ·⌧⇣ in the embedding.

Let*8 be the set of removed vertices via 8.
(c) Repeat from step 1 on the remaining graph.

5. Else run the subroutine Algorithm 8.33 on the remaining graph and obtain
additional sets*8’s.

6. Distribute evenly the vertices in the*8’s among two sets %1, %2 so that if 9 , : 2 *8

then 9 , : are in the same set. Let +0 = + \ (%1 [%2) .

7. Return the partition (%1, %2,+0) .

Fact 8.32. Algorithm 8.31 runs in time $̃
⇣
|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|

⌘
.

Proof. Step 1 requires $(⇢) time. The steps 2-4 can be repeated at most ⇠ · ⌧ · ✓/(0 · ⇣) times.
Indeed no vertex can be in both*8 and*8

0 at the same time (even if - does not satisfy the
triangle inequality constraints) and since by definition each *8 contains at least 10⇣2 · =
vertices, in ⇠ · ⌧ · ✓/(0 · ⇣) iterations we will have removed all vertices form the graph. For
each of these iterations, step 2 requires time $

⇣
1
⇣2 |+(⌧)|1+$(1/⌧2)

⌘
and step 3 requires time

$(|+(⌧)| · poly(1/(0⌧⇣)) . Step 4 runs in time at most $(|+(⌧)|/(0⌧⇣)) .
As we show in Fact 8.34, Algorithm 8.33 also runs in time $̃(|+(⌧)| + |⇢(⌧)|). Step 6

can be done in time $̃(|+(⌧)|) after ordering the sets*8’s. Thus the statement follows. ⇤

The subroutine of step 5 in Algorithm 8.31 is presented below.

295

Algorithm 8.33 (Subroutine of fast heavy vertex removal procedure).
Input: A graph ⌧ on ✓ · = vertices, a candidate solution - to Eq. (8.3.1) on input ⌧, the
list of vertices +⇤, parameters 0 , ⌧, ⇣ > 0 .

0. Consider the graph ⌧⇤(+⇤, ;).

1. For each 8 9 2 ⇢(⌧) if
��
E8 � E9

��2 6 100⌧⇣ and 5 (8) < (⇤) , 5 (8) < (⇤) connect 5 (8) to
5 (9) in ⌧⇤ (excluding self-loops).

2. Pick A D.0.A .⇠ [1, 2] and for each connected component* in ⌧⇤, remove all vertices
at distance 6 A · ⌧⇣ to some vertex 8 2 * . Index the resulting sets by arbitrary
representative vertices in each component.

3. Return the resulting sets*8’s.

Fact 8.34. Algorithm 8.33 runs in time $̃(|+(⌧)| + |⇢(⌧)|) .

Proof. We use the mapping of Lemma 8.29. We can then construct the graph ⌧⇤ in time
$(|⇢(⌧)|). Moreover, notice that |⇢(⌧⇤)| 6 |⇢(⌧)| . We can find the connected components
in⌧⇤ in time$(|⇢(⌧⇤)|+ |+(⌧⇤)|) and partition the vertices in⌧ according to such connected
components in time $̃(|+(⌧)|). The result follows. ⇤

Next we bound the probability that an edge gets cut in Algorithm 8.31.

Lemma 8.35. Consider the settings of Lemma 8.28.
At each iteration of steps 2-4 in Algorithm 8.31 as well as the one using Algorithm 8.33 the

following holds:

88 s. t. 58 < (⇤) ê
�
9*: 2 * s. .t 8 2 *: , 9 8 *:

�
6

��
E8 � E9

��2

⌧ · ⇣ .

Proof. Consider first an iteration of steps 1-3 in Algorithm 8.31. By construction each vertex
8 can be in at most one set*: . Since A is chosen uniformly at random in the interval [1, 2]
the claim follows. So consider Algorithm 8.33. Again, by construction each vertex 8 can be
in at most one set*: so by choice of A the inequality holds. ⇤

Now Lemma 8.28 follows as a simple corollary.

Proof of Lemma 8.28. By Fact 8.32, steps 1-3 in Algorithm 8.31 are repeated at most ⇠ ·✓/(⌧ ·⇣)
times while Algorithm 8.33 runs only once. By Lemma 8.35 we then have 88 9 2 ⇢(⌧) \ ⇢⇤

ê
�
8 9 2 ⇢(%1, %2,+

0) \ ⇢⇤
�
6 ⇠⇤

��
E8 � E9

��2

⌧ · ⇣ ·
�
1 + ⇠ · ✓/(⌧ · ⇣)

�
.

296

Then the bound on Ö[|⇢(%1, %2,+0) \ ⇢⇤ |] follows by linearity of expectation. By definition
of +⇤, the set +0 does not contain (⇣, =)-heavy vertices as well as no edges of length at
least ⇣. so it satisfies conditions (3), (4) in Lemma 8.25 . Finally condition (2) follows by the
spreadness condition of feasible solutions. ⇤

8.4.2 The oracle
We prove here Lemma 8.25. To simplify the description of the oracle, as in [AK07], we
consider the following modification of Eq. (8.3.2), which contains additional constraints.
The two programs are equivalent as these constraints are implied by the ones in Eq. (8.3.2).

8>>>>><
>>>>>:

minh!,-i
-88 = 1 88 2 [=] (unit norm)
h)? ,-i > 0 8paths ? (triangle inequality)
h ,-i > 40=2 (balance)

9>>>>>=
>>>>>;

(8.4.2)

Remark 8.36. We remark that, as we need not to explicitly write down the program, but only
efficiently find separating hyperplanes, the use of Eq. (8.4.2) does not imply an increase in
the running time of the overall algorithm.

We consider the dual program of Eq. (8.4.2), which has variables G1, . . . , G= for each
vertex, 5? for every path ? and an additional variable I for the set [=] considered in the
primal. 8>>>>>>><

>>>>>>>:

max
’
82[=]

G8 + 0=2
I

diag(G) +
’
?

5?)? + I � !

5? , I , > 0 8paths ?,

9>>>>>>>=
>>>>>>>;

(8.4.3)

Now, given a candidate solution -, our starting point is the procedure of Lemma 8.28,
which we use to remove vertices that are heavy in the current embedding.

Proof of Lemma 8.25. Throughout the proof, whenever we write a feedback matrix, all the
variables that are not specified are set to 0. Let - be the matrix denoting the current
embedding. We may assume without loss of generality that both the oracles in Lemma 8.23
and Lemma 8.24 outputted yes on -. We claim there are at most ⇠̄ · �/⇣ edges of length at
least ⇣ in the embedding for some large enough constant ⇠̄ > 0. Suppose this is not the
case, consider the following procedure:

• Randomly partition the vertices into two 0 balanced sets �, ⌫

• Compute the max 3-regular �-⌫ flow with 3 = $(�)/= .

297

In expectation the flow is larger than ⇠̄� (if it is smaller we have found a cut). If the flow is
larger than ⇠̄� then let � be the Laplacian of the flow graph and let ⇡ be the Laplacian of
the complete weighted graph where only edges 8 9 with 8 2 � , 9 2 ⌫ have weight 589 , and
the rest have 0 weight . Then by definition

Õ
?
5?)? = � � ⇡ . Thus we set G8 = �/|+(⌧)| for

all 8 2 +(⌧), 5? as in the computed flow for all ? and all other variables to 0. The feedback
matrix . becomes �

|+(⌧)| Id + � � ⇡ � � = �
|+(⌧)| Id � ⇡ and we have

h �
|+(⌧)| Id � ⇡ ,-i 6 � � (⇠̄ � 1) · � < �� < 0 .

Notice also that
��� �
|+(⌧)| Id � ⇡

��� 6 $(�/|+(⌧)|) . We repeat this procedure $(log =)100 times,
by Markov’s inequality the claim follows with probability at least 1 � $(log =)�99

. Let
⇢
⇤ ✓ ⇢(⌧) be the set of edges of length at least $(�/⇣) in the embedding.

Now we run the heavy vertex removal procedure Algorithm 8.31. Let (%1, %2,+0) be the
resulting partition. If the partition satisfies (1), (2), (3), (4) in Lemma 8.25 the result follows.
Else, since - approximately satisfies the spreadness constraints, there are no edges longer
than ⇣ in ⇢(⌧) \ ⇢⇤ and by construction+0 does not contain (⇣, =) heavy vertices, it must be
that

���⇢(%1, %2,+
0) \

n
8 9 2 ⇢(⌧)

��� ��E8 � E9��2 6 ⇣
o��� > ⇠

⇤ · �
⌧⇣

·
✓
1 + ✓

⌧⇣

◆
, (8.4.4)

for some large enough constant ⇠⇤ > 1010
⇠, where ⇠ > 0 is the universal constant of

Lemma 8.28.
Let 3 = 100 · ⇠⇤ ·

⇣
�

|+(⌧)|·⇣⌧

⇣
1 + ✓

⇣⌧

⌘⌘
. We compute the maximum 3-regular flows for

each of the partitions (%1 [%2 ,+0), (%1 , %2 [+0), (%2 , %1 [+0) as described in Section 8.2
using the algorithm in Theorem 8.6. By Eq. (8.4.4) at least one of these cuts has flow
⇠
⇤

3 · �
⌧⇣ ·

⇣
1 + ✓

⌧⇣

⌘
as otherwise by duality we have found a (0/2)-balanced cut of value at

most ⇠⇤ · �
⌧⇣ ·

⇣
1 + ✓

⌧⇣

⌘
+ |⇢⇤ | 6 $

⇣
�
⌧⇣

⇣
1 + ✓

⌧⇣

⌘⌘
as desired. Without loss of generality we

may always assume this is the partition (%1 [%2 ,+0). We distinguish two cases:

1.
Õ
8 92⇢(%1[%2 ,+0)\⇢⇤ 589

��
E8 � E9

��2 > ⇠
⇤

109

⇣
�
⇣
1 + ✓

⌧⇣

⌘⌘
,

2.
Õ
8 92⇢(%1[%2 ,+0)\⇢⇤ 589

��
E8 � E9

��2
< ⇠

⇤

109

⇣
�
⇣
1 + ✓

⌧⇣

⌘⌘
.

Suppose we are in case 1. Let � to be the Laplacian of the weighted graph corresponding to
the flow and let ⇡ be the Laplacian of the complete weighted graph where only edges 8 9
with 8 2 %1 [%2 and 9 2 +0 have weight 589 , and the rest have 0 weight. Since we are in case
1 we have

h⇡ ,-i > ⇠

109

✓
�

✓
1 + ✓

⌧⇣

◆◆

298

Moreover, by definition
Õ
?
5?)? = � � ⇡ . Thus we set G8 = �/|+(⌧)| for all 8 2 +(⌧), 5? as

in the computed flow for all ? and all other variables to 0. The feedback matrix . becomes
�

|+(⌧)| Id + � � ⇡ � � = �
|+(⌧)| Id � ⇡ and we have

h �
|+(⌧)| Id � ⇡ ,-i 6 � � ⇠

109 · �
✓
1 + ✓

⌧⇣

◆
< �� < 0 .

Moreover notice that
��� �
|+(⌧)| Id � ⇡

��� 6 $ ⇣
�

|+(⌧)|

⌘
+ 3 6 $̃

⇣
�

|+(⌧)|

⌘
where in the last step we

used the inequalities ⌧ > ⌦(1) , ⇣ > ⌦(1/log =). In conclusion, in this case the ������ finds
a separating hyperplane and outputs no. Notice also that by construction ⇡ has at most
$(< + =) non zero entries so the feedback matrix can be computed in time $(< + =).

It remains to consider case 2. By Lemma 8.28 and Markov’s inequality, we know that
for any feasible solution -

⇤ to Eq. (8.3.1) with objective value at most �, it holds with
probability at least 1/2:

Ö
h���⇢(%1, %2,+

0) \
n
8 9 2 ⇢(⌧)

��� ��E8 � E9��2 6 ⌧⇣
o���i 6 ⇠ · �

⇣
·
✓
1 + ✓

⌧⇣

◆
,

where ⇠ < ⇠
⇤/1010. Thus repeating the procedure (log =)100 times, we get that, for any

feasible solution -⇤ with objective value �, with probability at least 1 � $(log =)�100, for at
least one of the resulting partitions (%1, %2 ,+0)

���⇢(%1, %2 ,+
0) \

n
8 9 2 ⇢(⌧)

��� ��E8 � E9��2 6 ⌧⇣
o��� 6 ⇠ · �

⇣
·
✓
1 + ✓

⌧⇣

◆
.

Now consider again our candidate solution- satisfying Eq. (8.4.4). If after (log =)100 trials
we still satisfy Eq. (8.4.4) and are always in case 2, then with probability 1 � $(log =)�100

there exist at least ⇠
⇤

10 · �
⌧⇣ ·

⇣
1 + �

⌧⇣

⌘
edges of length at most ⌧⇣/108 crossing the cut

⇢(%1 [%2 ,+0) \ ⇢⇤.
By design of Algorithm 8.31, then it must be the case that there exists a set of size

⌦(=) of triplets
�
8 , 9 , :

✓ ⇠ with 8 9 2 ⇢(⌧) and : 2 +⇤ such that

��
E8 � E9

��2 6 ⇣⌧/108,��
E9 � E:

��2 6 kE8 � E: k2 but

ê
A
D.0.A .⇠ [1,2]

⇣��
E: � E9

��2 6 ⌧⇣(1 + A) and kE: � E8 k2 > ⌧⇣(1 + A)
⌘
> 104 ·

��
E8 � E9

��2

⌧⇣
.

Indeed if this scenario does not apply then we would have seen a partition violating
Eq. (8.4.4) with probability at least 1 � $(log =)�100 by the argument used in the proof of
Lemma 8.35.

So suppose this scenario applies, and consider such a triplet
�
8 , 9 , :

. Then we must

have

kE8 � E: k2 >
��
E9 � E:

��2 + 104 ·
��
E8 � E9

��2 (8.4.5)

299

so we are violating the triangle inequality. Furthermore, we know that the sum over each
such triplets must satisfy

’
{8 , 9 ,:} satisfying Eq. (8.4.5)

��
E8 � E9

��2 > ⌦
✓
�
⌧⇣

✓
1 + ✓

⌧⇣

◆◆
.

as otherwise with probability 1 � $(log =)�100 we would have found a cut violating
Eq. (8.4.4). Notice now that we can find such triangle inequalities in linear time by looking
at the edges being cut and the vertices being picked at each iteration of Algorithm 8.31.

Thus set G8 = �/|+(⌧)| for all 8 2 +(⌧) and 5? = ⇠
⇤�
=

for ⇥(=) such violated triangle
inequalities and a large enough constant ⇠⇤ > 0. We set � = 0 and

h �
|+(⌧)| Id +

’
5?)? ,-i 6 � � $

✓
�
⌧⇣

◆
6 �� < 0 ,

where in the last step we used the assumption ⇣⌧ < 1 . The width of the feedback matrix is
at most $(�/|+(⌧)|) and it has $(< + =) entries, thus it can be computed in $(< + =) time.

Finally we remark that choosing 3 = $(log =)100 the oracle is 3-robust by Lemma 8.9.
⇤

8.5 The semi-random hierarchical stochastic
model

In this section we consider the semi-random hierarchical stochastic model (HSM) from
[CKMM19] and develop a nearly linear time algorithm that estimates the Dasgupta’s cost
of the underlying hierarchical clustering model upto constant factor. The main idea is to
recursively compute an $(1)-approximation to Balanced Cut which produces a graph
with $(1)-approximation to the Dasgupta’s cost [Das16]. Essentially most of this section is
directly cited from [CKMM19] and we only provide it for the completeness. However, note
that using Theorem 8.3 we can improve the running time of the algorithm to nearly linear
time. In the following subsection, we formally define the Dasgupta’s cost of the graph and
the hierarchical stochastic model.

8.5.1 Related notions
Let⌧ = (+ , ⇢,F)be an undirected weighted graph with weight functionF : ⇢! í+, where
í+ denotes non-negative real numbers. For simplicity we let F(G , H) = F(H , G) = F({G , H}).
For set* ✓ + we define ⌧[*] to be the subgraph induced by* . A hierarchical clustering
) of graph ⌧ is a rooted binary tree with exactly |+ | leaves, such that each leaf is labeled
by a unique vertex G 2 + .

300

For ⌧ = (+ , ⇢) and a hierarchical-clustering tree) we denote the lowest common
ancestor of vertex G and H in) by LCAT(G , H). For any internal node # of), we let)# to be
the subtree of) rooted at # and we define+(#) to be the set of leaves of the subtree rooted
at # . Finally, for a weighted graph ⌧ = (+ , ⇢,F) and any subset of vertices � ✓ + we
define F(�) = Õ

G ,H2� F(G , H), and for any set of edges ⇢0, we let F(⇢0) = Õ
42⇢0 F(4).For

any sets of vertices �, ⌫ ✓ + , we also define F(�, ⌫) = Õ
G2�,H2⌫ F(G , H).

Equipped with these notation we define the Dasgupta’s cost of a graph for a tree as
follows:

Definition 8.37 ((Dasgupta’s cost[Das16, CKMM19])). Dasgupta’s cost of the tree) for the
graph ⌧ = (+ , ⇢,F) is defined as

cost();⌧) =
’

(G ,H)2⇢
leaves()[!⇠�(G; H)]) · F(G , H).

Definition 8.38 (Ultrametric [CKMM19]). A metric space (- , 3) is an ultrametric if for every
G , H , I 2 -, 3(G , H) 6 max{3(G , I), 3(H , I)}. We say that a weighted graph ⌧ = (+ , ⇢,F) is
generated from an ultrametric if there exists an ultrametric (- , 3), such that + ✓ -, and
for every G , H 2 + , G < H, 4 = {G , H} exists, and F(4) = 5 (3(G , H)), where 5 : í+! í+ is a
non-increasing function. For a weighted undirected graph ⌧ = (+ , ⇢,F) generated from
an ultrametric, in general there may be several ultrametrics and corresponding functions
5 mapping distances in the ultrametric to weights on the edges, that generate the same
graph. It is useful to introduce the notion of a minimal ultrametric that generates ⌧. Let
(- , 3) be an ultrametric that generates ⌧ = (+ , ⇢,F) and 5 the corresponding function
mapping distances to similarities. Then we consider the ultrametric (+ , 3̃) as follows: (i)
3̃(D , D) = 0 and (ii) for D < E

3̃(D , E) = 3̃(E , D) = max
D
0
,E
0
3(D0, E0)| 5 (3(D0, E0)) = 5 (3(D , E))

Definition 8.39 (Generating Tree [CKMM19]). Let ⌧ = (+ , ⇢,F) be a graph generated by a
minimal ultrametric (+ , 3). Let) be a rooted binary tree with |+ | leaves and |+ |�1 internal
nodes; let # denote the internal nodes and ! the set of leaves of) and let � : ! ! +

denote a bĳection between the leaves of) and nodes of + . We say that) is a generating
tree for ⌧, if there exists a weight function , : N ! '

+, such that for #1,#2 2 N , if #1
appears on the path from #2 to the root,,(#1) 6 ,(#2). Moreover for every G , H 2 + ,
F(G , H) =,(LCA)(��1(G), ��1(H))).

We say that a graph ⌧ is a ground-truth input if it is a graph generated from an
ultrametric. Equivalently, there exists a tree) that is generating for ⌧.

Now we are ready to define Hierarchical Stochastic Model graphs as follows:

Definition 8.40 (Hierarchical Stochastic Model (HSM) [CKMM19]). . Let e) be a generating
tree for an =-vertex graph ⌧̄, called the expected graph, such that all weights are in

301

[0, 1]. A hierarchical stochastic model is a random graph ⌧ such that for every two
vertices D and E, the edge {D , E} is present independently with probability F({D , E}) =
,(LCA)(��1(D), ��1(E))), where F and, are the weights functions associated with e) as
per Definition 8.39. In words, the probability of an edge being present is given by the
weight of the lowest common ancestor of the corresponding vertices in e).

8.5.2 The algorithm for the semi-random hierarchical
stochastic model

We generate a random graph, ⌧ = (+ , ⇢), according to HSM (Definition 8.40). The semi-
random model considers a random HSM graph generated as above where an adversary
is allowed to only remove edges from ⌧. Note that the comparison is to the cost of the
generating tree on the graph ⌧̄ (Definition 8.40). In this section we present the proof of
Theorem 8.4.

Proof of Theorem 8.4 is a variant of Theorem 6.1 from [CKMM19] with nearly-linear
running time that uses our fast algorithm for finding Balanced-Cut.

Let ⌧̄= = (+̄= , ⇢̄= ,F) be a graph generated according to an ultrametric, where for each
4 2 ⇢̄= , F(4) 2 (0, 1) (Definition 8.39). Let ⌧ = (+ , ⇢) be an unweighted random graph with
|+ | =

��
+̄=

�� = = generated from ⌧̄ as follows. For every D , E 2 +̄= the edge (D , E) is added to
⌧ with probability F((D , E)) (Definition 8.40).

We assume that + = +̄= and let) be a generating tree for ⌧̄. Let* ✓ + . Let e) |* denote
the restriction of) to leaves in * Let #(*) be the root of e) |* . Consider the following
procedure where the nodes appear as leaves in the left and right subtrees of the root of e) |* .
Suppose we follow the convention that the left subtree is never any smaller than the right
subtree in e) |* . We say that the canonical node of e) |* is the first left node #! encountered
in a top-down traversal starting from #(*) such that (1� 1) · |* | > +(#!) > 1 · |* |, where,
0 < 1 < 1/2 is a constant. We define*! = +(#!), and*' = * *!. We say that (*! ,*') is
the canonical cut of* . It is easy to see that such a cut always exists since the tree is binary and
left subtrees are never smaller than right subtrees. Let ⇢A=3 = {(D , E) 2 ⇢ |D 2 *! , E 2 *'}.

Lemma 8.41 ([CKMM19]). For a random graph ⌧ generated as described in Theorem 8.4, with
probability at least 1 � >(1), for every subset* of size at least =2/3plog =, the subgraph (* , ⇢A=3)
is geometrically expanding up to scale (1/

p
⇡ , = , �) where

� = ⇠ .max{F(!, '), |* | · ⇡ · log2
⇡ , |* | · ⇡ · log =}, (8.5.1)

Furthermore, the result also applies in the semi-random setting where an adversary may remove any
subset of edges from the random graph ⌧.

Theorem 8.42. For any graph ⌧ = (+ , ⇢), and weight function F : ⇢! í+, the)-sparsest-cut
algorithm from [CKMM19] outputs a solution of cost at most $() · $%)).

302

Now we show the proof of Theorem 8.4 which is a variant of Theorem 6.1 from
[CKMM19] using our nearly-linear time agorithm for Balanced-Cut.

Proof of Theorem 8.4. Let 1 = 1/3. By Theorem 8.42, the recursive sparsest cut algorithm
approximates Dasgupta’s cost upto factor $()) assuming that at every recusrsion step,
the algorithm is provided with a)-approximation to the 1-Balanced Cut problem (i.e.,
minimize cut subject to the constraint that both sides have at least 1 fraction of vertices
being cut)

Note that 2>BC(e); ⌧̄) = ⌦(=3 · ?<8=) = ⌦
�
=

7/3 · log =
�
. Therfore, once we obtain sets* of

size (=0 = =
2/3 · log =), since there are at most =/=0 of them, even if we use an arbitrary tree

on any such* , together this can only add $(=
=0

· =3
0) = $(=13/9 · (log =)2) = $

�
=

7/3 · log =
�

to the cost. Thus, we only need to obtain suitable approximations during the recursive
procedure as long as |* | > =

2/3 · log =. This is precisely given by using Lemma 8.41.

Let ⇡ = $(log =), ⇣ = 1p
⇡

= $

✓
1p

log =

◆
, let ⌧ > 0 be a large constant, � > ⌦(

p
log =) be

large constants. Observe that in Equation 8.5.1, F(!, ') = ⌦(|* |2 · ?<8=) = ⌦
�
=

2/3(log =)3
�
,

|* |⇡ log2
⇡ = >(|* |⇡ log =), and ⇡ |* | log = = $

�
=

2/3(log =)3
�
. Let � = $(F(!, ')). Thus,

by Theorem 8.20 there exists an algorithm that runs in time $̃
⇣
|+(⌧)|1+$(1/⌧2) + |⇢(⌧)|

⌘
and returns a cut that is an approximation to the ⌦(1)-balanced partition ((,)) with cut of
size |⇢((,))| 6 $(� · ⌧)(1+ ⇣ · � ·

p
log =) = $(� · ⌧) = $(�) on the induced subgraph of ⌧̄

on the vertex set * . This observation together with the case where subgraphs have size
less than =2/3 log = finishes the proof. ⇤

303

Chapter 9

Practical algorithms robust against
adversarial distributions

In this chapter we prove Theorem 1.15. This result first appeared in [dKNS20]. Given
that the algorithm is easy to implement, we further show through experiments how the
algorithm performs against such adversaril perturbations (and how other algorithms fail
instead). We do so in Section 9.2.

Recall the single-spiked covariance model. We reuse the notation introduced in Chap-
ter 3.

Problem 9.1 (Restatement of Problem 3.1). Given a matrix of the form

. =, +
p
�D0E0

T + ⇢, where (9.0.1)

• E0 2 í3 is a unit :-sparse vector,

• D0 ⇠ #(0, Id=) is a standard Gaussian vector,

• , ⇠ #(0, 1)=⇥3 is a Gaussian matrix and, , D0, E0 are distributionally independent,

• ⇢ 2 í=⇥3 is an arbitrary perturbation matrix satisfying

k⇢k1 .
q
�/: · min{

p
�, 1} . (9.0.2)

Return a unit vector Ê having non-vanishing correlation with E0.

We restate the Theorem of interest, which provides a spectral algorithms with guarantees
matching that of the lower bound in Theorem 3.3.

Theorem 9.2 (Restatement of Theorem 1.15). Given an =-by-3 matrix . of the form,

. =
p
�D0E0

T +, + ⇢ ,

304

for � > 0, a unit :-sparse vector E0 2 í3, a Gaussian matrix, ⇠ #(0, 1)=⇥3, a Gaussian vector
D0 ⇠ #(0, Id=) such that E0, D0,, are distributionally independent, and ⇢ 2 í=⇥3 is a matrix
from Theorem 3.3 for C = 3.1 Suppose that 3 & =3 log 3 log =, : & = log = and

� &
:

=

✓
3

:

◆1/3
.

Then there exits an algorithm that computes in time $(=3 log =) a unit vector Ê 2 í3 such that

1 � hE0, Êi 6 0.01

with probability at least 0.99.

The algorithm behind the theorem (which we call SVD-C, where C is the corresponding
sum-of-squares degree) captures the behavior of degree 6 6 sum-of-squares in Theorem 3.2,
but runs in time nearly linear in the input size.

9.1 The algorithm
We present here the algorithm and formally prove Theorem 9.2. We borrow the notation
from Chapter 3 and Chapter 2, hence do not restate it here.

1More precisely, to prove Theorem 3.3 we consider a specific distribution over matrices ⇢ (this distribution
depends on E0 , D0 and,), and here we mean that ⇢ is sampled from this distribution.

305

Algorithm 9.3 (SVD-C: Sparse Vector Recovery).

Given: Sample matrix. 2 í=⇥3, let H1, . . . , H3 2 í= be its columns. Degree 9 2 {2, 4, 6}.

Estimate: The sparse vector E0.

Operation:

1. Compute the top eigenvector D̂ of the matrix

� :=
’
82[3]

29(H8 , =) · H8 H8T

where for G 2 í= , C 2 í, 22(G , C) := 1, 24(G , C) :=
⇣
kGk2 � (C � 1)

⌘
, 26(G , C) :=�

24(G)2 � 2(C � 1)
�
.

2. Compute Ê = D̂T
..

3. Threshold the vector Ê in the following way (for some fixed � > 0):

88 2 [3], ◆(Ê)8 =
(
Ê8 , if |Ê8 | > �p

:

0, otherwise

4. Output the thresholded vector ◆(Ê).

Remark 9.4 (Running Time of the Algorithm). For 9 2 {2, 4, 6}, the terms
<9(H1, =), . . . ,<9(H3 , =) are computable in time $(=3). Correctness of the algorithm will be
proved showing that � has at least constant spectral gap. This means that we can compute
the top eigenvalue with power iteration using $(log =) matrix-vector multiplications . A
matrix multiplication requires computing <8 = 26(H8 , =)hH8 , Ii for each 8 and then taking
the sum

Õ
82[3]

<808 . Both operations take time $(=3). Then, Ê can be computed in time $(=3)

and ◆(Ê) in time $(3). In conclusion the algorithm runs in time $(=3 log =).
To get an intuition on the algorithm, consider SVD-6 and the simpler adversarial model

. =
⇣
Id � 1

kDk2DD
T
⌘
, +

p
�DET.That is, standard sparse PCA in the Wishart model with

the noise projected into the space orthogonal to D.2 Now for 8 2 supp{E},����
⇣��

H8

��2 � =
⌘2
� 2=

�
H8 H8

T
���� ⇡ �3

=
3

:
3 ,

while for 8 2 [3] \ supp{E},����Ö
⇣��

H8

��2 � =
⌘2
� 2=

�
H8 H8

T
���� = $(1) .

2Note that the estimate D̂ obtained by SVD-2 is the same returned by the standard SVD.

306

Indeed, the coefficient 26(H8 , =) has the effect of "killing" the expectation for Gaussian
vectors. Then for 3 � =

3, the sum
Õ

82[3]\supp{E}
26(H8 , =)H8 H8T will be concentrated around its

expectation 3, while on the other hand
������

’
82supp{E}

⇣��
H8

��2 � =
⌘2
� 2=

�
H8 H8

T

������ ⇡
�3
=

3

:
2 .

Hence, for � & :

=

�
3

:

�1/3 the leading eigenvector of � will be highly correlated with D.

We remark that it is an open question how these ideas could be generalize to construct
an algorithm that works for � & :

=

�
3

:

�1/C and 3 � =
C . From this perspective, the result of

this section can be seen as a proof of concept.
In order to define the adversarial perturbations, we will use the notation introduced

for Problem 3.41, we recall that with high probability ⌫ = (1 ± >(1))
q

�=
:

. The rest of the
section is devoted to prove the Theorem below, which implies Theorem 9.2.

Theorem 9.5. Consider a matrix of the form,

. =, + ⌫DET + D
�
E
0 �,T

D

�T
for a Gaussian matrix, ⇠ #(0, 1)=⇥3, a random unit vector D, a :-sparse vector E with entries

in {0,±1} and a vector E0 as defined in 3.41. For 3 & =3 log 3 log =, ⌫ &
p

log 3
� and : > = log =,

Algorithm 9.3 with degree 6 returns a vector ◆(Ê) such that

��◆(Ê) � E�� 6 $
✓
3

:⌫6 + �

◆
·
p
:

with probability at least 0.99. Furthermore, for 3

:⌫6 + � 6 1 and � = ⌫2
:

=
,

1 �
h◆(Ê), Ei2��◆(Ê)��2 · kEk2

6

:

=�

✓
3

:

◆1/3
+ �2

!
.

We remark that the second inequality of the theorem follows from the first by direct
substitution and using the fact that ◆(Ê) is close to a unit vector. Comparing this result with
Theorem 3.27 we see that both SVD-6 9.3 and degree-6 SoS 3.29 need � & :

=

3

:

1/3 in order to
achieve correlation 0.9 with the sparse vector.

To prove Theorem 9.5, we will first show that the vector D̂ computed by the algorithm
is close to the true vector D. Then, thresholding the vector D̂T

. we will obtain a vector close
to E. Concretely, we will prove two results. First,

307

Lemma 9.6. Consider a matrix of the form,

. =, + ⌫DET + D
�
E
0 �,T

D

�T
for a Gaussian matrix, ⇠ #(0, 1)=⇥3, a random unit vector D, a :-sparse vector E with entries in
{0,±1} and a vector E0 as defined in 3.41. Let D̂ 2 í= be the top eigenvector of the matrix

’
82[3]

26(H8 , =) · H8 H8T.

Then for 3 > ⇠⇤=3 log 3 log =, = > 10 log 3

kD � D̂k 6 $

3

:⌫6 + 1
⌫
+

p
= log =

⌫
p
:

!

with probability at least 0.999, where ⇠⇤ is a universal constants.

Second,

Lemma 9.7. Let D̂ be a vector such that kD̂ � Dk 6 ⌘ for some 0 6 ⌘ 6 1
10 and let Ê = 1

⌫
p
:

D̂
T
.. If

⌫ &
p

log 3
� , then with probability at least 1 � exp(�=)

kÊ � Ek . (⌘ + �)
p
: ,

where ◆(Ê) 2 í3 is the vector with coordinates

◆(Ê)8 =
(
Ê8 , if |Ê8 | > �

0, otherwise.
(9.1.1)

It is easy to see how the two results immediately imply Theorem 9.5.
Lemma 9.6 is proved in Section 9.1.1, in Section 9.1.2 we prove Lemma 9.7.

9.1.1 Recovery of the random vector u
The goal of this Section is to prove Lemma 9.6.

By rotational symmetry of the Gaussian distribution, we may assume without
loss of generality that D = 41. Now, for vectors E , I 2 í= , define "(E , I) :=⇣
kE + Ik2 � (= � 1)

⌘2
� 2(= � 1)

�
EE

T. Recall that the adversarial vector E0 is, by con-

struction, orthogonal to the sparse vector E. Hence our strategy will be the follow-
ing, first we bound the contribution of terms of the form "(F , ✏41) and "(E0(8)D ,F).
Note that the first type of terms arise due to the noise, the second ones due to the
adversarial distribution. Then, lower bounding "(⌫D ,F), we will be able to show that

308

�����
Õ

82supp{E}
"(⌫D ,F)

����� �
�����

Õ
82[3]

"(F8 , ✏8 41)
�����+

�����
Õ

82[3]\supp{E}
"(E0(8)D ,F8)

�����with high probability.

Cross-terms will play a minor role.
First we bound the contribution of the Gaussian part. We will use Bernstein Inequality,

the next results act as building blocks for the bound, which is then shown in Lemma 9.12.

Fact 9.8. Let G ⇠ #(0, Id=),

ÖkGk2G2
8
= = + 2

ÖkGk4G2
8
= =

2 + 6= + 8.

Proof.

ÖkGk2G2
8
=

’
92[=], 9<8

Ö G2
8
G

2
9
+Ö G4

8
= = + 2

ÖkGk4G2
8
=

’
9 ,:2[=]

9<8 ,:<8 , 9<:

Ö G2
8
G

2
9
G

2
:
+

’
9 ,:2[=]
9=:<8

Ö G4
9
G

2
8
+ 2

’
9 ,:2[=]
9<:=8

Ö G4
8
G

2
9
+Ö G6

8

= (= � 1)(= � 2) + 3(= � 1) + 6(= � 1) + 15
= =

2 + 6= + 8.

⇤

We bound the spectral norm of the expectation of the terms "(F , ✏41).

Lemma 9.9. Let F ⇠ #(0, Id= � 4141T), ✏ 2 í. Then

kÖ"(F , ✏41)k = ✏4 + 8✏2 + 8.

Proof. We need only to look into diagonal entries. By construction, ÖkFk2 = = � 1 =: <,

Ö
⇣
kF + ✏41k2 � <

⌘2
� 2<

�
F

2
8
=Ö

⇣
kFk2 + ✏2 � <

⌘2
� 2<

�
F

2
8

=Ö
⇣
kFk4 + ✏4 + <2 + 2kFk2✏2 � 2<kFk2 � 2✏2

< � 2<
⌘
F

2
8

Applying Fact 9.8,

Ö
⇣
kF + ✏41k2 � <

⌘2
� 2<

�
F

2
8

= <
2 + 6< + 8 + ✏4 + <2 + 2✏2

< + 4✏2 � 2<2 � 4< � 2✏2
< � 2<

= ✏4 + 8✏2 + 8.

⇤

309

The second property we need is a high probability bound on the maximum value of
k"(F , ✏41)k.

Lemma 9.10. Let F ⇠ #(0, Id= � 4141T), ✏ 2 í. Then for any @ > 1, with probability at least
1 � 24�@ ,

k"(F , ✏41)k 6 ⇠
�
✏4
= + =max

�
=@ , @

2 �
,

where ⇠ is a universal constant.

Proof. For simplicity of the notation let < = = � 1, and let ? = max
�
@ ,

p
<@

. By Fact A.18,

ê
⇣
kFk2 8

⇥
< � 10? ,< + 10?

⇤ ⌘
6 24�@ .

Hence with probability at least 1 � 24�@ ,
����
 ⇣
kF + ✏41k2 � <

⌘2
� 2<

� ���� =
����
 ⇣
kF + ✏41k2 � <

⌘2
� 2<

� ����
=
����
 ⇣
kFk2 + ✏2 � <

⌘2
� 2<

� ����
6
h �
✏2 + 10?

�2 � 2<
i

6⇠
�
✏4 + ?2�

for some universal constant ⇠ > 0. The result follows. ⇤

And finally, the last ingredient we need for our Bernstein inequality is a bound on the
variance.

Lemma 9.11. Let F ⇠ #(0, Id= � 4141T), ✏ 2 í. Then
��Ö"(F , ✏41)2

�� 6 ⇠ ⇣
✏8
= + =max

�
log4

=✏, =2 log =✏
 ⌘

,

for a universal constant ⇠ > 0.

Proof. For simplicity of the notation let < = = � 1. Fix @ = 50 log<✏ and ? = max
�
@ ,

p
<@

.

Define the event E =
n
kFk2 8

⇥
< � 10? ,< + 10?

⇤o
, which happens with probability at

least 1 � 24�@ . Then,
⇣
kF + ✏41k2 � <

⌘2
� 2<

�2
6 ⇠

�
✏8 + ?4�

.

By triangle inequality,
��Ö"(F , ✏41)2

�� =
��ê(E)Ö⇥

"(F , ✏41)2
�� E⇤ + ê�

Ē
�
Ö

⇥
"(F , ✏41)2

�� Ē⇤��
310

6
��ê(E)Ö⇥

"(F , ✏41)2
�� E⇤�� + ��ê�

Ē
�
Ö

⇥
"(F , ✏41)2

�� Ē⇤��.
We bound the first term,

��ê(E)Ö⇥
"(F , ✏41)2

�� E⇤�� 6��$ � �
✏8 + ?4�

<

�
Ö

⇥
FF

T �� E⇤��
6$

�
✏8
< + <?4���Ö⇥

FF
T �� E⇤��

6$
�
✏8
< + <?4���Ö⇥

FF
T⇤��

6$
�
✏8
< + <?4�

.

To bound the second term, observe that
��
"(F , ✏41)2

�� 6 $

⇣
<

12 + ✏12 + kFk12
⌘

for any
✏,F, < > 1. For 8 2 é, define the event

E@8 :=
⇢
kFk2 2

< � 2

q
<@ · (8 + 1) � 2@(8 + 1),< + 2

q
<@ · (8 + 1) + 2@(8 + 1)

��

\
n
kFk2 8

h
< � 2

p
<@8 � 2@8 ,< + 2

p
<@8 + 2@8

io
.

By construction ê(E@8) 6 2 max
⇢
4
�
@
2
8

4< , 4�@8/4
�

and Ē ✓ –
82é
E@8 . By choice of @, it follows that

��ê�
Ē
�
Ö

⇥
"(F , ✏41)2

�� Ē⇤�� 6’
82é

��ê�
E@8

�
Ö

⇥
"(F , ✏41)2

�� E@8⇤��
6$(1),

concluding the proof.
⇤

We can now apply Bernstein Inequality A.21:

Lemma 9.12. Let F1, . . . ,F; ⇠ #(0, Id= � 4141T), let |✏1 |, . . . , |✏; | 6 ✏ 2 í. Then for ; >
⇠
⇤ · max

�
=

3 log(; + ✏=), = log3(; + ✏=)

,

������
’
82[;]

"(F8 , ✏8 41)

������ 6 ;(✏
4 + 8) + ⇠⇤✏4p

;= log =

with probability at least 1 � 2;�10 � =�10, where ⇠⇤ is a universal constant.

Proof. By triangle inequality,
������
’
82[;]

"(F8 , ✏8 41)

������ 6
������
’
82[;]
Ö"(F8 , ✏8 41)

������ +
������
’
82[;]

"(F8 , ✏8 41) �
’
82[;]
Ö"(F8 , ✏8 41)

������.

311

By Lemma 9.9, ������
’
82[;]
Ö"(F8 , ✏8 41)

������ 6 8; + 8;✏2 + ;✏4
.

Let @ = 100 log(; + <✏) and ? := max
�
@ ,

p
<@

. Define the event E =n

kFk2 8
⇥
< � 10? ,< + 10?

⇤o
, which happens with probability at least 1� 24�@ . By Lemma

9.10, with probability at least 1 � 2;�10, for each 8 2 [;],

k"(F8 , ✏8 41) �Ö"(F8 , ✏8 41)k 6 ⇠
⇣
8 + 8✏2 + ✏4 + ✏4

= + =max
�
= log ; , log2

;

 ⌘
,

for a constant ⇠ > 0. Hence, by Lemma 9.11, applying Bernstein Inequality A.21������
’
82[;]

("(F8 , ✏8 41) �Ö"(F8 , ✏8 41))

������ 6 ⇠
0 · C

p
;= log = · ✏4

with probability at least 1 � 2;�10 � 4�(C�1) log = , where ⇠0 is a universal constant. ⇤

The next lemma will be used to bound the contribution of the adversarial vector E0.

Lemma 9.13. Let |01 |, . . . , |0; | 6 0 2 í. Let F ⇠ #(0, Id= � 4141T). Then, with probability at
least 1 � 4�(C�1) log = � 2;�10������

’
82[;]

"(08 41,F)

������ 6 ⇠ · C ·
p
; log =02

⇣
0

4 + max
n
log ; ,

p
= log ;

o⌘

where C > 1 and ⇠ > 0 is a universal constant.

Proof. For simplicity let < = = � 1 and @ = 10 log ; and ? := max
�
@ ,

p
<@

. By Fact A.18,

ê
⇣
kFk2 8

⇥
< � 10? ,< + 10?

⇤ ⌘
6 24�@ .

Hence, as in Lemma 9.10����
 ⇣
kF + 08 41k2 � <

⌘2
� 2<

� ���� 6 $ �
0

4
8
+ ?2� 6 $ �

0
4 + ?2�

.

This implies, ��
"(08 41,F)2

�� 6 $ �
0

12 + ?4
0

4�
.

We have everything we need to apply Hoeffding Inequality A.22

ê©≠
´

������
’
82[;]

"(08 41,F)

������ > ⇠ · C ·
p
; log =

�
0

6 + ?2
0

2�™Æ
¨
6 4�(C�1) log =

,

for ? > 1 and a universal constant ⇠. ⇤

312

The last intermediate result, is a high probability lower bound on the spectral norm of
the matrix

Õ
82supp{E}

"(⌫41,F), that is, the matrix corresponding to the sum of the columns

that contain the spike.

Lemma 9.14. Let ✓1, . . . , ✓; 2 {�1,+1} and F1, . . . ,F; ⇠ #(0, Id= � 4141T). Let ✏ 2 í, for
C > 1 and auniversal constant ⇠ > 0, suppose ; > ⇠ · C log = · max

�
=

3 log ; , log2
;

. Then������

’
82[;]

"(✓8✏41,F8)

������ >
;✏6

2 ,

with probability at least 1 � 24�C log = � 2;�10.

Proof. Now,

’
82[;]

"(✓8✏41,F8) =
©≠
´
’
82[;]

⇣
kF8 + ✓8✏41k2 � <

⌘2
� 2<

�™Æ
¨
✏2
4141

T

=
266664
✏4
; + <2

; � 2<; � 2✏2
<; + ©≠

´
’
82[;]
kF8 k4 � 2<kF8 k2 + 2✏2kF8 k2™Æ

¨
377775
✏2
4141

T
.

We bound the terms in the parenthesis. Recall that by construction

Ö
266664
<

2
; � 2<; � 2✏2

<; + ©≠
´
’
82[;]
kF8 k4 � 2<kF8 k2 + 2✏2kF8 k2™Æ

¨
377775
= 0.

For @ := 10 log ; and ? = max
�p
<@ , @

, we can condition on the event,

E :=
n
88 2 [;]

��� kFk2 2 ⇥
< � 10? ,< + 10?

⇤o
,

which happens with probability at least 1 � 24�@ . Then, by Hoeffding Inequality A.22,������
’
82[;]

266664
<

2
; � 2<; � 2✏2

<; + ©≠
´
’
82[;]
kF8 k4 � 2<kF8 k2 + 2✏2kF8 k2™Æ

¨
377775

������
> ⇠ · C ·

p
;

�
?

2 + <? + ✏2
?

�
with probability at most 24�C , for C > 1 and a universal constant ⇠. By assumption on ✏, ;
and =, it follows that ������

’
82[;]

"(✓8✏41,F8)✏2
4141

T

������ >
���� ;✏

6

2 48 41
T
���� =

;✏6

2 .

⇤

313

We are now ready to prove the main result of the section. Combining Lemma 9.15 with
Lemma 9.14 and an application of Lemma A.28 we immediately get Lemma 9.6.

Lemma 9.15. Let. be defined as in Theorem 9.5, let 3 > ⇠ ·=3 log 3 log = > 100. For :⌫6 > ⇠⇤3,
= > log 3 and large enough constants ⇠ , ⇠⇤, with probability at least 0.999,

’
82[3]

⇣��
H8

��2 � <
⌘2
� 2<

�
H8 H8

T =
’

82supp{E}
"(E(8)⌫41,F) +" ,

where " is a matrix such that

k"k 6 $
⇣
3 + :⌫5 +

p
:= log =⌫5

⌘
.

Proof. Let < = = � 1. Recall the notation used in the algorithm with 26(H8 , =) =⇣��
H8

��2 � <
⌘2
� 2<

�
. Then we can rewrite the matrix � computed by SVD-6 as,

’
82[3]

⇣��
H8

��2 � <
⌘2
� 2<

�
H8 H8

T =
’

82supp{E}
"(E(8)⌫41,F) +

’
82supp{E}

"(F8 , E(8)⌫41)

+
’

82[3]\supp{E}
"(F8 , E0(8)41) +

’
82[3]\supp{E}

"(E0(8)41,F)

+
’

82supp{E}
26(F8 + E(8)⌫41, =)

�
E(8)F841T + E(8)41F8T

�

+
’

82[3]\supp{E}
26(F8 + E0(8)41)

�
E
0(8)F841T + E0(8)41F8T

�
.

We first bound the cross-terms,������
’

82[3]\supp{E}
26(F8 + E0(8)41)E0(8)F841T

������

6

������
’

82[3]\supp{E}
26(F8 + E0(8)41)E0(8)24141T

������
1/2������

’
82[3]\supp{E}

26(F8 + E0(8)41)E0(8)2F8F8T
������

1/2

6

������
’

82[3]\supp{E}
26(F8 + E0(8)41)E0(8)24141T

������ +
������

’
82[3]\supp{E}

26(F8 + E0(8)41)E0(8)2F8F8T
������

And ������
’

82supp{E}
26(F8 + E(8)⌫41, =)E(8)F841T

������
314

6

������
’

82supp{E}
26(F8 + E(8)⌫41, =)E(8)24141T

������
1/2������

’
82supp{E}

26(F8 + E(8)⌫41, =)F8F8T
������

1/2

Observe that, by construction of the vector E0 in Model 3.41 and since :⌫6 > ⇠⇤3, for a
large enough constant ⇠⇤, we get that for all 8 2 [3], |E0(8)| 6 100. Moreover we get that
with probability at least 0.999, all the following inequalities hold.

By Lemma 9.14,
������

’
82supp{E}

"(E(8)⌫41,F8)

������ >
:⌫6

2 .

By Lemma 9.12,
������

’
82supp{E}

"(F8 , E(8)⌫41)

������ 6 $
⇣
:⌫4 +

p
:= log =⌫4

⌘
������

’
82[3]\supp{E}

"(F8 , E0(8)41)

������ 6 $
⇣
3 +

p
3= log =

⌘
6 $(3).

By Lemma 9.13,
������

’
82[3]\supp{E}

"(E0(8)41,F)

������ 6 $
⇣p
3 log =max

n
log 3,

p
= log 3

o⌘
.

All in all we get,
������
’
82[3]

⇣��
H8

��2 � <
⌘2
� 2<

�
H8 H8

T �
’

82supp{E}
"(E(8)⌫41,F8)

������
6 $

⇣
3 +

p
3= log = +

p
3= log 3 +

p
3 log 3 + :⌫5 +

p
:= log =⌫5

⌘
.

The result follows. ⇤

9.1.2 Recovery of the sparse direction v
We now show how to obtain a good estimate of the sparse vector E from D̂. Since several
algorithms try to recover first D and then the sparse vector (e.g. SVD with thresholding)
we turn back to the model 3.1. A corollary for model 3.41 is presented at the end of the
section. So, for the rest of the section, let . =

p
�DET +, + ⇢, where E 2 í3 is a :-sparse

315

unit vector, D 2 í= is a vector such that kDk > 0.9
p
=, and, ⇠ #(0, 1)=⇥3. We also assume

that = 6 : 6 3.
The first observation is that on one hand the vector .E is close to

p
�D with high

probability. On the other hand, the vector .T
D may be far from the sparse vector; that is,

even knowing exactly D, the thresholding step is required to recover E. The next theorem
provides guarantees on the achievable correlation with the sparse vector given a vector close
to D. Theorem 3.42 shows in which sense these guarantees are information theoretically
tight.

Theorem 9.16. Let D̂ be a vector such that kD̂ � Dk 6 ⌘
p
= for some 0 6 ⌘ 6 1

10 , and let

Ê =
1p

� · kD̂k2
D̂

T
. .

If � & :

�2
=

�
log 3 + k⇢k21!2

�
for some 0 < � 6 1, then with probability at least 1 � 10 exp(�=),

k◆(Ê) � Ek . ⌘ + � ,

where ◆(Ê) 2 í3 is the vector with coordinates

◆(Ê)8 =
(
Ê8 , if |Ê8 | > �/

p
:

0, otherwise

Proof. Assume that � > 104 · :

�2
=

�
log 3 + k⇢k21!2

�
. Let’s rewrite . =

p
�D̂ET +, + / + ⇢ for

a matrix / =
p
�(D � D̂)ET 2 í=⇥3. Then for 8 2 [3]:

�� �
D̂

T
/

�
8

�� = ���p�hD̂ , D � D̂iE8
��� 6 ⌘

p
�= · kD̂k · |E8 | .

Let (= {8 | E8 = 0},) = {8 | Ê8 > �/
p
:}, � = {8 | |E8 | 6 2�/

p
:} and ⌫ = {8 | (D̂,)8 >

10kD̂k
p

log 3}. By Lemma A.25, with probability at least 1 � 2 exp(�=), |⌫| 6 =. Consider
some 8 2 (\). Since E8 = 0,

(D̂,)8 =
p
�·kD̂k2·Ê8�(D̂⇢)8 > 100· kD̂kp

=

·kD̂k
⇣p

log 3 + k⇢k1!2

⌘
�kD̂k·k⇢k1!2 > 10kD̂k

p
log 3 ,

which means that (\) ✓ ⌫. Hence |)\⌫| 6 |(| = :. Note that since ⌘ 6 1
10 and kDk > 0.9

p
=,

kD̂k > 0.8
p
=. Hence’
82)\⌫

(◆(Ê)8 � E8)2 =
’
82)\⌫

(Ê8 � E8)2

6 2
’
82)\⌫

=

kD̂k2 ⌘
2
E

2
8
+ 2

’
82)\⌫

1
�kD̂k4

�
(D̂T

,)2
8
+ (D̂T

⇢)2
8

�

6 4⌘2 + 4
’
82)\⌫

1
�=

�
100 log 3 + k⇢k21!2

�

316

6 4⌘2 + �2
.

Note that since |⌫| 6 =, By Theorem A.23, with probability at least 1 � exp(�=),
’
82⌫

(D̂T
,)2

8
6 100kD̂k2 · = log 3 .

Hence ’
82)\⌫

(◆(Ê)8 � E8)2 =
’
82)\⌫

(Ê8 � E8)2

6 2
’
82⌫

=

kD̂k2 ⌘
2
E

2
8
+ 2

’
82⌫

1
�kD̂k4 (D̂

T
,)2

8
+ 2

’
82⌫

1
�kD̂k4 (D̂

T
⇢)2

8

6 4⌘2 + 400
log 3
�

+ 4
k⇢k21!2

�

6 4⌘2 + �2
.

If 8 2 (\), then ◆(Ê)8 = E8 = 0. If 8 2 (\) \ �, then

�p
:

> |Ê8 | >
✓
1 �
p
=

kD̂k ⌘
◆
|E8 | �

�����
(D̂T

,)8p
�kD̂k2

����� �
�����
(D̂T

⇢)8p
�kD̂k2

����� > 1.8 �p
:

�
�����
(D̂T

,)8p
�kD̂k2

����� � 0.1 �p
:

,

hence in this case |(D̂,)8 | > 0.7 · 0.8 · 100
p

log 3 > 10
p

log 3, so 8 2 ⌫. Moreover,

|E8 | 6
1.1�

0.9
p
:

+ 2

�����
1p
�=

(D̂T
,)8

����� .
Therefore

’
82(\)\�

(◆(Ê)8 � E8)2 =
’

82(\)\�

E
2
8
6 2

’
82⌫

2�2

:

+ 4
’
82⌫

1
�=2 (D̂,)2

8
6 4�2 + �2 = 5�2

.

It follows that

k◆(Ê)� Ek2 6
’
82)

(◆(Ê)8 � E8)2 +
’

82(\)\�

E
2
8
+

’
82(\)\�

E
2
8
6 8⌘2 + 2�2 + 4�2 + 5�2 = 8⌘2 + 11�2

.

Hence with probability at least 1 � 3 exp(�=),

k◆(Ê) � Ek . ⌘ + � .

⇤

An immediate consequence is the following corollary.

317

Corollary 9.17. Consider a matrix of the form,

. =, + ⌫DET + D
�
E
0 �,T

D

�T
for a Gaussian matrix, ⇠ #(0, 1)=⇥3, a random unit vector D, a :-sparse vector E with entries
in {0,±1} and a vector E0 as defined in 3.41. Let D̂ be a vector such that kD̂ � Dk 6 ⌘ for some

0 6 ⌘ 6 1
10 . If ⌫ &

p
log 3
� , then we can compute in time $(=3) an estimator Ê such that with

probability at least 1 � exp(�=)
kÊ � Ek . (⌘ + �)

p
: .

9.2 Experimental results
In this section we compare the performance of Diagonal Thresholding and SVD of degree
2, 4, 6 as in 9.3 on practical instances. The table below explains the regimes of the figures
presented. We refer to Robust Sparse PCA as model 3.1 where the adversarial matrix ⇢
follows the distribution shown in 3.41. 9.2.1 contains a detailed report of the experimental
setup.

Standard Sparse PCA Robust Sparse PCA

: >
p
3 Figure 9.1a for � >

q
3

=

Figure 9.1b for � > :

=

�
3

:

�1/2

Figure 9.1c for � > :

=

�
3

:

�1/3

: 6
p
3 Figure 9.2 for � > :p

=

q
log 3

:

Table 9.1: Plots

9.2.1 Experimental Setup
In the experiments, the instances were sampled from the planted distributions of 3.41
with the difference that D ⇠ #(0, Id=) and E is a :-sparse unit vector obtained sampling a
random :-subset (✓ [3] and then a unit vector with support (. All the algorithms returned
the top : coordinates of their estimation vector. Figure 9.1, 9.1 plot the absolute correlation
between E and its estimate. Each plot was obtained averaging multiple independent runs
on the same parameters, for each algorithm the shadowed part corresponds to the interval
containing 50% of the results, the line corresponds to the mean of the results in such
interval.
In Figure 9.1b, the adversarial matrix ⇢ is sampled according to model 3.41 for B = 2, that
is the first 2 moments of . are Gaussian. Similarly, in Figure 9.1c, ⇢ is sampled according
to model 3.41 for B = 4, so the first 4 moments of . are Gaussian.

318

(a) Standard Sparse PCA, with : >
p
3, � >

q
3

=

(b) Robust Sparse PCA with : >
p
3, � > :

=

�
3

=

�1/2

(c) Robust Sparse PCA with : >
p
3, � > :

=

�
3

=

�1/3

Figure 9.1: Forthe single spiked covariance model with : >
p
3, Figure 9.1a shows how the

SVD algorithms works (with information theoretically optimal guarantees) and Diagonal
Thresholding fails. Figures 9.1b, 9.1c show however how adversarial noise immediately
breaks SVD with thresholding. In Figure 9.1b � & :

=

�
3

:

�1/2, hence as 3 increases and becomes
larger than =2, SVD-4 returns a good estimate. We point out how how SVD-6 performs well
even for 3 ⌧ =

3 when the signal is much larger than :

=

�
3

:

�1/3. Finally, Figure 9.1c shows
how DT, SVD-4 and SVD-2 fails for � = ⇥

⇣
:

=

�
3

:

�1/3
⌘
, but as 3 grows towards =3, SVD-6

approaches correlation 1.

Experiments were done on a laptop computer with a 3.5 GHz Intel Core i7 CPU and 16
GB of RAM, random instances were obtained using Numpy pseudo-random generator.

In non-robust settings, as well as in the adversarial model 3.41, the algorithm achieves
high correlation under conditions similar (up to logarithmic terms) to those of the Sum-of-

319

Figure 9.2: The figure shows settings in which : 6
p
3. In this regime, among the

algorithms considered, Diagonal Thresholding achieves asymptotically the most correlation.
In practical settings however it is often the case that :p

=

p
log 3 > ⌦

⇣
:

=

�
3

:

�1/3
⌘

and hence
also SVD-6 can accurately recover the signal.

Squares algorithm 3.29 (of degree 2, 4 and 6).

320

Bibliography

[20221] Disclosure avoidance for the 2020 census: An introduction, https:
//www2.census.gov/library/publications/decennial/2020/
2020-census-disclosure-avoidance-handbook.pdf, 2021. 15

[AAP17] Thomas D Ahle, Martin Aumüller, and Rasmus Pagh, Parameter-free locality
sensitive hashing for spherical range reporting, Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2017, pp. 239–
256. 294

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity: a modern approach,
Cambridge University Press, 2009. 2

[ABARS20] Emmanuel Abbe, Enric Boix-Adsera, Peter Ralli, and Colin Sandon, Graph
powering and spectral robustness, SIAM Journal on Mathematics of Data Science
2 (2020), no. 1, 132–157. 10

[Abb17] Emmanuel Abbe, Community detection and stochastic block models: recent develop-
ments, The Journal of Machine Learning Research 18 (2017), no. 1, 6446–6531.
9, 18

[ABH15] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall, Exact recovery in the
stochastic block model, IEEE Transactions on information theory 62 (2015), no. 1,
471–487. 18, 230, 254

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer, Subexponential algorithms for
unique games and related problems, Journal of the ACM (JACM) 62 (2015), no. 5,
1–25. 19

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson, Public-key cryptography
from different assumptions, Proceedings of the forty-second ACM symposium
on Theory of computing, 2010, pp. 171–180. 13, 14

[Ach09] Dimitris Achlioptas, Random satisfiability., Handbook of Satisfiability 185 (2009),
245–270. 14

321

https://www2.census.gov/library/publications/decennial/2020/2020-census-disclosure-avoidance-handbook.pdf
https://www2.census.gov/library/publications/decennial/2020/2020-census-disclosure-avoidance-handbook.pdf
https://www2.census.gov/library/publications/decennial/2020/2020-census-disclosure-avoidance-handbook.pdf

[AGK76] Rudolf Ahlswede, Peter Gács, and János Körner, Bounds on conditional probabili-
ties with applications in multi-user communication, Zeitschrift für Wahrschein-
lichkeitstheorie und verwandte Gebiete 34 (1976), no. 2, 157–177. 86, 107

[AI06] Alexandr Andoni and Piotr Indyk, Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions, 2006 47th annual IEEE symposium on
foundations of computer science (FOCS’06), IEEE, 2006, pp. 459–468. 294

[AJT19] Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani, Approxi-
mating constraint satisfaction problems on high-dimensional expanders, 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), IEEE,
2019, pp. 180–201. 14, 178, 216

[AK07] Sanjeev Arora and Satyen Kale, A combinatorial, primal-dual approach to semidef-
inite programs, Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, 2007, pp. 227–236. 19, 20, 21, 237, 277, 280, 282, 284, 288,
289, 290, 297

[AL22] Hassan Ashtiani and Christopher Liaw, Private and polynomial time algorithms
for learning gaussians and beyond, Conference on Learning Theory, PMLR, 2022,
pp. 1075–1076. 15, 231

[AMM17] Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev, Algorithms
for stable and perturbation-resilient problems, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, 2017, pp. 438–451. 278

[AN04] Noga Alon and Assaf Naor, Approximating the cut-norm via grothendieck’s
inequality, Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, 2004, pp. 72–80. 31, 79, 163

[AOW15] Sarah R Allen, Ryan O’Donnell, and David Witmer, How to refute a random
csp, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
IEEE, 2015, pp. 689–708. 14, 176, 178, 186, 187, 199, 205, 213, 214

[app17] Learning with privacy at scale, https://docs-assets.developer.apple.com/
ml-research/papers/learning-with-privacy-at-scale.pdf, 2017, Ac-
cessed: 2022-11-06. 15

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani, Expander flows, geometric
embeddings and graph partitioning, Journal of the ACM (JACM) 56 (2009), no. 2,
1–37. 19, 20, 21, 279

[AS16] Emmanuel Abbe and Colin Sandon, Achieving the ks threshold in the general
stochastic block model with linearized acyclic belief propagation, Advances in Neural
Information Processing Systems 29 (2016). 79

322

https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf

[AW08] Arash A Amini and Martin J Wainwright, High-dimensional analysis of semidefinite
relaxations for sparse principal components, 2008 IEEE international symposium
on information theory, IEEE, 2008, pp. 2454–2458. 3, 4, 38, 47

[AWH13] George B Arfken, Hans J Weber, and Frank E Harris, Chapter 15-legendre
functions, Mathematical Methods for Physicists (2013), 715–772. 350

[Bas92] Hyman Bass, The ihara-selberg zeta function of a tree lattice, International Journal
of Mathematics 3 (1992), no. 06, 717–797. 189

[BBAP05] Jinho Baik, Gérard Ben Arous, and Sandrine Péché, Phase transition of the largest
eigenvalue for nonnull complex sample covariance matrices, Annals of Probability
(2005), 1643–1697. 4, 36, 158

[BBH+12] Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan Kelner, David
Steurer, and Yuan Zhou, Hypercontractivity, sum-of-squares proofs, and their
applications, Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, 2012, pp. 307–326. 31

[BCLS87] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and Michael
Sipser, Graph bisection algorithms with good average case behavior, Combinatorica
7 (1987), no. 2, 171–191. 20, 277

[BDH+20] Ainesh Bakshi, Ilias Diakonikolas, Samuel B Hopkins, Daniel Kane, Sushrut
Karmalkar, and Pravesh K Kothari, Outlier-robust clustering of gaussians and
other non-spherical mixtures, 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 2020, pp. 149–159. 12

[BDJ+22] Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M Kane, Pravesh K Kothari,
and Santosh S Vempala, Robustly learning mixtures of k arbitrary gaussians,
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, 2022, pp. 1234–1247. 12

[BGG+16] Vĳay VSP Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong
Lee, and Madhur Tulsiani, Multiplicative approximations for polynomial optimiza-
tion over the unit sphere., Electron. Colloquium Comput. Complex., vol. 23, 2016,
p. 185. 22

[BHK+19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur
Moitra, and Aaron Potechin, A nearly tight sum-of-squares lower bound for the
planted clique problem, SIAM Journal on Computing 48 (2019), no. 2, 687–735.
37, 47, 62, 63

323

[BJK05] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin, Classifying the complexity
of constraints using finite algebras, SIAM journal on computing 34 (2005), no. 3,
720–742. 14

[BKS14] Boaz Barak, Jonathan A Kelner, and David Steurer, Rounding sum-of-squares
relaxations, Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, 2014, pp. 31–40. 22

[BKS15] , Dictionary learning and tensor decomposition via the sum-of-squares method,
Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, 2015, pp. 143–151. 14, 22

[BKW20] Afonso S Bandeira, Dmitriy Kunisky, and Alexander S Wein, Computational
hardness of certifying bounds on constrained pca problems, 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020), vol. 151, 2020, p. 78. 62,
340

[BL12] Yonatan Bilu and Nathan Linial, Are stable instances easy?, Combinatorics,
Probability and Computing 21 (2012), no. 5, 643–660. 20, 277, 278

[BLM15] Charles Bordenave, Marc Lelarge, and Laurent Massoulié, Non-backtracking
spectrum of random graphs: community detection and non-regular ramanujan graphs,
2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
IEEE, 2015, pp. 1347–1357. 79, 83, 181, 182, 193, 194, 504

[BMR21] Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra, Local statistics, semidef-
inite programming, and community detection, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), SIAM, 2021, pp. 1298–1316. 10,
81, 83

[Bop87] Ravi B Boppana, Eigenvalues and graph bisection: An average-case analysis, 28th
Annual Symposium on Foundations of Computer Science (sfcs 1987), IEEE,
1987, pp. 280–285. 20, 277

[BR13] Quentin Berthet and Philippe Rigollet, Computational lower bounds for sparse
pca, arXiv preprint arXiv:1304.0828 (2013). 3, 4, 38

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer, Rounding semidefinite
programming hierarchies via global correlation, 2011 ieee 52nd annual symposium
on foundations of computer science, IEEE, 2011, pp. 472–481. 178, 183, 217,
219, 226

[BS16] Boaz Barak and David Steurer, Proofs, beliefs, and algorithms through the lens of
sum-of-squares, Course notes: http://www. sumofsquares. org/public/index.
html 1 (2016). 28

324

[BSB02] Eli Ben-Sasson and Yonatan Bilu, A gap in average proof complexity, Electronic
Colloquium on Computational Complexity (ECCC), vol. 9, Citeseer, 2002. 13

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta, Private empirical risk
minimization: Efficient algorithms and tight error bounds, 2014 IEEE 55th annual
symposium on foundations of computer science, IEEE, 2014, pp. 464–473. 237

[CCAd+23] Hongjie Chen, Vincent Cohen-Addad, Tommaso d’Orsi, Alessandro Epasto,
Jacob Imola, David Steurer, and Stefan Tiegel, Private estimation algorithms
for stochastic block models and mixture models, arXiv preprint arXiv:2301.04822
(2023). 228

[Cd21] Davin Choo and Tommaso d’Orsi, The complexity of sparse tensor pca, Advances
in Neural Information Processing Systems 34 (2021), 7993–8005. 4, 25, 39, 44

[Cd22] Hongjie Chen and Tommaso d’Orsi, On the well-spread property and its relation to
linear regression, Conference on Learning Theory, PMLR, 2022, pp. 3905–3935.
25

[CdM23] Vincent Cohen-Addad, Tommaso d’Orsi, and Aida Mousavifar, A near-linear
time approximation algorithm for beyond-worst-case graph clustering, to appear
(2023). 24, 277

[Cha16] Siu On Chan, Approximation resistance from pairwise-independent subgroups,
Journal of the ACM (JACM) 63 (2016), no. 3, 1–32. 14

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Guten-
berg, and Sushant Sachdeva, Maximum flow and minimum-cost flow in almost-
linear time, 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, 2022, pp. 612–623. 20, 277, 280, 282

[CKM+21] Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer, and Eliad Tsfadia,
Differentially-private clustering of easy instances, International Conference on
Machine Learning, PMLR, 2021, pp. 2049–2059. 15, 17, 24, 231

[CKMM19] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire
Mathieu, Hierarchical clustering: Objective functions and algorithms, Journal of
the ACM (JACM) 66 (2019), no. 4, 1–42. 21, 278, 300, 301, 302, 303

[CLP02] Andrea Crisanti, Luca Leuzzi, and Giorgio Parisi, The 3-sat problem with large
number of clauses in the infinity-replica symmetry breaking scheme, Journal of
Physics A: Mathematical and General 35 (2002), no. 3, 481. 13

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate, Differentially
private empirical risk minimization., Journal of Machine Learning Research 12
(2011), no. 3. 237

325

[CMW13] T Tony Cai, Zongming Ma, and Yihong Wu, Sparse pca: Optimal rates and
adaptive estimation, The Annals of Statistics 41 (2013), no. 6, 3074. 4

[COGL07] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka, Strong refutation
heuristics for random k-sat, Combinatorics, Probability and Computing 16 (2007),
no. 1, 5–28. 14

[CPRT22] Flavio Chierichetti, Alessandro Panconesi, Giuseppe Re, and Luca Trevisan,
Spectral robustness for correlation clustering reconstruction in semi-adversarial
models, International Conference on Artificial Intelligence and Statistics, PMLR,
2022, pp. 10852–10880. 20, 22, 277

[CRV15] Peter Chin, Anup Rao, and Van Vu, Stochastic block model and community detection
in sparse graphs: A spectral algorithm with optimal rate of recovery, Conference on
Learning Theory, PMLR, 2015, pp. 391–423. 164, 498

[Dan16] Amit Daniely, Complexity theoretic limitations on learning halfspaces, Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing, 2016,
pp. 105–117. 14

[Das16] Sanjoy Dasgupta, A cost function for similarity-based hierarchical clustering, Pro-
ceedings of the forty-eighth annual ACM symposium on Theory of Computing,
2016, pp. 118–127. 278, 300, 301

[DdH23] Jingqiu Ding, Tommaso d’Orsi, and Yiding Hua, Node robust recovery for
stochastic block models. 24, 157

[DdL+22] Jingqiu Ding, Tommaso d’Orsi, Chih-Hung Liu, David Steurer, and Stefan
Tiegel, Fast algorithm for overcomplete order-3 tensor decomposition, Conference on
Learning Theory, PMLR, 2022, pp. 3741–3799. 22, 25

[DdNS22] Jingqiu Ding, Tommaso d’Orsi, Rajai Nasser, and David Steurer, Robust recovery
for stochastic block models, 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 2022, pp. 387–394. 24, 83, 167

[DF86] Martin E Dyer and Alan M Frieze, Fast solution of some random np-hard problems,
27th Annual Symposium on Foundations of Computer Science (sfcs 1986),
IEEE Computer Society, 1986, pp. 331–336. 20, 277

[dGJL04] Alexandre d’Aspremont, Laurent Ghaoui, Michael Jordan, and Gert Lanckriet,
A direct formulation for sparse pca using semidefinite programming, Advances in
neural information processing systems 17 (2004). 38, 47

[DI98] Tassos Dimitriou and Russell Impagliazzo, Go with the winners for graph bisection.,
SODA, vol. 98, 1998, pp. 510–520. 20, 277

326

[DK19] Ilias Diakonikolas and Daniel M Kane, Recent advances in algorithmic high-
dimensional robust statistics, arXiv preprint arXiv:1911.05911 (2019). 2, 12

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová,
Asymptotic analysis of the stochastic block model for modular networks and its
algorithmic applications, Physical Review E 84 (2011), no. 6, 066106. 9, 18

[dKNS20] Tommaso d’Orsi, Pravesh K Kothari, Gleb Novikov, and David Steurer, Sparse
pca: algorithms, adversarial perturbations and certificates, 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), IEEE, 2020, pp. 553–
564. 2, 4, 8, 22, 24, 34, 35, 36, 38, 46, 304

[DKWB23] Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira,
Subexponential-time algorithms for sparse pca, Foundations of Computational
Mathematics (2023), 1–50. 4, 39, 44, 45, 64

[dLN+21] Tommaso d’Orsi, Chih-Hung Liu, Rajai Nasser, Gleb Novikov, David Steurer,
and Stefan Tiegel, Consistent estimation for pca and sparse regression with oblivious
outliers, Advances in Neural Information Processing Systems 34 (2021), 25427–
25438. 25

[DLSS14] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz, From average case complexity
to improper learning complexity, Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, 2014, pp. 441–448. 14

[DM14] Yash Deshpande and Andrea Montanari, Sparse pca via covariance thresholding,
Advances in Neural Information Processing Systems 27 (2014). 4, 6, 38, 43, 344,
355

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith, Calibrating
noise to sensitivity in private data analysis, Theory of Cryptography: Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006.
Proceedings 3, Springer, 2006, pp. 265–284. 16, 240

[DMS17] Amir Dembo, Andrea Montanari, and Subhabrata Sen, Extremal cuts of sparse
random graphs. 78

[dNNS23] Tommaso d’Orsi, Rajai Nasser, Gleb Novikov, and David Steurer, Higher degree
sum-of-squares relaxations robust against oblivious outliers, Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
2023, pp. 3513–3550. 22, 25

[dNS21] Tommaso d’Orsi, Gleb Novikov, and David Steurer, Consistent regression when
oblivious outliers overwhelm, International Conference on Machine Learning,
PMLR, 2021, pp. 2297–2306. 25

327

[DNT15] Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar, Efficient algorithms for
privately releasing marginals via convex relaxations, Discrete & Computational
Geometry 53 (2015), 650–673. 15

[DSS15] Jian Ding, Allan Sly, and Nike Sun, Proof of the satisfiability conjecture for large
k, Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, 2015, pp. 59–68. 14

[dT23] Tommaso d’Orsi and Luca Trevisan, A ihara-bass formula for non-boolean matrices
and strong refutations of random csps, Computational Complexity Conference
(2023). 22, 24

[EKZ22] Ronen Eldan, Frederic Koehler, and Ofer Zeitouni, A spectral condition for
spectral gap: fast mixing in high-temperature ising models, Probability Theory and
Related Fields 182 (2022), no. 3, 1035–1051. 238

[Ela15] Andrew Eland, Tackling urban mobility with technology, Google Europe Blog,
November 18 (2015). 15

[FC20] Yingjie Fei and Yudong Chen, Achieving the bayes error rate in synchronization
and block models by sdp, robustly, IEEE Transactions on Information Theory 66
(2020), no. 6, 3929–3953. 239

[Fei02] Uriel Feige, Relations between average case complexity and approximation complex-
ity, Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, 2002, pp. 534–543. 13, 14

[Fei07] , Refuting smoothed 3cnf formulas, 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), IEEE, 2007, pp. 407–417. 13, 178

[FGK05] Joel Friedman, Andreas Goerdt, and Michael Krivelevich, Recognizing more
unsatisfiable random k-sat instances efficiently, SIAM Journal on Computing 35
(2005), no. 2, 408–430. 14, 176

[FK01] Uriel Feige and Joe Kilian, Heuristics for semirandom graph problems, Journal of
Computer and System Sciences 63 (2001), no. 4, 639–671. 9, 20, 79, 277

[FKP+19] Noah Fleming, Pravesh Kothari, Toniann Pitassi, et al., Semialgebraic proofs and
efficient algorithm design, Foundations and Trends® in Theoretical Computer
Science 14 (2019), no. 1-2, 1–221. 272, 511

[FLM20] Andreas Emil Feldmann, Euiwoong Lee, and Pasin Manurangsi, A survey on
approximation in parameterized complexity: Hardness and algorithms, Algorithms
13 (2020), no. 6, 146. 2

328

[FLP15] Dimitris Fotakis, Michael Lampis, and Vangelis Th Paschos, Sub-exponential
approximation schemes for csps: From dense to almost sparse, arXiv preprint
arXiv:1507.04391 (2015). 14

[FM17] Zhou Fan and Andrea Montanari, How well do local algorithms solve semidefinite
programs?, Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, 2017, pp. 604–614. 181, 187

[FO05] Uriel Feige and Eran Ofek, Spectral techniques applied to sparse random graphs,
Random Structures & Algorithms 27 (2005), no. 2, 251–275. 161, 164, 180, 498

[GKM22] Venkatesan Guruswami, Pravesh K Kothari, and Peter Manohar, Algorithms and
certificates for boolean csp refutation: smoothed is no harder than random, Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, 2022,
pp. 678–689. 15, 178, 183

[GLM16] Lennart Gulikers, Marc Lelarge, and Laurent Massoulié, Non-backtracking spec-
trum of degree-corrected stochastic block models, arXiv preprint arXiv:1609.02487
(2016). 83

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrĳver, The ellipsoid method
and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169–
197. 28, 29

[GV16] Olivier Guédon and Roman Vershynin, Community detection in sparse networks
via grothendieck’s inequality, Probability Theory and Related Fields 165 (2016),
no. 3-4, 1025–1049. 9, 17, 77, 78, 234, 238, 239, 247, 256, 509

[GW95] Michel X Goemans and David P Williamson, Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming, Journal
of the ACM (JACM) 42 (1995), no. 6, 1115–1145. 19, 78

[HKM22] Samuel B Hopkins, Gautam Kamath, and Mahbod Majid, Efficient mean
estimation with pure differential privacy via a sum-of-squares exponential mechanism,
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, 2022, pp. 1406–1417. 238, 258

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra,
Tselil Schramm, and David Steurer, The power of sum-of-squares for detecting
hidden structures, 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2017, pp. 720–731. 4, 5, 22, 37, 62, 63, 64, 81

[HL18] Samuel B Hopkins and Jerry Li, Mixture models, robustness, and sum of squares
proofs, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory

329

of Computing, 2018, pp. 1021–1034. 12, 17, 22, 54, 231, 232, 235, 244, 264, 272,
511

[Hop18] Samuel Brink Klevit Hopkins, Statistical inference and the sum of squares method.
2, 5, 6, 37, 47, 62, 63

[HS17] Samuel B Hopkins and David Steurer, Efficient bayesian estimation from few
samples: community detection and related problems, 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), IEEE, 2017, pp. 379–
390. 37, 47, 62, 63, 64, 79, 80, 81, 166

[HSS15] Samuel B Hopkins, Jonathan Shi, and David Steurer, Tensor principal component
analysis via sum-of-square proofs, Conference on Learning Theory, PMLR, 2015,
pp. 956–1006. 22

[HSS19] Samuel B Hopkins, Tselil Schramm, and Jonathan Shi, A robust spectral algorithm
for overcomplete tensor decomposition, Conference on Learning Theory, PMLR,
2019, pp. 1683–1722. 22

[HSSS16] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer, Fast
spectral algorithms from sum-of-squares proofs: tensor decomposition and planted
sparse vectors, Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, 2016, pp. 178–191. 22, 23

[HST06] Matthew D Horton, HM Stark, and Audrey A Terras, What are zeta functions
of graphs and what are they good for?, Contemporary Mathematics 415 (2006),
173–190. 181, 187

[HY04] Jun He and Xin Yao, A study of drift analysis for estimating computation time of
evolutionary algorithms, Natural Computing 3 (2004), 21–35. 169

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson, In search of
an easy witness: Exponential time vs. probabilistic polynomial time, Journal of
Computer and System Sciences 65 (2002), no. 4, 672–694. 14

[Ind01] Piotr Indyk, High-dimensional computational geometry, stanford university, 2001.
294

[JL09] Iain M Johnstone and Arthur Yu Lu, On consistency and sparsity for principal
components analysis in high dimensions, Journal of the American Statistical
Association 104 (2009), no. 486, 682–693. 4, 6, 38

[JMRT16] Adel Javanmard, Andrea Montanari, and Federico Ricci-Tersenghi, Phase
transitions in semidefinite relaxations, Proceedings of the National Academy of
Sciences 113 (2016), no. 16, E2218–E2223. 10

330

[Joh84] William B Johnson, Extensions of lipschitz mappings into a hilbert space, Contemp.
Math. 26 (1984), 189–206. 284

[JS93] Mark Jerrum and Gregory B Sorkin, Simulated annealing for graph bisection,
IEEE, 1993. 20, 277

[Kho10] Subhash Khot, Inapproximability of np-complete problems, discrete fourier analysis,
and geometry, Proceedings of the International Congress of Mathematicians
2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols.
II–IV: Invited Lectures, World Scientific, 2010, pp. 2676–2697. 2

[KKM18] Adam Klivans, Pravesh K Kothari, and Raghu Meka, Efficient algorithms for
outlier-robust regression, Conference On Learning Theory, PMLR, 2018, pp. 1420–
1430. 54

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell, Optimal
inapproximability results for max-cut and other 2-variable csps?, SIAM Journal on
Computing 37 (2007), no. 1, 319–357. 19

[KLR22] Frederic Koehler, Holden Lee, and Andrej Risteski, Sampling approximately
low-rank ising models: Mcmc meets variational methods, Conference on Learning
Theory, PMLR, 2022, pp. 4945–4988. 238

[KMV22] Pravesh Kothari, Pasin Manurangsi, and Ameya Velingker, Private robust
estimation by stabilizing convex relaxations, Conference on Learning Theory,
PMLR, 2022, pp. 723–777. 15, 231, 237, 241

[KN11] Subhash Khot and Assaf Naor, Grothendieck-type inequalities in combinatorial
optimization, arXiv preprint arXiv:1108.2464 (2011). 79

[KNV13] Robert Krauthgamer, Boaz Nadler, and Dan Vilenchik, Do semidefinite relaxations
solve sparse pca up to the information limit?, Annals of Statistics 43 (2013), no. 3,
1300–1322. 4, 6, 36, 47

[Kot22] Pravesh K. Kothari, Personal communication (2022). 179

[KS17] Pravesh K Kothari and Jacob Steinhardt, Better agnostic clustering via relaxed
tensor norms, arXiv preprint arXiv:1711.07465 (2017). 54

[KSS18] Pravesh K Kothari, Jacob Steinhardt, and David Steurer, Robust moment estima-
tion and improved clustering via sum of squares, Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, 2018, pp. 1035–1046. 12,
17, 22, 54, 55, 231, 232, 235, 243, 244, 264, 519

331

[KSSU19] Gautam Kamath, Or Sheffet, Vikrant Singhal, and Jonathan Ullman, Differen-
tially private algorithms for learning mixtures of separated gaussians, Advances in
Neural Information Processing Systems 32 (2019). 15, 17, 231

[KST12] Daniel Kifer, Adam Smith, and Abhradeep Thakurta, Private convex empirical risk
minimization and high-dimensional regression, Conference on Learning Theory,
JMLR Workshop and Conference Proceedings, 2012, pp. 25–1. 237

[KT13] Michael Kapralov and Kunal Talwar, On differentially private low rank approxi-
mation, Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, SIAM, 2013, pp. 1395–1414. 239

[KV15] Subhash A Khot and Nisheeth K Vishnoi, The unique games conjecture, integrality
gap for cut problems and embeddability of negative-type metrics into ✓ -1, Journal of
the ACM (JACM) 62 (2015), no. 1, 1–39. 19

[KV17] Vishesh Karwa and Salil Vadhan, Finite sample differentially private confidence
intervals, arXiv preprint arXiv:1711.03908 (2017). 242

[KWB22] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira, Notes on compu-
tational hardness of hypothesis testing: Predictions using the low-degree likelihood
ratio, Mathematical Analysis, its Applications and Computation: ISAAC 2019,
Aveiro, Portugal, July 29–August 2, Springer, 2022, pp. 1–50. 5

[Las01] Jean B Lasserre, New positive semidefinite relaxations for nonconvex quadratic
programs, Advances in Convex Analysis and Global Optimization: Honoring
the Memory of C. Caratheodory (1873–1950) (2001), 319–331. 28

[LCY90] Lucien Le Cam and Lo Yang, Locally asymptotically normal families, Asymptotics
in Statistics: Some Basic Concepts (1990), 52–98. 6, 63

[LL22] Allen Liu and Jerry Li, Clustering mixtures with almost optimal separation in
polynomial time, Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, 2022, pp. 1248–1261. 17, 231, 232

[LM00] Beatrice Laurent and Pascal Massart, Adaptive estimation of a quadratic functional
by model selection, Annals of Statistics (2000), 1302–1338. 352

[LM22] Allen Liu and Ankur Moitra, Minimax rates for robust community detection, 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
IEEE, 2022, pp. 823–831. 2, 12, 13, 157, 164, 498

[Mar86] Katalin Marton, A simple proof of the blowing-up lemma (corresp.), IEEE Transac-
tions on Information Theory 32 (1986), no. 3, 445–446. 86, 107

332

[Mar96] , Bounding d-distance by informational divergence: a method to prove measure
concentration, The Annals of Probability 24 (1996), no. 2, 857–866. 86, 107

[Mas14] Laurent Massoulié, Community detection thresholds and the weak ramanujan
property, Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, 2014, pp. 694–703. 9, 18, 79

[McS01] Frank McSherry, Spectral partitioning of random graphs, Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, IEEE, 2001, pp. 529–537. 20,
277

[MMV12] Konstantin Makarychev, Yury Makarychev, and Aravindan Vĳayaraghavan,
Approximation algorithms for semi-random partitioning problems, Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, 2012,
pp. 367–384. 20, 21, 277, 278, 279, 280, 287, 288

[MMV14] , Constant factor approximation for balanced cut in the pie model, Proceedings
of the forty-sixth annual ACM symposium on Theory of computing, 2014,
pp. 41–49. 20, 277

[MNS15a] Elchanan Mossel, Joe Neeman, and Allan Sly, Consistency thresholds for the planted
bisection model, Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, 2015, pp. 69–75. 230, 254

[MNS15b] , Reconstruction and estimation in the planted partition model, Probability
Theory and Related Fields 162 (2015), 431–461. 9, 18, 172

[MNS18] , A proof of the block model threshold conjecture, Combinatorica 38 (2018),
no. 3, 665–708. 9, 18, 79, 80

[MNVT22] Mohamed S Mohamed, Dung Nguyen, Anil Vullikanti, and Ravi Tandon,
Differentially private community detection for stochastic block models, International
Conference on Machine Learning, PMLR, 2022, pp. 15858–15894. 15, 18, 229,
230, 258

[MPW16] Ankur Moitra, William Perry, and Alexander S Wein, How robust are reconstruc-
tion thresholds for community detection?, Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, 2016, pp. 828–841. 10, 20, 79

[MR08] Dana Moshkovitz and Ran Raz, Two-query pcp with subconstant error, Journal of
the ACM (JACM) 57 (2008), no. 5, 1–29. 14

[MR16] Pasin Manurangsi and Prasad Raghavendra, A birthday repetition theorem and
complexity of approximating dense csps, arXiv preprint arXiv:1607.02986 (2016).
219

333

[MS16] Andrea Montanari and Subhabrata Sen, Semidefinite programs on sparse random
graphs and their application to community detection, Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing, 2016, pp. 814–827.
9, 10, 11, 17, 77, 158, 164, 172, 234, 498

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer, Polynomial-time tensor decomposi-
tions with sum-of-squares, 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 2016, pp. 438–446. 22, 28

[MSVV21] Andres Munoz, Umar Syed, Sergei Vassilvtiskii, and Ellen Vitercik, Private
optimization without constraint violations, International Conference on Artificial
Intelligence and Statistics, PMLR, 2021, pp. 2557–2565. 237, 238

[MT07] Frank McSherry and Kunal Talwar, Mechanism design via differential privacy, 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07),
IEEE, 2007, pp. 94–103. 229, 238, 253, 255

[MWA06] Baback Moghaddam, Yair Weiss, and Shai Avidan, Generalized spectral bounds
for sparse lda, Proceedings of the 23rd international conference on Machine
learning, 2006, pp. 641–648. 47

[Nat95] Balas Kausik Natarajan, Sparse approximate solutions to linear systems, SIAM
journal on computing 24 (1995), no. 2, 227–234. 47

[Nes00] Yurii Nesterov, Squared functional systems and optimization problems, High per-
formance optimization (2000), 405–440. 28

[NP33] Jerzy Neyman and Egon Sharpe Pearson, Ix. on the problem of the most efficient
tests of statistical hypotheses, Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathematical or Physical Character
231 (1933), no. 694-706, 289–337. 6, 62

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith, Smooth sensitivity and
sampling in private data analysis, Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, 2007, pp. 75–84. 231

[O’D17] Ryan O’Donnell, Sos is not obviously automatizable, even approximately, 8th
Innovations in Theoretical Computer Science Conference (ITCS 2017), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. 28

[Par00] Pablo A Parrilo, Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization, California Institute of Technology, 2000.
28

334

[Pen20] Pan Peng, Robust clustering oracle and local reconstructor of cluster structure of
graphs, Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2020, pp. 2953–2972. 20, 277

[PR22] Aaron Potechin and Goutham Rajendran, Sub-exponential time sum-of-squares
lower bounds for principal components analysis, Advances in Neural Information
Processing Systems, 2022. 4

[PS17] Aaron Potechin and David Steurer, Exact tensor completion with sum-of-squares,
Conference on Learning Theory, PMLR, 2017, pp. 1619–1673. 22

[PWBM18] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra,
Optimality and sub-optimality of pca i: Spiked random matrix models, The Annals
of Statistics 46 (2018), no. 5, 2416–2451. 158

[Rag08] Prasad Raghavendra, Optimal algorithms and inapproximability results for every
csp?, Proceedings of the fortieth annual ACM symposium on Theory of
computing, 2008, pp. 245–254. 19

[Rag09] , Approximating np-hard problems efficient algorithms and their limits,
University of Washington, 2009. 14

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm, Strongly refuting random
csps below the spectral threshold, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, 2017, pp. 121–131. 14, 22, 183

[RS+13] Maxim Raginsky, Igal Sason, et al., Concentration of measure inequalities in
information theory, communications, and coding, Foundations and Trends® in
Communications and Information Theory 10 (2013), no. 1-2, 1–246. 86, 107

[RSS18] Prasad Raghavendra, Tselil Schramm, and David Steurer, High dimensional
estimation via sum-of-squares proofs, Proceedings of the International Congress
of Mathematicians: Rio de Janeiro 2018, World Scientific, 2018, pp. 3389–3423.
2, 81

[RST12] Prasad Raghavendra, David Steurer, and Madhur Tulsiani, Reductions between
expansion problems, 2012 IEEE 27th Conference on Computational Complexity,
IEEE, 2012, pp. 64–73. 19

[RT12] Prasad Raghavendra and Ning Tan, Approximating csps with global cardinality
constraints using sdp hierarchies, Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, SIAM, 2012, pp. 373–387. 219

[Rud99] Mark Rudelson, Random vectors in the isotropic position, Journal of Functional
Analysis 164 (1999), no. 1, 60–72. 351

335

[RV17] Oded Regev and Aravindan Vĳayaraghavan, On learning mixtures of well-
separated gaussians, 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2017, pp. 85–96. 231, 232

[S+17] Konrad Schmüdgen et al., The moment problem, vol. 9, Springer, 2017. 349

[Sch22] Tselil Schramm, The sum-of-squares algorithmic paradigm in statistics, Lecture
notes (2022). 32, 219

[SCS13] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate, Stochastic gradient
descent with differentially private updates, 2013 IEEE global conference on signal
and information processing, IEEE, 2013, pp. 245–248. 237

[She09] Jonah Sherman, Breaking the multicommodity flow barrier for o (sqrtlog n)-
approximations to sparsest cut, 2009 50th Annual IEEE Symposium on Founda-
tions of Computer Science, IEEE, 2009, pp. 363–372. 19, 20, 277, 280, 288, 289,
290

[Sho87] Naum Z Shor, Quadratic optimization problems, Soviet Journal of Computer and
Systems Sciences 25 (1987), 1–11. 28

[SM19] Ludovic Stephan and Laurent Massoulié, Robustness of spectral methods for
community detection, Conference on Learning Theory, PMLR, 2019, pp. 2831–
2860. 12

[SS17] Tselil Schramm and David Steurer, Fast and robust tensor decomposition with
applications to dictionary learning, Conference on Learning Theory, PMLR, 2017,
pp. 1760–1793. 22

[ST21] David Steurer and Stefan Tiegel, Sos degree reduction with applications to clustering
and robust moment estimation, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), SIAM, 2021, pp. 374–393. 17, 231, 232

[Ste10a] David Steurer, Fast sdp algorithms for constraint satisfaction problems, Proceedings
of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
SIAM, 2010, pp. 684–697. 19, 237, 280, 282, 285

[Ste10b] , On the complexity of unique games and graph expansion, Citeseer, 2010.
278

[TCK+22] Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, and Uri Stemmer,
Friendlycore: Practical differentially private aggregation, International Conference
on Machine Learning, PMLR, 2022, pp. 21828–21863. 15, 231

[Tro12] Joel A Tropp, User-friendly tail bounds for sums of random matrices, Foundations
of computational mathematics 12 (2012), 389–434. 353, 508

336

[Wai19] Martin J Wainwright, High-dimensional statistics: A non-asymptotic viewpoint,
vol. 48, Cambridge university press, 2019. 1, 2, 352, 353, 510

[WEAM19] Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore, The kikuchi
hierarchy and tensor pca, 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2019, pp. 1446–1468. 183

[WF09] Yusuke Watanabe and Kenji Fukumizu, Graph zeta function in the bethe free
energy and loopy belief propagation, Advances in Neural Information Processing
Systems 22 (2009). 181

[WYX17] Di Wang, Minwei Ye, and Jinhui Xu, Differentially private empirical risk min-
imization revisited: Faster and more general, Advances in Neural Information
Processing Systems 30 (2017). 237

[ZSWB22] Ilias Zadik, Min Jae Song, Alexander S Wein, and Joan Bruna, Lattice-based
methods surpass sum-of-squares in clustering, Conference on Learning Theory,
PMLR, 2022, pp. 1247–1248. 5

[ZZ16] Anderson Y Zhang and Harrison H Zhou, Minimax rates of community detection
in stochastic block models, The Annals of Statistics 44 (2016), no. 5, 2252–2280.
230, 254

337

Part IV

Appendices

338

Appendix A

Deferred proofs and addendum to
Chapter 3

A.1 Thresholding algorithms are fragile
In this section we formalize the discussions of Chapter 3 on fragile algorithms and show
that SVD with Thresholding, Diagonal Thresholding and Covariance Thresholding are
indeed not resilient to adversarial perturbations.

A.1.1 SVD with thresholding is fragile
The polynomial-time algorithm presented in Chapter 3 for the strong-signal regime is highly
sensitive to small adversarial perturbations. Concretely, this can be shown constructing ⇢
with entries bounded $̃(1/

p
=) so that eigenvectors of .T

. cannot be used to recover D0.
Consider ⇢ = �✏D0D0T

, for some 0 < ✏ < kD0k2 that we will choose later. Then
. =

p
�D0E0T +

�
Id � ✏D0D0T�

, and

..
T =�D0D0

T +
�
Id � ✏DD0

T�
,,

T �
Id � ✏D0D0

T�
+

p
�
�
D0E0

T
,

�
Id � ✏D0D0

T� + �
Id � ✏D0D0

T�
,

T
E0D0

T�
Hence with high probability,

1
kD0k2

kD0
T
.k2 = I + �kD0k2 + ✏2kD0k23 � 2✏kD0k3 + $̃

✓q
�/=

◆
,

where I has a "2-distribution with 3 degrees of freedom. On the other hand notice that for
a unit vector G orthogonal to D0 and independent of , , we get kGT

.k2 = kGT
, k2 which

has the same distribution as I. So our claim follows choosing ✏ so that 2✏kD0k � ✏2kD0k2 =

� · kD0k2
3

+ $̃
⇣

1
3

p
�/=

⌘
. Indeed then D0. has the same distribution as I. Now, since with high

probability kD0k2 6 2=, if 3/= & �, such a ✏ exists.

339

A.1.2 Diagonal thresholding is fragile
Recall that Diagonal thresholding finds the top : diagonal entries of the covariance matrix
and output a top eigenvector of the corresponding :⇥ : principal submatrix. We shows here
that a simple adversary can make diagonal entries in [3] \ supp{E0} larger than diagonal
entries in supp{E0}, hence leading the algorithm to choose a submatrix which contain no
information about the sparse vector.

Concretely, the algorithm can be written as follows:

Algorithm A.1 (Diagonal Thresholding).

Given: Sample matrix . of form 3.1 where E0 is a flat vector.

Estimate: The sparse vector E0.

Operation:

1. Let (:= {81, . . . , 8:} ✓ [3] be the set of indexes denoting the : largest
diagonal entries of .T

..
2. Output a top eigenvector of .T

.[(⇥ (].

We start by defining the adversarial matrix.

Definition A.2. Let 1 2 ' and denote with,1, . . . ,,3 the columns of, . Define ⇢ to be
the matrix with columns

⇢8 =

(
1

k,8 k,8 if8 2 [3] \ supp{E0}
0 otherwise.

The result is shown in the theorem below.

Theorem A.3. Let = > $
�
log 3

�
, � = >(:). Let . be sampled according to Problem 3.1 where E0

is a flat vector. Let ⇢ be as defined in Definition A.2 and k⇢k1!2 &
�
p
=

:
+

p
log 3. Then for each

8 2 [3] supp{E0} and 9 2 supp{E0}

k.48 k2 >
��
.49

��2

with probability at least 0.99.

Notice how, for � = ⇥
⇣
:p
=

p
log 3

⌘
the theorem implies that an adversary with k⇢k1!2 &p

log 3 suffices to fool Diagonal Thresholding. A perturbation resilient algorithm would
succeed as long as k⇢k1!2 . min

n�
= log 3

�1/4
,

p
: log 3

o
.

Remark A.4. The same adversary also fools the limited exhaustive search algorithm from
[BKW20] that runs in time =$(C) up to some very large C (say, up to some C = =

⌦(1)).

340

Proof of Theorem A.3. Let 1 = k⇢k1!2. We condition our analysis on the event that

88 2 [3] k,8 k2 2
h
= � 40

p
= log 3, = + 40

p
= log 3

i
.

kD0k2 6 = + 100
p
=

88 2 [3] hD0,,8i 6 10
p
= log 3

which happen with probability at least 0.99 by Fact A.18. Denote with 41, . . . , 43 the standard
basis vectors in í3. Notice that, by construction of ⇢, for 8 2 [3] \ supp{E0}, ⇢48

k⇢48 k =
,48

k,48 k .
Thus,

k.48 k2 =
���⇣, + ⇢ +

p
�D0E0

T
⌘
48

���2

=
����
✓
1 + 1

k,8 k

◆
,8

����
2

= k,8 k2 + 12 + 21k,8 k

> = + 12 + 1
p
= � $

⇣p
= log 3

⌘

> = + 1
p
= � $

⇣p
= log 3

⌘
.

On the other hand, for 9 2 supp{E0},

��
.49

��2 =
��
,9

��2 +
�

:

kD0k2 +
r

�

:

h,9 , D0i

6 = +
=�

:

+ $
 p
= log 3 +

r
�= log 3

:

!

6 = +
=�

:

+ $
⇣p
= log 3

⌘

where the last step follows as � = >(:). Combining the two inequalities,

k.48 k2 �
��
.49

��2 > 1
p
= �

=�

:

� $
⇣p
= log 3

⌘

which is larger then zero whenever,

1 > $
✓
�
p
=

:

+
p

log 3
◆
.

⇤

A.1.3 Covariance thresholding is fragile
In this section, we show how uder Model 3.1, the Covariance thresholding algorithm fails
to output a good estimation of the vector E0 in the presence of an adversarial distribution.

341

Specifically, we will show that the algorithm fails for : >
q
= log 3

:
2

k⇢k21!2
. This bound is significant

in the sense that already for k⇢k1!2 = 3
>(1)

q
�=
3

, the algorithm breaks. We remark that a
similar phenomenon can also be observed in the Wigner model, we omit this proof since it
is simpler than in the Wishart model.

Recall that the central idea behind Covariance Thresholding is to threshold entries of
the empirical covariance matrix. The thresholding operation should remove noise while
leaving the submatrix �kD0k2E0E0T untouched. The top eigenvector of ◆�

�
.

T
. � =Id

�
will

then be close to the sparse vector. The key observation behind the adversary is that it is
possible to plant a matrix ⇢ with small norm k⇢k1!2 such that the thresholded covariance
matrix ◆

�
.

T
. � =Id

�
has many large eigenvalues with eigenspace far from E0.

Consider the Covariance Thresholding algorithm:

Algorithm A.5 (Standard Covariance Thresholding).

Input: Threshold �, sample matrix . =
p
� · D0E

)

0 +, +⇢ 2 í=⇥3 where E0 is :-sparse,
D0 and , have i.i.d subgaussian entries of mean 0 and variance 1 and ⇢ has
column norms bounded by 1.

Estimate: The sparse vector E0.

Operation:

1. Compute the thresholded matrix ◆�
�
.

T
. � =Id

�
.

2. Output a top eigenvector Ê of ◆�
�
.

T
. � =Id

�
.

The main result of the section is the Theorem below. Its significance is to be read under
this perspective: it shows that there exists an adversary that can plant several (i.e. $(log 3))
large eigenvalues, as a consequence the top eigenvectors of ◆�

�
.

T
. � =Id

�
will not be

correlated with E0.

Theorem A.6. Suppose that : 6
p
3 and log10

3 6 = 6 3. Let . be of the form Problem 3.1
for a flat vector E0. Let A 2 [=] be such that $

�
log 3

�
6 A 6 3

>(1) and � 2 í be such that
2
p
= 6 � 6 >

⇣p
= log 3

⌘
as 3!1.

Then with probability at least 1 � >(1) (as 3!1) there exists an adversarial matrix ⇢ with

maximal column norm k⇢k1!2 6 3>(1)
q

�=
3

and orthogonal vectors I1
, . . . , I

A such that

88 2 [A], 1
kI8 k2

·
�
I
8
�T◆� �.T

. � =Id
�
I
8 > E0

T◆�
�
.

T
. � =Id

�
E0

and hI8 , E0i = 0.

342

The theorem shows that with these adversarial perturbations the first A eigenvectors of
the thresholded covariance matrix are uncorrelated with the sparse vector E0. Notice that
for � > 1 a perturbation resilient algorithm should succeed with perturbations bounded

by
q

�=
:

, that is, much larger (in absolute value) than the ones used to fool Covariance

Thresholding. In particular, for � = ⇥
✓
:p
=

q
log 3

:
2

◆
Theorem A.6 implies that already with

perturbations satisfying k⇢k1!2 6 3�1/4+>(1)
=

1/4 the algorithm fails, while a perturbation
resilient algorithm would succeed for k⇢k1!2 6 $̃

�
=

1/4� .
Before showing the proof, we provide some intuition.

Algorithm intuition. Let’s ignore cross-terms for a moment and consider the Wishart
model with no adversarial distribution. Then the centered empirical Covariance Matrix
looks like

.
T
. � =Id ⇡,T

, � =Id + �=E0E0
T
.

If we set the threshold � = ⇠

q
= log 3

:
2 for some large enough constant ⇠ > 0, then

3
2 exp

⇥
�⇥

�
�2/=

� ⇤
⇡ :4 entries in

�
,

T
, � =Id

�
will be larger than �. 1 On the other hand,

for � & :p
=

q
log 3

:
2 as

��� ��=E0E0T�
8 9

��� > � whenever 8 , 9 2 supp{E0}, many entries of �=E0E0T

will survive the thresholding. This means that,

◆�
�
.

T
. � =Id

�
⇡

�
,

T
, � =Id

�
[(] + �=E0E0

T

where (✓ [3]⇥ [3] has cardinality approximately :4. If the entries were independent, since
the fourth moment of each entry is not much larger than the second moment, standard
spectral matrix bounds suggest

���
,

T
, � =Id

�
[(]

�� 6 $ ⇣
�
p
3

⌘
,

where � 6 � exp
h
�⇠�2

10=

i
6
p
= · :p

3

is a standard deviation of each entry. Hence we get

���
,

T
, � =Id

�
[(]

�� 6 $ ⇣
:

p
=

⌘
,

and ���=E0E0
T�� = �=.

In conclusion, for � & :p
=

q
log 3

:
2 the top eigenvector of ◆�

�
.

T
. � =Id

�
will be close to E0.

1To see this, recall that in a 3 ⇥ 3 Gaussian matrix, with high probability there are at most :4 entries larger
than

q
log 3

2

:
4 . While entries in,T

, � =Id are dependent, a similar bound will hold.

343

The main technical difficulty here is that the entries of,T
, are not independent. In

[DM14] the authors provide a method to bound the spectral norm of the thresholded
matrix2.

Adversarial strategy. Now we provide intuition on how to choose ⇢ such that with
constant probability there exists a vector I orthogonal to E0 for which

I
T

kIk◆�
�
.

T
. � =Id

� I

kIk & E0
T◆�

�
.

T
. � =Id

�
E0.

Let G 2 í= be a randomly chosen unit vector orthogonal to D0, let I be a vector such that
supp{I} = [3] \ supp{E0} and for 8 2 supp{I}, I8 = �81 for some 1 2 í+ to be set later
and �8 ⇠ {±1}. We define the adversarial matrix as ⇢ := GI

T, notice that k⇢k1 6 $̃
�
1/
p
=

�
.

For 8 , 9 2 supp{I}, consider the entry 8 9 of the centered empirical covariance matrix�
.

T
. � =Id

�
,

��� �.T
. � =Id

�
8 9

��� = ��hF8 ,F9i + hF8 , Gi + hG ,F9i + I8I9
�� . ��hF8 ,F9i + I8I9

��
,

by construction of I, the term I8I9 is symmetric and bounded by 12. Hence for 12 = >(
p
=), the

thresholding of entry
�
.

T
. � =Id

�
8 9

will depend almost only on the Gaussian contribution�
,

T
, � =Id

�
8 9
. Let (✓ [3] ⇥ [3] be the set of non-zero entries in ◆�

�
.

T
. � =Id

�
. By

independence of I and , , and since (dependence of I is very limited, we expect, as in
our previous discussion, |(| & :4. Now consider the quadratic form

I
T

kIk◆�
�
.

T
. � =Id

�
[(] I

kIk ⇡
I

T

kIk
�
II

T�[(] I

kIk +
I

T

kIk
�
,

T
, � =Id

�
[(] I

kIk .

As argued in the previous paragraph A.1.3, I
T

kIk
�
,

T
, � =Id

�
[(] I

kIk 6 $

�
:

p
=

�
. On the

other hand,

I
T

kIk
�
II

T�[(] I

kIk =
1
kI2k2

’
(8 , 9)2(

I
2
8
I

2
9
=

|(|
kIk2

1
4 &

:
4

3

1
2 & 31�>(1)

1
2
.

For the signal we instead have E0T◆�
�
.

T
. � =Id

�
[(]E0 . �=. It follows that setting 1 &q

�=
3

1�>(1) the top eigenvector of ◆
�
.

T
. � =Id

�
will not achieve constant correlation with E0.

Recall now that = > 31�>(1) and that k⇢k1 . $̃(1/
p
=). Hence for � ⇡ :p

=

q
log 3

:
2 6 =>(1),

adversarial perturbations are bounded by =>(1)/
p
= are enough to fool the algorithm.

Remark A.7. While this adversarial matrix is enough to break Covariance Thresholding it
also allows an easy fix. Indeed, although the top eigenvector is now almost uncorrelated

2Formally, in [DM14] the authors provided a proof for a matrix obtained applying soft-thresholding. As we
will see these can easily be extended to the hard-thresholded matrix ◆

�
,

T
, � =Id

�
.

344

with E0, the eigenspaces spanned by two largest eigenvectors contain a vector close to E0
and a brute-force search over such space can be performed in polynomial time. The same
approach however can be used to build an adversarial matrix ⇢ such that there exist vectors
I

1
, . . . , I

A for which, with constant probability

8 2 [A] I
8T

kI8 k◆�
�
.

T
. � =Id

� I
8

kI8 k & E0
T◆�

�
.

T
. � =Id

�
E0.

The idea is to chose G1
, . . . , G

A to be orthonormal vectors orthogonal to D0, and I1
, . . . , I

A

with non-intersecting supports and the same structure as before. This latter choice of ⇢
implies that the space containing eigenvectors associated with large eigenvalues has now
dimension at least ⌦(A). For A > $

�
log 3

�
, brute-force search of a vector close to E0 in this

space requires super-polynomial time.

A.1.3.1 Proving covariance thresholding fragile
Now we formally prove the theorem. First we define the adversarial matrix.

Definition A.8 (Adversarial matrix). For 1 > 1, A 2 é,, ⇠ #(0, 1)=⇥3, D0 ⇠ #(0, Id=) and
E0 k-sparse, the adversarial matrix is built as follows. Let G1

, . . . , G
A 2 í= be unit vectors

that are independent of , such that for distinct 8 , 9 2 [A], hG8 , G9i = 0. Partition the set
[3] \ supp{E0} in sets /1, . . . , /A of cardinality 3�|supp{E0}|

A
. For each 8 2 [A], let I8 be the

vector with support /8 such that:

8; 2 /8 , I
8

;
=

(
1 if hF; , G8i > 0
�1 otherwise.

Then

⇢ :=
’
82[A]

G
8
I
8T
.

Notice that k⇢k1!2 = 1
p
A.

Theorem A.6 follows immediately combining Theorem A.9, and Lemma A.10.

Theorem A.9. Let. be of the form 3.1 with ⇢ constructed as in definition A.8 with $(log 3) 6 A 6
3
>(1) and 1 6 4p

=. Assume that 3 > = > log10
3 and that : 6

p
3. Let 2

p
= 6 � 6 >

⇣p
= log 3

⌘
as 3!1. Then with probability at least 1� 23�⌦(1) there exists a subset ' ✓ [A] of size at least A

10
such that

88 2 ', 1
kI8 k2

·
�
I
8
�T◆� �.T

. � =Id
�
I
8 > 12 · 3

1�>(1)

A

.

345

Lemma A.10. Suppose the conditions of Theorem A.9 are satisfied and that the entries of E0 are
from {0,±1/

p
:} and = > $(log 3) as 3!1. Then with probability 1 � $(3�10)

��
E0

T◆�(.). � =Id)E0
�� 6 $ ⇣

:

p
= log 3 + �=

⌘
.

of Lemma A.10. With probability 1 � $(3�10) the entries of ◆�(.). � =Id) are bounded by

$

�=

:

+
p
= log 3 +

r
�= log 3

:

!
6 $

✓
�=

:

+
p
= log 3

◆
.

Since E0 has at most : nonzero entries,��
E0

T◆�(.). � =Id)E0
�� 6 : · k◆�(.). � =Id)k1 6 $

⇣
�= + :

p
= log 3

⌘
.

⇤

Tp prove Theorem A.9 we make use of intermediate steps A.11-A.12. Our plan is to show
that many entries of I8I8T survive the thresholding due to the contribution of,T

, � =Id.
So, we start our analysis lower bounding the number of entries of ,T

, � =Id that are
above the threshold.

The following lemma shows that for each vector I8 , many entries in supp
�
I
8

⇥supp

�
I
8

will survive the thresholding.

Lemma A.11. For any 1 , A 2 í consider . sampled from model 3.1 with ⇢ as in A.8. For some
10 6 @ 6 3>(1) let � =

p
= log @. For 8 2 [A] define the set

(8 :=
n
(9 , ;) 2 supp

�
I
8

⇥ supp

�
I
8
 ��� 9 < ; , �.T

. � =Id
�
9;
> �

o
.

Then with probability at least 1 � exp
�
3

1�>(1)� ,
|(8 | >

3
2

1000A2
@

10 .

Proof. Consider an off diagonal entry 9; of ◆�
�
.

T
. � =Id

�
such that 9 , ; 2 supp

�
I
8

for

some 8 2 [A]. Since with probability at least 1� 2 exp
⇥
�⌦(=0.2)

⇤
> 1� 23⌦(1), hF9 , G;i 6 =0.1,

we get

ê
⇣���hF9 ,F;i + hF9 , GiI8

;
+ hF; , GiI89 + I89 I8;

��� > �
⌘
> ê

⇣
1p
=

��hF9 ,F;i
�� > 2

p
log @

⌘
� 3�⌦(1)

>
1

10@10 .

For fixed I8 and fixed row 9 2 [3], the hF9 ,F;i (for different ; 2 supp{I8}) are independent
from each other. Since A 6 3>(1), with probability 1� exp

h
3

100A@10

i
= 1� exp

�
3

1�>(1)� number
of different ; such that

�
.

T
. � =Id

�
9;
> � is at least 3

1000A@10 . Hence if with probability at
least 1 � exp

�
3

1�>(1)� , for each I8 , (8 > 3
2

1000A2
@

10 . ⇤

346

The last ingredient needed for Theorem A.9 is a proof that the cross-terms in the
quadratic form I

8T◆�
�
.

T
. � =Id

�
I
8 do not remove the contribution of the adversarial

vector.

Lemma A.12. Let . be sampled from model 3.1 with ⇢ as in Definition A.8. Let (8 be as in Lemma
A.11 Then with probability at least 1

2 ,�
I
8
�T �
,

T
, +,T

G
8
I
8T + I8G8T,

�
[(8] I8 > 0.

Proof. For simplicity of the notation we will refer to G8 , I8 simply as G , I. Opening up the
sum,

I
T �
,

T
, +,T

GI
T + IGT

,

�
[(8] I = 2

’
(9 ,;)2(8

hF9 ,F;iI9I; + hF9 , Gi12
I9 + hF; , Gi12

I;

> 2
’

(9 ,;)2(8
hF9 ,F;iI9I;

> 2
’

(9 ,;)2(8
hF9 ,

�
Id � GGT�

F;iI9I; ,

using the fact that by construction hF9 , Gi12
I9 > 0, hF; , Gi12

I; > 0. So it is enough to prove
that

ê©≠
´
3
0’

9=1

’
(9 ,;)2(8

hF9 ,

�
Id � GGT�

F;iI9I; > 0™Æ
¨
>

1
2 .

Let
09; = hF9 ,

�
Id � GGT�

F;iI9I; =
�
hF9 ,F;i � hF9 , GihF; , Gi

�
· I9I;

and

?9; =
�
hF9 , GiI; + hF; , GiI9 + hF9 , GihF8 , Gi + I9I;

�
· I9I;

= hF9 , Gi12
I9 + hF; , Gi12

I; + hF9 , GihF8 , GiI9I; + 14
.

Notice that (9 , ;) 2 (8 if and only if 9 < ; and
��
09; + ?9;

�� > 12�. Also notice that ?9; > 0 and
that with probability at least 1 � 2 exp

⇥
�⌦(=0.2)

⇤
, ?9; < 1

2�.
Since |supp{I}| = 3

0, without loss of generality assume supp{I} = [30]. For @ 2 [30 � 1]
define

)
⇤
@

:=
3
0�1’
9=@

’
9<;630 s.t.
|09; |>12�

h
�
Id � GGT�

F9 ,

�
Id � GGT�

F;iI9I; =
3
0�1’
9=@

’
9<;630 s.t.
|09; |>12�

09;

and

)@ :=
3
0�1’
9=@

’
9<;630 s.t.

|09;+?9; |>12�

h
�
Id � GGT�

F9 ,

�
Id � GGT�

F;iI9I; =
3
0�1’
9=@

’
9<;630 s.t.

|09;+?9; |>12�

09; .

347

Let)30 =)30 = 0. For 9 2 [30 � 1] consider

)
⇤
9
�)⇤

9+1 =
’

9<;630 s.t.
|09; |>12�

h
�
Id � GGT�

F9 ,

�
Id � GGT�

F;iI9I; .

�
Id � GGT�

F9 is symmetric around zero and independent from all I9 and all F; for ; > F9 .
Moreover, the sign of

�
Id � GGT�

F9 does not influence on the condition |09; | > 1
2�. It

follows that the conditional disribution of)⇤
9

given I9 , I; , F; for ; > 9 is symmetric
around)⇤

9+1 and thus by induction)⇤1 is symmetric around zero. It remains to show that
ê()1 > 0) > ê

�
)
⇤
1 > 0

�
, which is true since if)⇤1 > 0, then)⇤1 >)1. Indeed, if)⇤1 > 0, then

any 09; > 0 such that |09; | > 1
2� satisfies |09; + ?9; | > 1

2�, and any 09; < 0 such that
|09; + ?9; | > 12� satisfies |09; | > 12�. ⇤

We are now ready to prove Theorem A.9.

Proof of Theorem A.9. Let 10 6 @ 6 3>(1) so that � =
p
= log @. By construction of I8 ,

I
8T �
,

T
DE

T�[(8]I8 = 0
I
8T �
⇢

T
DE

T�[(8]I8 = 0
I
8T �
⇢

T
⇢

�
[(8]I8 = I

8T �
I
8
I
8T�[(8]I8 .

With probability 1 � 3⌦(1) sum over diagonal entries is bounded by:’
9

⇣
I
8

9

⌘2 �
kF9 k2 � =

�
6 $

⇣
1

2
3

p
= log 3

⌘
6 12

3
1.5+>(1)

.

Notice that for different 8 ,< 2 [A] the events
�
I
8
�T �
,

T
, +,T

G
8
I
8T + I8G8T,

�
[(8] I8 > 0

and (I<)T
�
,

T
, +,T

G
<
I
<T + I<G<T

,

�
[(<] I< > 0 are independend. Hence, by Lemma

A.12 with probability at least 1 � 2�0.1A for at least A/10 different 8 2 [A],�
I
8
�T◆� �.T

. � =Id
�
I
8

=
�
I
8
�T �
I
8
I
8T�[(8] I8 + I8T �

,
T
, +,T

GI
8T + I8G8T,

�
[(8] I8

>
�
I
8
�T �
I
8
I
8T�[(8] I8

=14 |(8 |.

By Lemma A.11 |(8 | > 3
2

1000A2
@

10 . The theorem follows observing that
��
I
8

��2 6 31
2

A
.

⇤

A.2 Existence of the adversarial distribution of
Model 3.41

Let í[G]6B be the space of one variable polynomials of degree at most B. To construct the
desired distribution we will need the following theorem.

348

Theorem A.13 (Theorem 1.26 in [S+17]). Suppose that <1, . . . ,<B 2 í and ✓ í is compact.
Consider a linear functional L : í[G]6B ! í such that L(1) = 1 and

L(GA) = <A , 1 6 A 6 B .

If L(?) > 0 for every ? 2 í[G]6B that is nonnegative on , then there exists a finitely supported
probability distribution ◆ such that supp(◆) ✓ and ÖG⇠◆ GA = <A for 1 6 A 6 B .

Let’s take the maximal even number B such that ⇣⌫B 6 2�10B . We will show that there
exists a distribution with compact support such that with probability ⇣ it takes values ±⌫
and its first B moments coincide with the first B Gaussian moments. Such a distribution is a
mixture ◆ = (1 � ⇣)◆0 + ⇣◆1, where ◆1 takes values ±⌫ with probability 1

2 each, and ◆0 has
particular moments up to B.

Proposition A.14. Suppose that B > 2 is even, 0 < ⇣ < 1, ⌫ > 2 and ⇣⌫B 6 2�10B . Then there
exists a finitely supported probability distribution ◆0 such that supp(◆0) ✓ [�10

p
B ln B , 10

p
B ln B]

and ÖG⇠◆0 G
A = "A , where

"A =

(
0, if A is odd,

1
1�⇣

�
(A � 1)!! � ⇣⌫A

�
, if 0 6 A 6 B and A is even.

Proof. Consider a linear functional L : í[G]6B ! í such that L(1) = 1 and L(GA) = "A

for 1 6 A 6 B. We need to show that L(?) > 0 for every polynomial ? 2 í[G]6B that is
nonnegative on [�10

p
B ln B , 10

p
B ln B]. Notice that for any polynomial ? 2 í[G]6B

(1 � ⇣) · L(?) = Ö
G⇠N(0,1)

?(G) � ⇣
2
�
?(⌫) + ?(�⌫)

�
.

Consider an arbitrary polynomial ?(G) =
Õ
B

A=0 ?AG
A that is nonnegative on

[�10
p
B ln B , 10

p
B ln B]. If ? = 0, then obviously L(?) = 0. So we can assume that ? < 0 and

without loss of generality max
06A6B

{|?A |} = 1. Since ? is nonnegative on [�10
p
B ln B , 10

p
B ln B],

Ö
G⇠N(0,1)

?(G) > 1p
2�

1π
�1

?(G)4�G2/2 + 1p
2�

π
|G |>10

p
B ln B

?(G)4�G2/2
3G .

The second integral can be bounded as follows
����

π
|G |>10

p
B ln B

?(G)4�G2/2
���� 6

B’
A=0

|?A |
π

|G |>10
p
B ln B

|G |A 4�G2/2
3G 6 (B + 1)

π
|G |>10

p
B ln B

G
B
4
�G2/2

3G .

Notice that since the function B ln G + 10B � 0.4G2 is monotone for |G | > 10
p
B ln B,

G
B
4
�G2/2 6 4�10B�G2/10

349

for all G such that |G | > 10
p
B ln B. Hence����

π
|G |>10

p
B ln B

?(G)4�G2/2
3G

���� 6 (B + 1) · 4�10B
π

|G |>10
p
B ln B

4
�G2/10

3G 6
p

10(B + 1) · 4�10B 6 4�8B
.

Let’s bound
Ø 1
�1 ?(G) exp

⇣
� G

2

2

⌘
3G. Since ?(G) is nonnegative on [�1, 1],

1π
�1

?(G)4�G2/2
3G >

1π
�1

?
2(G)

max
|G |61

?(G) 4
�G2/2

3G >
4
�1/2Õ
B

A=0 |?A |

1π
�1

?
2(G)3G > 1

2(B + 1)

1π
�1

?
2(G)3G .

To bound
Ø 1
�1 ?

2(G)3G we can use Legendre polynomials (see for example [AWH13]). The
degree 9 Legendre polynomial is

!9(G) =
9’

A=0
!9 ,AG

A =
9’

A=0

r
29 + 1

2 · 29
✓
9

A

◆ ✓
9+A�1

2
9

◆
G
A
.

They form an orthonormal system on [�1, 1] with respect to the unit weight. Hence there
exist coefficients 20, . . . , 2B such that ?(G) = Õ

B

9=0 2B!9(G) and

1π
�1

?
2(G)3G =

B’
9=0

2
2
9
.

Recall that by assumption max
06A6B

{|?A |} = 1, so there exists some A such that |?A | = 1. Thus

1 = |?A | =
��� B’
9=A

29!9 ,A

��� 6 B’
9=A

|29 | |!9 ,A | 6 max
A6 96B

|!9 ,A |
p
(B + 1)

qÕ
B

9=0 2
2
9
.

Notice that |!9 ,A | 6
p
B + 1 · 22B for 0 6 A 6 9 6 B. Hence we get a bound

1π
�1

?(G)4�G2/2
3G >

1
3B

B’
9=0

2
2
9
>

1
2(B + 1)3 2�4B > 2�7B

,

and
Ö

G⇠N(0,1)
?(G) > 1p

2�
2�7B � 4�8B > 2�8B

.

Notice that
⇣
2
�
?(⌫) + ?(�⌫)

�
6 ⇣

B’
A=0

|⌫|A 6 2⇣⌫B 6 2�9B
.

350

Hence finally we get

(1 � ⇣) · L(?) = Ö
G⇠N(0,1)

?(G) � ⇣
2
�
?(⌫) + ?(�⌫)

�
> 2�8B � 2�9B > 0 .

Therefore by Theorem A.13 there exists a finitely supported probability distribution ◆0
with moments "1, . . . ,"B such that supp(◆0) ✓ [�10

p
B ln B , 10

p
B ln B]. ⇤

We can assume that ◆0 is symmetric (since if I ⇠ ◆0 and F ⇠ #(0, 1) are independend,
IF/|F | is symmetrically distributed and has the same first B moments as I). Thus the
mixture distribution ◆ = (1 � ⇣)◆0 + ⇣◆1 (where ◆1 takes values ±⌫ with probability 1

2 each)
is symmetric and has Gaussian moments up to B + 1:

Ö
G⇠◆

G
A = Ö

G⇠N(0,1)
G
A
, if 0 6 A 6 B + 1 ,

and its higher moments satisfy

⇣⌫A 6 Ö
G⇠◆

G
A 6 ⇣⌫A + (10B)A , if A > B is even.

A.3 Additional tools
This section contains additional tools used throughout the proofs of Chapter 3. The notation
is consistent with the aforementioned chapter.

Matrix concentration of measure
We introduce here some standard matrix concentration inequalities.

The following general result by Rudelson showsconvergence of empirical covariances
of random variables.

Fact A.15 (Theorem 1, [Rud99]). Let . be a random vector in the isotropic position. Let
.1,.2, . . . ,.@ be @ independent copies of .. Then, for some absolute constant ⇠ > 0,

Ö

�����
1
@

@’
8=1

.8.
>
8
� �

����� 6 ⇠
p

log @
p
@

· Ö(k.klog @)1/log @
.

The next computation bounds the variances of low-degree polynomials of product
subgaussian random vectors.

Lemma A.16 (Variance of Polynomials of Independent Subgaussians). Let . be a product
random variable on í= with coordinates of mean 0, variance 1 satisfying Öh. , Di2C 6 ⇠C(2C)C
for every unit vector D for some absolute constant ⇠ > 0. Let ? =

Õ
(:|(|6: ?(H(be a polynomial

in H 2 í= of degree : where the sum ranges of multisets (✓ [=] of size at most :. Then,Õ
(:|(|6: ?

2
(
6 Ö ?2(.) 6 ⇠C(2C)C Õ

(:|(|6: ?
2
(
.

351

Proof. For any polynomial ?, we write k?k22 to denote the sum of squares of its coefficients
in the monomial basis. For any multilinear polynomial ?, observe that Ö ?2 = k?k22. For a
non-multilinear ?, we write ? =

Õ
(:|(|6:/2 H

2
(
@(such that @(is a multilinear polynomial of

degree at most : � 2|(|. Observe that k?k22 =
Õ
(
k@(k22. Further, Ö H2

(
H

2
(
0@(@(0 = 0 whenever

(< (
0. Now, Ö ?2 =

Õ
(:|(|6:/2Ö H2

(
@

2
(
. Since Ö H2

(
> 1 for any (, Ö H2

(
@

2
(
> k@(k22. Thus,

Ö ?2 >
Õ
(
k@(k22 = k?k22. On the other hand, Ö H2

(
@

2
(
6 k@(k22 · max|(|6: Ö H2

(
6 ⇠:(2:): . ⇤

Lemma A.17. Let. be a random vector iní= with independent coordinates of mean 0 and variance
1 satisfying Öh. , Di2C 6 ⇠C(2C)C for some absolute constant ⇠ > 0. Then, with probability at least
0.99 over the draw of .1,.2, . . . ,.3 i.i.d. copies of .,�����

1
3

’
8

(.⌦C
8

)(.⌦C
8

)> � Ö
.⇠⇡

�
.
⌦C � �

.
⌦C �>

����� 6
=
C/2 log(C+1)/2 (=)(⇠0C)C

p
3

,

for some absolute constant ⇠0 > 0.

Proof. Let " = Ö(.⌦C)(.⌦C)>. Then, quadratic forms hD ,"Di is the variance of polynomial
? = hD ,.⌦Ci of degree at most C. Thus, using Lemma A.16, we have that kDk22 6 hD ,"Di 6
kDk22⇠C(2C)C . Thus, all eigenvalues of " are between 1 and ⇠C(2C)C .

We will now apply Fact A.15 to the isotropic random vectors "�1/2
/8 for /8 = .⌦C

8
for

1 6 8 6 3. Then, we obtain:

Ö
��
"
�1/2

/"
�1/2

/
T � �

�� 6 ⇠
p

log 3
p
3

⇣
Ö
��
"
�1/2

/

��log 3
2

⌘1/log 3
.

To finish, we compute Ö
��
"
�1/2

/

��log 3
6

��
"
�1/2

��log 3
Ök/klog 3. Next, Ök/klog 3 =

Ök.kC log 3 6 =
(C/2) log 3

⇠
(C/2) log 3((C/2) log 3)(C/2) log 3. Using

��
"
�1/2

�� 6 1, we obtain:⇣
Ö
��
"
�1/2

/

��log 3
⌘1/log 3

6 =C/2
⇠
C/2(C log 3)C/2.

Thus, for using = > log 3 and Fact A.15, Ö
��
"
�1/2

/"
�1/2

/
T � �

�� 6 =
C/2 log(C+1)/2 (=)(10⇠C)Cp

3

.
Applying Markov’s inequality completes the proof.

⇤

We also state here some other concentration bounds used in the proofs.

Fact A.18. [LM00]Let - ⇠ "2
<

, G > 0, then

ê
⇣
- � < > 2G + 2

p
<G

⌘
6 4�G

ê(< � - > G) 6 4� G
2

4<

Fact A.19. [Wai19] Let 0 < ⌘ < 1. The = � 1-dimensional Euclidean sphere has an ⌘-net of size� 3
⌘

�
= . That is, there exists a set #⌘ of unit vectors in í= of size at most

� 3
⌘

�
= such that for any unit

vector D 2 í= there exists some E 2 #⌘ such that kE � Dk 6 ⌘.

352

Theorem A.20. [Wai19] Let, ⇠ #(0, 1)=⇥3. Then with probability 1 � exp(�C/2),

k, k 6
p
= +
p
3 +
p
C

and ��
,

T
, � =Id

�� 6 3 + 2
p
3= + C + 4

p
C(= + 3) .

Theorem A.21 (Matrix Bernstein [Tro12]). Consider a finite sequence {/:} of independent,
random, self-adjoint matrices in í31⇥32 . Assume that each random matrix satisfies

Ö/: = 0 and k/: k 6 ' almost surely.

Define

�2 := max

(�����
’
:

Ö/:/:T
�����,

�����
’
:

Ö/:T/:

�����
)
.

Then, or all C > 0,

ê

 �����
’
:

/:

����� > C
!
6 (31 + 32) exp

⇢
�C2/2

�2 + 'C/3

�
.

Theorem A.22 (Matrix Hoeffding [Tro12]). Consider a finite sequence {/:} of independent,
random, self-adjoint matrices in í3⇥3. Assume that each random matrix satisfies

Ö/: = 0 and /2
:
� �2

:
almost surely.

Then, for all C > 0,

ê

 �����
’
:

/:

����� > C
!
6 3 exp

⇢
� C

2

8�2

�

where �2 :=
��Õ

:
�

2
:

��.

Theorem A.23 (:-sparse norm of a Gaussian matrix). Let , ⇠ #(0, 1)=⇥3 be a Gaussian
matrix. Let 1 6 : 6 3. Then with probability at least 1 �

�
:

43

� :

max
D2í=
kDk=1

max
:-sparse E2í3
kEk=1

D
T
,E 6

p
= + 3

s
: ln

✓
43

:

◆
.

Proof. Let E be some :-sparse unit vector that maximizes the value, and let ((E) be the set
of nonzero coordinates of E. Consider some fixed (independend of,) unit :-sparse vector
G 2 í3 and the set ((G) of nonzero coordinates of G. If we remove from, all the rows with
indices not from ((G), we get an = ⇥ : Gaussian matrix,

((G). By Theorem A.20 norm of

353

this matrix is bounded by
p
= +
p
: +
p
C with probability at least exp(�C/2). Number of all

subsets (✓ [3] of size : is
�
3

:

�
. By the union bound, the probability that the norm of,

((E)
is greater than

p
= +
p
: +
p
C is at most✓

3

:

◆
· exp(�C/2) 6 exp

�
: log2(43/:) � C/2

�
.

Taking C = 4: ln(43/:), we get the desired bound. ⇤

Lemma A.24. Let F ⇠ #(0, 1)3 be a Gaussian vector and let 1 6 : 6 3. Let (: be the set of :
largest coordinates of F. Then with probability 1 �

�
:

43

� : , Õ
82(: F

2
8
6 10: ln(43/:).

Proof. Let (be any fixed subset of [3] of size :. Then F restricted on (is a :-dimensional
Gaussian vector and by Fact A.18, ê

⇣Õ
82(F

2
8
> 2G + 2

p
:G

⌘
6 4�G . By a union bound over

all
�
3

:

�
subsets of [3] of size :, we get

ê

 ’
82(

F
2
8
> : + 2G + 2

p
:G

!
6 4�G+: log2(43/:) .

Taking G = 4: ln(43/:) we get the desired bound. ⇤

Lemma A.25. For large enough = and 3 such that = 6 3, let , ⇠ #(0, 1)=⇥3 be a Gaussian
matrix and let D 2 í= be an arbitrary unit vector (which can possibly depend on,). For any C > 0
let (C = {8 2 [3] | |(DT

,)8 | > C}. Also let ⌫ > 1.
Then, for any C > 3

p
⌫ ln 3, |(C | 6 =/⌫ with probability at least 1 � 2 exp(�=).

Proof. Let C > 3
p
⌫ ln 3. For any fixed (independend of,) unit vector G 2 í= , (GT

,)8 are
i.i.d. standard Gaussian variables. For large enough 3,

ê
⇥
|(GT

,)8 | > C � 1
⇤
6 exp

�
�C2/3

�
.

Hence the probability that there are 3 6 : 6 3 coordinates that are larger than C � 1 is at
most✓
3

:

◆
exp

�
�: · C2/3

�
6 exp

:

✓
1 + ln 3

:

� C2/3
◆�
6 exp

⇥
:

�
ln 3 � C2/3

� ⇤
6 exp

✓
�2

3 · :C2 ln 3
◆
.

If for unit vectors G , H 2 í= , kG� Hk 6 ⌘, then k,G�,Hk 6 ⌘k, k. By Theorem A.20, with
probability at least 1 � exp(�=), k, k 6 10

p
3. Hence if ⌘ 6 1

10
p
3

,
��(GT

,)8 � (HT
,)8

�� 6 1. By
Fact A.19, for any 0 < ⌘ < 1, for ⌘ = 1

10
p
3

there exists an ⌘-net in = � 1-dimensional sphere
of size exp

�
=

2 log 3 + = log 100
�
6 exp

�
= log 3

�
(for large enough 3). By the union bound,

the probability that |(C | > =/⌫ is at most

exp
✓
= ln 3 � 2

3 |(C |C
2
◆
6 exp(�=) .

⇤

354

The next lemma is the main technical challenge of Section 3.2.

Theorem A.26. [DM14] Let , ⇠ #(0, 1)=⇥3, where = > $(log 3) as 3 ! 1. Let 0 6 � 6

>

⇣p
= log 3

⌘
and let # be the matrix whose diagonal entries are zeros and each non-diagonal entry

#89 is

#89 =

(�
,

T
,

�
8 9
� sign

�
,

T
,

�
8 9
· � if

��� �,T
,

�
8 9

��� > �

0 otherwise

Then there exists an absolute constant ⇠ > 1 such that with probability 1 � >(1)

k# k 6 ⇠
⇣
3 +
p
3=

⌘
exp

� �2

⇠=

�
.

Linear algebra
Lemma A.27. Let E and D be unit vectors such that kEET � DDTk 6 ⌘. Then hE , Di2 > 1 � 2⌘2.

Proof. Let F be a unit vector orthogonal to D such that E = ⌧D +
p

1 � ⌧2
F for some positive

⌧ 6 1. Then

EE
T � DDT =

�
⌧2 � 1

�
DD

T + ⌧
q

1 � ⌧2
DF

T + ⌧
q

1 � ⌧2
FD

T +
�
1 � ⌧2�

FF
T
.

Since EET � DDT has rank 2, its Frobenius norm is bounded by 2⌘, hence

4⌘2 > kEET � DDTk2
�
= 2

�
1 � ⌧2�2 + 2⌧2 �1 � ⌧2� = 2

�
1 � ⌧2�

.

It follows that
hE , Di2 = ⌧2 > 1 � 2⌘2

.

⇤

Lemma A.28. Let " be a symmetric matrix such that k" � DDTk 6 ⌘ < 1
2 for some unit vector

D. Then the top eigenvalue ⌫1 of " satisfies |⌫1 � 1| 6 ⌘ and the top eigenvector E1 of " satisfies
hE1, Di2 > 1 � 100⌘2.

Proof. Consider an eigenvalue decomposition of ":

" =
3’
9=1

⌫ 9E9E9T ,

where |⌫1 | > |⌫2 | > . . . > |⌫3 | and {E9}3
9=1 is an orthonormal basis in í3. By triangle

inequality

kE1E1
T � DDTk 6 k" � E1E1

Tk + k" � DDTk 6 k" � E1E1
Tk + ⌘.

355

Let’s bound k" � E1E1Tk:

k" � E1E1
Tk 6 max{|1 � ⌫1 |, |⌫2 |}.

Since k" � DDTk 6 ⌘, DT
"D > 1 � ⌘, hence |⌫1 | > 1 � ⌘ > 1

2 . Notice that

|⌫1 � hE1, Di2 | = |E1
T
"E1 � hE1, Di2 | 6 ⌘,

hence ⌫1 > �⌘ > �1
2 , so ⌫1 > 0, and ⌫1 6 hE1, Di2 + ⌘ 6 1 + ⌘, so |⌫1 � 1| 6 ⌘.

By triangle inequality |hE1, Di2 � 1| 6 2⌘. By Pythagorean theorem
Õ
3

9=1hE9 , Di2 = 1,
hence

3’
9=2
hE9 , Di2 6 2⌘,

so hE2, Di2 6 2⌘. Now let’s bound |⌫2 |:

|⌫2 � hE2, Di2 | = |E2
T
"E2 � hE2, Di | 6 ⌘,

hence |⌫2 | 6 3⌘. Therefore
kE1E1

T � DDTk 6 4⌘.

By lemma A.27, hE , Di2 > 1 � 32⌘2. ⇤

Lemma A.29. Let " 2 í3⇥3, " ⌫ 0, Tr" = 1 and let I 2 í3 be a unit vector such that
I

T
"I > 1 � ⌘. Then the top eigenvector E1 of " satisfies hE1, Ii2 > 1 � $(⌘).

Proof. Write I = �E1 +
p

1 � �2
E? where E? is a unit vector orthogonal to E1.

I
T
"I = �2

E1
T
"E1 +

�
1 � �2�

E?
T
"E?

= �2 �⌫1 � E?T
"E?

�
+ E?T

"E?

> 1 � ⌘

As E1T
"E1 > IT

"I and E?T
"E? 6 ⌘, rearranging

�2 >
1 � ⌘ � E?T

"E?
⌫1 � E?T

"E?
> 1 � 2⌘.

⇤

Fact A.30. Let �, ⌫ 2 í3⇥3, �, ⌫ ⌫ 0. Then h�, ⌫i > 0.

Lemma A.31. Let - 2 í3⇥3 be a positive semidefinite matrix. Then for any � 2 í3⇥3,

|h�,-i | 6 k�k · Tr- .

356

Proof. Since - is positive semidefinite, - =
Õ
3

8=1 ⌫8 I8 I8
T for unit vectors I8 such that ⌫8 > 0

and
Õ
3

8=1 ⌫8 = Tr-. Hence

|h�,-i | =
��Tr-T

�

�� =
�����
3’
8=1

⌫8 Tr I8I8T�

����� =
�����
3’
8=1

⌫8 Tr I8T�I8

����� 6
3’
8=1

⌫8 k�k = k�k · Tr- .

⇤

Lemma A.32. Let - 2 í3⇥3 be a positive semidefinite matrix. Then for any 0 , 1 2 í3,

h01T
,-i2 6 h00T

,-i · h11T
,-i .

Proof. By Fact A.30, h00T
,-i > 0 and h11T

,-i > 0. Notice that if the inequality is true for
some 0 , 1 2 í3, it is also true for 210 , 221 for all positive numbers 21, 22. So we can assume
without loss of generality that h00T

,-i = h11T
,-i = 1. Consider h(0 + 1)(0 + 1)T ,-i > 0

and h(0 � 1)(0 � 1)T ,-i > 0 . We get

2h01T
,-i 6 h00T

,-i + h11T
,-i 6 2

and
�2h01T

,-i 6 h00T
,-i + h11T

,-i 6 2 ,

hence h01T
,-i2 6 1. ⇤

357

Appendix B

Deferred proofs and addendum to
Chapter 4

Organization of appendices
The appendices of Chapter 4 are organized as follows. In Appendix B.1 we introduce our
techniques for computing the truncated expectation of block self-avoiding walks. and
prove Lemma 4.56, Lemma 4.67, Lemma 4.68, Lemma 4.96 and Lemma 4.98.

In Appendix B.2 we study the expectation of polynomials arising in the computation
of the centered Schatten norm and prove Lemma 4.75. Most of the technical details of
Appendix B.1 and Appendix B.2 can be found in Appendix B.3. In Appendix B.4.1 we prove
Fact 4.58, Fact 4.65 and Fact 4.94. The counting arguments required in Section 4.5 are proved
in Appendix B.4.2. Specifically, we prove here Lemma 4.64, Lemma 4.70, Lemma 4.71,
Lemma 4.93, Lemma 4.99, Lemma 4.82 and Lemma 4.83. Finally, Appendix B.5 contains
additional basic tools that are used throughout the chapter.

To help the reader navigate the sections we provide here a table where the various
proofs of each lemma can be found.

358

Statement A is implied by Statement B
Lemma 4.56 Lemma B.17
Fact 4.58 Fact B.87
Fact 4.65 Fact B.85
Lemma 4.64 Lemma B.89
Lemma 4.67 Lemma B.26
Lemma 4.68 Lemma B.26
Lemma 4.70 Lemma B.96
Lemma 4.71 Lemma B.97
Lemma 4.75 Lemma B.49
Lemma 4.82 Lemma B.94
Lemma 4.83 Lemma B.95
Lemma 4.93 Lemma B.99
Fact 4.94 Fact B.86
Lemma 4.96 Lemma B.35
Lemma 4.98 Lemma B.36
Lemma 4.99 Lemma B.100

B.1 Bounds for the non-centered matrix

B.1.1 Useful notation
Let � be the constant truncation threshold (which we will specify later), and let G be the
graph obtained from G ⇠ SBM=(3, ⌘) by deleting every vertex that has a degree strictly
greater than � in G.

For every E 2 G, let EE be the event that E is truncated, i.e.,

EE :=
�
E 8 G

= {3G(E) > �}.

For every + ✓ [=] = +(G), we say that + is truncated if there exists at least one vertex
in + that is truncated. Let E+ be the event that + is truncated, i.e.,

E+ :=
ÿ
E2+
EE =

�
+ (+

�
G

�
.

Similarly, for every multigraph � with +(�) ✓ [=], we say that � is truncated if there
exists at least one vertex in � that is truncated. Let E� be the event that � is truncated, i.e.,

E� := E
+(�) =

�
+(�) (+

�
G

�
.

Recall that for every 8 , 9 2 [=], we have

Y8 9 =

(
1 � 3

=
if 8 9 2 G,

� 3
=

otherwise.

359

We define Y8 9 2
�
� 3
=
, 0, 1 � 3

=

as follows:

Y8 9 = Y8 9 · E2
8

· E2
9

= Y8 9 · E2
8
\E2

9

= Y8 9 · (E8[E 9)2 .

For every multigraph �, we write <�(8 9) to denote the multiplicity in � of an edge
8 9 2 ⇢(�). Define

Y� =
÷

8 92⇢(�)
Y
<�(8 9)
8 9

=
÷

8 92⇢(�)

⇣
Y<�(8 9)
8 9

· (E8[E 9)2
⌘

= ©≠
´

÷
8 92⇢(�)

Y<�(8 9)
8 9

™Æ
¨
· —

8 92⇢(�)(E8[E 9)2 = Y� · (–8 92⇢(�)(E8[E 9))2

= Y� · E2
+(�)

= Y� · E2
�

=

(
Y� if � is truncated,
0 otherwise.

B.1.2 An upper bound for every multigraph
In this section, we derive an upper bound*�(x) on

��Ö⇥
Y�

��x⇤ �� for every multigraph � with
at most BC vertices and at most BC multi-edges, where C = · log =.

B.1.2.1 Informal discussion and useful definitions
Before delving into the details of the upper bound*�(x) and the lower bound !� that we
mentioned in Section 4.5.1.2, let us first explain a few key observations that provide some
intuition, and which clarifies our proof strategy. This section provides a road map for the
proof of the bounds, and introduces notations and concepts that will be useful later.

Let � be an arbitrary multigraph. Observe that in the non-truncated case, the computa-
tion of Ö[Y� |x] is easy because the edges are conditionally mutually independent given x.
More precisely,

Ö[Y� |x] =
÷

8 92⇢(�)
Ö

⇥
Y<�(8 9)
8 9

��x⇤ .
Unfortunately, this is not the case for the truncated case: Since the presence of one edge

can lead to the truncation of an incident edge, the random variables
�
Y8 9

�
8 92⇢(�) are not

conditionally mutually independent given x. The dependencies between
�
Y8 9

�
8 92⇢(�) makes

the exact computation of Ö
⇥
Y�

��x⇤ very complicated.
Another level of complication is that, unlike the non-truncated case,

�
Y8 9

�
8 92⇢(�) are

not conditionally independent of G � ⌧(�) given x. More precisely,
�
Y8 9

�
8 92⇢(�) depend on

G � ⌧(�) through
�
3G�⌧(�)(E)

�
E2+(�), where

3G�⌧(�)(E) =
���
4 2 G : 4 8 ⇢(�) and 4 is incident to E

 ��
.

360

Furthermore,
�
3G�⌧(�)(E)

�
E2+(�) are not conditionally mutually independent given x

because of edges in
�
8 9 : 8 , 9 2 +(�) and 8 9 8 ⇢(�)

. We call such edges �-cross-edges.

Fortunately, if +(�) contains at most BC vertices, we have very few �-cross-edges and
their effect will be negligible. More precisely, with high probability, no �-cross-edge
will be present in G, and if we condition on this event and on x, the random variables�
3G�⌧(�)(E)

�
E2+(�) become conditionally mutually independent. This will be made precise

later.
Another phenomenon that we should be aware of, is the effect of truncation on

Ö
⇥
Y�

��x, �3G�⌧(�)(E))E2+(�)
⇤
. In order to explain this, we will divide the edges of ⌧(�) into

two categories:

• Edges of multiplicity 1 in �.

• Edges of multiplicity at least 2 in �.

Before discussing the effect of truncation on these two categories of edges, let us quickly
mention a remark regarding some tempting approaches to upper and lower boundÖ

⇥
Y�

��x⇤ ,
and which we did not find very successful.
Remark B.1. Since Y� = Y� · E2

�

, we have
��Y�

�� = |Y� | · E2
�

6 |Y� |. Therefore,
��Ö⇥

Y�

��x⇤ �� 6 Ö⇥
|Y� |

��x⇤ 6 Ö⇥
|Y� |

��x⇤ .
We might hope to get a good upper bound for

��Ö⇥
Y�

��x⇤ �� using the above inequality since
Ö

⇥
|Y� |

��x⇤ = ÷
8 92⇢(�)

Ö
⇥
|Y<�(8 9)
8 9

|
��x⇤ is easy to compute. However, Ö

⇥
|Y� |

��x⇤ can be too large

compared to Ö
⇥
Y�

��x⇤ . This is mainly because of edges of multiplicity 1 in �: If 8 9 2 ⇢(�) is
of multiplicity 1 in �, then

|Ö[Y8 9 |x]| =
⌘3
2= ,

while
Ö

⇥
|Y8 9 |

��x⇤ = (1 + >(1))
⇣
2 +

⌘x8x9
2

⌘
3

=

.

Combining this observation with the fact that ⇢(�) can contain ⇥(log =) edges of
multiplicity 1, it becomes evident that in general, Ö

⇥
|Y� |

��x⇤ is not a good upper bound on��Ö⇥
Y�

��x⇤ ��.
Other in-the-same-spirit approaches attempt to separately analyze the cases when

Y� is positive or negative, i.e., write Y� = Y
+
�
� Y
�
�

, where Y
+
�
= max{0,Y�} and Y

�
�
=

max{0,�Y�}. One might hope to obtain good bounds onÖ
⇥
Y�

��x⇤ = Ö⇥
Y
+
�

��x⇤�Ö⇥
Y
�
�

��x⇤ by
obtaining good upper and lower bounds on Ö

⇥
Y
+
�

��x⇤ and Ö
⇥
Y
�
�

��x⇤ , respectively. However,
it turns out that Ö

⇥
Y
+
�

��x⇤ and Ö
⇥
Y
�
�

��x⇤ can be too large compared to Ö
⇥
Y�

��x⇤ . This is
essentially for the same reason why Ö

⇥
|Y� |

��x⇤ can be too large compared to
��Ö⇥

Y�

��x⇤ ��.
Therefore, in order for this approach to succeed in deriving good bounds for Ö

⇥
Y�

��x⇤ , the

361

bounds onÖ
⇥
Y
+
�

��x⇤ andÖ
⇥
Y
�
�

��x⇤ need to be extremely tight, and this is very hard to obtain
for a general �.

Effect of truncation on edges of multiplicity 1. For edges of multiplicity 1, we observe
that truncation can make the absolute value ofÖ

⇥
Y�

��x, �3G�⌧(�)(E)
�
E2+(�)

⇤
grow too much.

To illustrate this point, take the example where � is a cycle with BC edges of multiplicity 1.
For the non-truncated case, since

�
3G�⌧(�)(E)

�
E2+(�) is conditionally independent from Y�

given x, if we condition on the event that 3G�⌧(�)(E) = � for every E 2 +(�), we get

Ö
⇥
Y�

��x, �3G�⌧(�)(E) = �,8E 2 +(�)
 ⇤

=
÷

DE2⇢(�)

⌘3xDxE
2= =

✓
⌘3
2=

◆
BC

.

On the other hand, for the truncated case, if we condition on the event that 3G�⌧(�)(E) = �
for every E 2 +(�), then Y� is non-zero if and only if all the edges in ⇢(�) are not present
in G, hence

Ö
⇥
Y�

��x, �3G�⌧(�)(E) = �,8E 2 +(�)
 ⇤

=
÷

8 92⇢(�)

✓
1 �

⇣
1 +

⌘x8x9
2

⌘
3

=

◆ ✓
� 3
=

◆

= (1 ± >(1))
✓
� 3
=

◆
BC

.

Therefore, the absolute value was multiplied by a factor of approximately
� 2
⌘

�
BC , which

can be too large. Fortunately, this can be mitigated by choosing � to be large enough so that
problematic events such as

�
3G�⌧(�)(E) = �,8E 2 +(�)

will have a very small probability.

Roughly speaking, the contribution of an edge of multiplicity 1 in the non-truncated
case is |Ö[Y8 9 |x]| = ⌘3

2= , and its contribution in the truncated case can be as large as 3

=
. Since

we are trying to make our upper bound as tight as possible — i.e., as low as possible
— we would like to find situations where edges of multiplicity 1 behave similarly to the
non-truncated case, because their contribution will be relatively small.

This brings us to the following observation: Assume that 8 9 2 ⇢(�) is an edge of
multiplicity 1 such that 3G�⌧(�)(8) + 3

⌧(�)(8) 6 � and 3G�⌧(�)(9) + 3
⌧(�)(9) 6 �, where

3
⌧(�)(8) denotes the degree of 8 in � without counting multiplicities, i.e., 3

⌧(�)(8) is the
degree of 8 in the underlying graph ⌧(�). In this case, we have

3G(8) = 3G�⌧(�)(8) + 3G\⌧(�)(8) 6 3G�⌧(�)(8) + 3⌧(�)(8) 6 �.

Similarly, we have 3G(9) 6 �. Therefore, no matter which edges of ⇢(�) are present in G
and which are absent, we are sure that neither 8 nor 9 will be deleted, and so Y8 9 = Y8 9 .
Furthermore, it is easy to see that given x, and given that 3G�⌧(�)(8) + 3⌧(�)(8) 6 � and
3G�⌧(�)(9) + 3⌧(�)(9) 6 �, the random variable Y8 9 = Y8 9 is conditionally independent from
Y��8 9 . This motivates the following definition:

362

Definition B.2. Let� be a multigraph. For every vertex E 2 +(�), if 3G�⌧(�)(E)+3⌧(�)(E) 6
�, we say that E is (G,�)-safe. We say that E is (G,�)-unsafe if it is not (G,�)-safe.

We say that a subset (of +(�) is completely (G,�)-safe if all the vertices in it are
(G,�)-safe. Similarly, we say that it is completely (G,�)-unsafe if all the vertices in it are
(G,�)-unsafe.

An edge 8 9 2 ⇢(�) is said to be (G,�)-safe if both 8 and 9 are safe.
If G and � are clear from the context, we drop (G,�) and simply write safe, completely

safe, unsafe, and completely unsafe.

In summary, we have the following observations:

• If a vertex E 2 +(�) is safe, we are sure that it will not be deleted. On the other hand,
if E is unsafe, it may or may not be deleted.

• If 8 9 2 ⇢(�) is safe, then Y8 9 = Y8 9 and Y8 9 is conditionally independent of Y��8 9 given
x. On the other hand, if 8 9 is unsafe, then Y8 9 may or may not be equal to Y8 9 .

If 8 9 2 ⇢(�) is an edge of multiplicity 1 in �, then we have

Ö
⇥
Y�

��x, �8 9 is safe
 ⇤

= Ö
⇥
Y8 9

��x, �8 9 is safe
 ⇤

· Ö
⇥
Y��8 9

��x, �8 9 is safe
 ⇤

= Ö
⇥
Y8 9

��x, �8 9 is safe
 ⇤

· Ö
⇥
Y��8 9

��x, �8 9 is safe
 ⇤

= Ö[Y8 9 |x] · Ö
⇥
Y��8 9

��x, �8 9 is safe
 ⇤

=
⌘x8x9 3

2= · Ö
⇥
Y��8 9

��x, �8 9 is safe
 ⇤
.

As we can see from the above discussion, edges of multiplicity 1 that are safe behave
similarly to the non-truncated case. In order to benefit from this phenomenon as much as
possible, we would like the probability that an edge 8 9 is unsafe to be small. Equivalently,
we would like the probability that 8 (respectively 9) is unsafe to be small. By analyzing the
event

�
3G�⌧(�)(8) + 3⌧(�)(8) > �

, we notice the following:

• The distribution of the random variable 3G�⌧(�)(8) is Binomial
�
= � $(BC), 3

=

�
,1 so we

can approximate it by a Poisson(3) distribution.

• The probability of the event
�
3G�⌧(�)(8) + 3

⌧(�)(8) > �

is lower bounded by the
probability that 3G�⌧(�)(8) > �. Now since � must be a constant2 that should not
scale with =, it is easy to see that the probability that 8 is unsafe is lower bounded
by a strictly positive constant3 and cannot be made go to zero as = goes to infinity.
Nevertheless, the larger the value of � � 3

⌧(�)(8) is, the smaller is the probability that

1Note that here we are not conditioning on x.
2Recall that the main motivation behind truncation is to get rid of the effect of large degree vertices, and

so �must be a constant and cannot diverge with =. Nevertheless, we can tune � and make it as large as we
wish, as long as it stays polynomial in B and 3, and polylogarithmic in ⌘.

3This is because the probability that Poisson(3) > � is constant.

363

8 is unsafe. In particular, if �2 is very large with respect to 3 and 3
⌧(�)(8) 6 �

2 , then the
probability that 8 is unsafe is at most the probability that 3G�⌧(�)(8) > �

2 , which can
be approximated by the probability that a Poisson(3) random variable is greater than
�
2 , which in turn is small as long as �2 is large with respect to 3.

We conclude that vertices satisfying 3
⌧(�)(8) 6 �

2 are "well-behaved", and edges whose
end-vertices are both of this type are also "well-behaved" in the sense that with large
probability they will be safe and will behave similarly to the non-truncated case.

For edges 8 9 2 ⇢(�) of multiplicity 1 in � that are not well-behaved, i.e., 3
⌧(�)(8) > �

2
or 3

⌧(�)(9) > �
2 , we will use a very loose4 upper-bound to estimate the contribution of Y8 9 .

Nevertheless, we will mitigate the effect of such edges depending on what caused them
to be not well-behaved. In principal, a vertex E 2 +(�) can have a large degree in �, i.e.,
3
⌧(�)(E) > �

2 , either because it has many edges of multiplicity 1 in � which are incident to
it, or because it has many edges of multiplicity at least 2 in � which are incident to it. We
will treat each case differently. This motivates the following definition:

Definition B.3. Let � be an arbitrary multigraph. For every E 2 +(�), we define the
following:

• The 1-degree of E in�, denoted 3�1 (E) is the number of edges in ⇢(�) that are incident
to E, and which have multiplicity 1 in �.

• An edge in ⇢(�) is said to be of multiplicity >2 in � if it has multiplicity at least 2 in
�. The (>2)-degree of E in �, denoted 3�>2(E) is the number of edges in ⇢(�) that are
incident to E, and which have multiplicity >2 in �.

Clearly, 3
⌧(�)(E) = 3

�

1 (E) + 3�>2(E) is the degree of E in the underlying graph ⌧(�), i.e., the
degree of E in � without counting multiplicities.

Roughly speaking, we will mitigate the effects of "not-well-behaved" edges using the
following ideas:

• We will show that there are very few block self-avoiding-walks that have vertices
with large 1-degree, and this will counter-act the loose upper bounds that we use for
the edges of multiplicity 1 that are incident to such vertices.

• Assuming that� is a multigraph that does not contain any vertex with large 1-degree,
we will show that there are very few vertices with large (>2)-degree. Therefore, the
number of edges of multiplicity 1 that are incident to such vertices is not large, and
so the aggregate effect of the loose upper bounds that we use for such edges is not
too severe.

4Essentially, we will upper bound
��Y8 9

�� by |Y8 9 |.

364

Effect of truncation on edges of multiplicity at least 2. Compared to edges of multiplicity
1 in �, edges of multiplicity >2 in � are much easier to treat: Unlike edges of multiplicity 1
in �, for an edge 8 9 of multiplicity <�(8 9) > 2, the conditional expectations Ö

⇥
Y<�(8 9)
8 9

��x⇤
and Ö

⇥
|Y<�(8 9)
8 9

|
��x⇤ are approximately equal. Therefore, for many cases of interest,

��Y<�(8 9)
8 9

��
is a good upper bound on Y

<�(8 9)
8 9

.
If <�(8 9) > 2, we have the following:

• If 8 9 2 G, then

��Y<�(8 9)
8 9

· ê[8 9 2 G]
�� =

✓
1 � 3

=

◆
<�(8 9)

·
⇣
1 +

⌘x8x9
2

⌘
3

=

= ⌦
✓

1
=

◆
.

• If 8 9 8 G, then

��Y<�(8 9)
8 9

· ê[8 9 8 G]
�� =

�����
✓
� 3
=

◆
<�(8 9)

·
✓
1 �

⇣
1 +

⌘x8x9
2

⌘
3

=

◆����� = $

✓
1

=
<�(8 9)

◆
.

As we can see, the contribution of the case when 8 9 2 G dominates the contribution of the
case when 8 9 8 G. Therefore, when we want to compute Ö

⇥
Y<�(8 9)
8 9

��x⇤ , or Ö
⇥
|Y<�(8 9)
8 9

|
��x⇤ , we

can discard the case for which 8 9 8 G. This is essentially the main reason why Ö
⇥
Y<�(8 9)
8 9

��x⇤
and Ö

⇥
|Y<�(8 9)
8 9

|
��x⇤ are approximately equal.

A similar phenomenon occurs for the truncated case, except that the contribution of the
case for which 8 9 2 G might be multiplied by zero due to truncation. Therefore, roughly
speaking, when we want to computeÖ

⇥
Y
<�(8 9)
8 9

��x⇤ , it is sufficient to consider the cases where
the number of edges of multiplicity >2 in � that are present in G is as large as possible.5

Now notice that if there is a vertex E with 3�>2(E) > �, it is impossible to include all the
edges of multiplicity >2 in � that are incident to E without causing truncation. Therefore,
roughly speaking,

��Ö⇥
Y�

��x⇤ �� will be at least $
� 1
=

�
smaller compared to |Ö[Y� |x]|. This will

allow us to show that the aggregate contribution of all multigraphs having at least one
vertex E satisfying 3�>2(E) > � is negligible.6

5To be more precise, we should give priority to edges with larger multiplicities. For example, if we have a
multigraph where the multiplicities are 2, 3 and 4, we first try to include as many edges of multiplicity 4 as
possible without causing truncation, then, if there is still room to include edges of multiplicity 3, we include
as many of them as possible before turning to edges of multiplicity 2.

6This is the main reason why the algorithm that is based on &
(B) �Y�

works whereas the one based
on &

(B)(Y) does not work: When we write Ö[Tr((&(B)(Y) � xxT)C)] as the sum of contributions of block
self-avoiding-walks, we find that there are too many block self-avoiding-walks where 3�>2(E) > � for some
vertex E 2 +(�). This makes the value of k&(B)(Y) � xxTkC too large. On the other hand, for the truncated
case, even though we have too many such block self-avoiding-walks, the contribution of each one of them is
very small.

365

B.1.2.2 The truncation threshold
We choose the truncation threshold to be of the form

� = max

(
12844

3
4
, 40�B3, 2 log(2�B) + 12��B2 · log 2 + 8�2�2

B
2
✓
log 6

⌘

◆2
)
, (B.1.1)

where
� = �B log 6

⌘
, (B.1.2)

and � > max{1, 100 , 100

} is some constant to be chosen later. This form of �was carefully

chosen to allow for a proof of all the phenomena that were mentioned in Appendix B.1.2.1.
Before starting to prove the upper bound*�(x) on

��Ö⇥
Y�

��x⇤ ��, we need to introduce a few
definitions.

Definition B.4. Let � be a multigraph. We classify the vertices E 2 +(�) according to their
degree-1 as follows:

• If 3�1 (E) 6 �, we say that E is 1-small in �. We denote the set of 1-small vertices in �
as S1(�).

• If 3�1 (E) > �, we say that E is 1-large in �. We denote the set of 1-large vertices in � as
L1(�).

Definition B.5. Let � be a multigraph. We classify the vertices E 2 +(�) according to their
(>2)-degree as follows:

• If 3�>2(E) 6
�
4 , we say that E is (>2)-small in �. We denote the set of (>2)-small vertices

in � as S>2(�).

• If �4 < 3
�

>2(E) 6 �, we say that E is (> 2)-intermediate in �. We denote the set of
(>2)-intermediate vertices in � as I>2(�).

• If 3�>2(E) > �, we say that E is (>2)-large in �. We denote the set of (>2)-large vertices
in � as L>2(�).

Definition B.6. Let � be a multigraph. We denote the set of edges in ⌧(�) of multiplicity
1 in � as ⇢1(�), and denote the set of edges in ⌧(�) of multiplicity >2 in � as ⇢>2(�).

An edge in ⇢1(�) is said to be annoying if it is incident to at least one vertex in L1(�).
We denote the set of annoying edges as ⇢01(�).

We partition ⇢>2(�) into two sets:

⇢
0

>2(�) =
�
DE 2 ⇢>2(�) : D 8 L>2(�) and E 8 L>2(�)

,

and
⇢
1

>2(�) =
�
DE 2 ⇢>2(�) : D 2 L>2(�) or E 2 L>2(�)

.

366

Definition B.7. For every multigraph � with at most BC = B log = vertices and at most BC
multi-edges, we define the quantity

*�(x) = =

2
�

✓
6
⌘

◆ |⇢01(�)| 1÷
E2L>2(�)

=

1
4(3�>2(E)��)

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |Ö>2(�)| ÷
DE2⇢0>2(�)

1 + ⌘xDxE

2 + 33p
=

�
.

In the rest of Appendix B.1.2, we show that*�(x) is an upper bound on
��Ö⇥

Y�

��x⇤ �� for
= large enough, assuming that � is a multigraph with at most BC = B log = vertices and at
most BC multi-edges.

Note that with more refined calculations, it is possible to get a better upper bound. In
any case,*�(x) is good enough for our purposes.

B.1.2.3 Analyzing edges of multiplicity 1
We start by proving an upper bound on the probability that a subset of S1(�) \ S>2(�) is
completely unsafe. We first need to introduce some notation:

Definition B.8. An edge 8 9 satisfying 8 , 9 2 +(�) and 8 9 8 ⇢(�) is called an �-cross-edge.
For every E 2 +(�), define the following:

3G�⌧(�)(E) =
���
4 2 G : 4 is incident to E and 4 8 ⇢(�)

 ��
=

���
DE 2 G : DE 8 ⇢(�)

 ��
,

3
8

G�⌧(�)(E) =
���
DE 2 G : DE 8 ⇢(�) and D 2 +(�)

 ��
,

and
3
>

G�⌧(�)(E) =
���
DE 2 G : DE 8 ⇢(�) and D 8 +(�)

 ��
.

Clearly, 3G�⌧(�)(E) = 3
8

G�⌧(�)(E) + 3
>

G�⌧(�)(E).
3
>

G�⌧(�)(E) can be thought of as the "+(�)-outside degree" of E in G � ⌧(�), i.e., the
number of edges in G � ⌧(�) that go from E to the outside of +(�). On the other hand,
3
8

G�⌧(�)(E) can be thought of as the "+(�)-inside degree" of E in G�⌧(�), i.e., the number
of edges in G � ⌧(�) that are incident to E and are inside +(�).

If a vertex E 2 +(�) is unsafe, then either 38G�⌧(�)(E) is large or 3>G�⌧(�)(E) is large. It
turns out that with high probability, we have7 3

8

G�⌧(�)(E) = 0. Therefore, the probability
that E is unsafe is dominated by the probability that 3>G�⌧(�)(E) > � � 3⌧(�)(E).

Notice that if E 2 S1(�) \ S>2(�), then

3
⌧(�)(E) = 3

�

1 (E) + 3�>2(E) 6 � + �4 6
�
4 + �4 =

�
2 .

The following lemma derives an upper bound on the probability that the outside degree
is larger than �

2 .

7This is essentially because we have at most B2
C
2 = >(=)�-cross-edges, and the probability of any particular

one of them being present in G is $
� 1
=

�
.

367

Lemma B.9. Let � be a multigraph such that |+(�)| 6 BC, where C = log =. For every
E 2 S1(�) \ S>2(�), we have

ê

3
>

G�⌧(�)(E) >
�
4

����x
�
6

◆

2 ,

where8
◆ := 1

�B · 26��B2

⇣ ⌘
6

⌘4B2�2

6
1
�B

⇣ ⌘
6

⌘�
. (B.1.3)

Proof. The proof is based on simple calculations based on the probability distribution of the
sum of Bernoulli random variables. The detailed proof can be found in Appendix B.3.1.1. ⇤

In the following, we will show that 38G�⌧(�)(E) = 0 with high probability. The following
definition will be useful.

Definition B.10. Let � be a multigraph. We say that a vertex E 2 +(�) is �-cross-free in G
if there is no �-cross-edge that is present in G, and which is incident to E. In other words,
E is �-cross-free in G if 38G�⌧(�)(E) = 0. We say that E 2 +(�) is �-crossing in G if it is not
�-cross-free in G.

A subset of +(�) is said to be completely �-cross-free in G if all the vertices in it are
�-cross-free in G. We say that it is completely �-crossing in G if all the vertices in it are
�-crossing in G.

If G and � are clear from the context, we drop G and � and simply write cross-free,
crossing, completely cross-free, and completely crossing.

The following lemma shows that the probability that a nonempty subset of +(�) is
completely crossing is small. Furthermore, the larger the set, the smaller is the probability.
This essentially means that we have 38G�⌧(�)(E) = 0 with high probability.

Lemma B.11. Let � be a multigraph such that |+(�)| 6 BC, where C = · log =. If = is large
enough, then for every (✓ +(�), the conditional probability given x that (is completely�-crossing
in G can be upper bounded by:

ê
⇥�
(is completely �-crossing in G

 ��x⇤ 6
✓
23B2

C
2

=

◆ |(|/2
.

Proof. The proof is based on a simple application of the union bound. The detailed proof
can be found in Appendix B.3.1.1. ⇤

By combining Lemma B.9 and Lemma B.11 and using the fact that an unsafe vertex
E 2 +(�) is either crossing or satisfies 3>G�⌧(�)(E) >

�
2 , we can show the following upper

bound on the probability that a subset of S1(�) \ S>2(�) is completely unsafe:

8In the calculations for Ö
h
Tr

⇣
&

(B) �Y�
C

⌘i
, we will need ◆ 6 1

�B

� ⌘
6
��. On the other hand, in the calculations

for Ö
h
Tr

⇣ �
&

(B) �Y�
� xxT� C ⌘i , we will need ◆ 6 1

B·26��B2

� ⌘
6
�4B2�2

.

368

Lemma B.12. Recall the definition of safe vertices in Definition B.2, and let� be a multigraph such
that |+(�)| 6 BC, where C = · log =. If = is large enough, then for every + ✓ S1(�) \ S>2(�),
the conditional probability that + is completely unsafe given x can be upper bounded by:

ê
⇥�
+ is completely (G,�)-unsafe

 ��x⇤ 6 ◆ |+ |
,

where ◆ is as in Eq. (B.1.3).

Proof. The detailed proof can be found in Appendix B.3.1.1. ⇤

Since ◆ is very small for large �, Lemma B.12 implies that it is unlikely for unsafe edges
to occur. On the other hand, the following lemma implies that safe edges behave similarly
to the truncated case. These two observations are what ultimately makes it possible to
derive a good upper bound on

��Ö⇥
Y�

��x⇤ ��.
Lemma B.13. Let � be a multigraph and let DE 2 ⇢(�). Let E be an event satisfying:

• E implies that DE is (G,�)-safe, i.e., 8(⌧, G) 2 E, D and E are (⌧,�)-safe.

• The event E depends only on x and G � DE, i.e., E is �(x,G � DE)-measurable. In other
words, if we condition on x, then E depends only (D

0
E
02G)D0,E02[=]: D0E0<DE . This implies that

given x, the event E is conditionally independent from {DE2G}.

Then,
8(⌧, G) 2 E , YDE(⌧) = YDE(⌧), (B.1.4)

and
Ö

⇥
Y
<�(DE)
DE

��x, E⇤ = Ö⇥
Y<�(DE)
DE

��x⇤ . (B.1.5)

Furthermore, if �0 is a submultigraph of � containing DE with the same multiplicity as in �, then
we have

Ö
⇥
Y�

0
��x, E⇤ = Ö⇥

Y<�(DE)
DE

��x⇤ · Ö⇥
Y�

0�DE
��x, E⇤ . (B.1.6)

Proof. Equations Eq. (B.1.4) and Eq. (B.1.5) are trivial. In order to get Equation Eq. (B.1.6),
observe that we have

Ö
⇥
Y�

0
��x, E⇤ = Ö⇥

Y
<�(DE)
DE

· Y�
0�4

��x, E⇤
= Ö

⇥
Y<�(DE)
DE

· Y�
0�4

��x, E⇤
(⇤)
= Ö

⇥
Y<�(DE)
DE

��x, E⇤ · Ö⇥
Y�

0�DE
��x, E⇤

(†)
= Ö

⇥
Y<�(DE)
DE

��x⇤ · Ö⇥
Y�

0�DE
��x, E⇤ ,

where (⇤) follows from the fact that E is �(x,G�DE)-measurable, which implies that given x
and E, we have that YDE = {DE2G}� 3

=
is conditionally independent from

⇣
YD0E0

⌘
D
0
E
02⇢(�0�DE)

,
and (†) follows from the fact that given x, the event E is conditionally independent of
{DE2G}. ⇤

369

We will only use Lemma B.13 to upper bound the contribution of multiplicity-1 edges.
For edges of multiplicity >2, we do not need the safeness mechanism. In fact, for edges of
multiplicity >2, we will ignore the edges in G � ⌧(�) and the edges in G \ ⇢1(�), and
focus on the truncation events that are caused by having too many edges in G \ ⇢>2(�).
This motivates the following definition:

Definition B.14. For every multigraph �, define

Ỹ�

>2 =
÷

DE2⇢>2(�)
Ỹ<�(DE)
DE ,⇢>2(�),

where
Ỹ
DE ,⇢>2(�) := YDE · {3G\⇢>2(�)(D)6�} · {3G\⇢>2(�)(E)6�} ,

and
3G\⇢>2(�)(E) :=

���
F 2 +(�) : EF 2 G \ ⇢>2(�)

 ��
.

Lemma B.15. For every multigraph � with at most BC = B log = vertices and at most BC
multi-edges, we have

��Ö⇥
Y�

��x⇤ �� 6 = 2
�

✓
6
⌘

◆ |⇢01(�)| ✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ ,

where ⇢01(�) is as in Definition B.6.

Proof. We only provide a proof sketch here. The detailed proof can be found in Ap-
pendix B.3.1.2.

The main idea of the proof is based on partitioning ⇢1(�) into three sets:

⇢
0

1(�) =
n
DE 2 ⇢1(�) : D 2 L1(�) or E 2 L1(�)

o
,

⇢
1

1(�) =
n
DE 2 ⇢1(�) \ ⇢01(�) : D 2 S>2(�) and E 2 S>2(�)

o
, (B.1.7)

and
⇢
3

1 (�) =
n
DE 2 ⇢1(�) \ ⇢01(�) : D 8 S>2(�) or E 8 S>2(�)

o
. (B.1.8)

The end-vertices of edges in ⇢
1

1(�) belong to S1(�) \ S>2(�). Lemma B.12 implies
that it is unlikely for edges in ⇢11(�) to be unsafe, and so Lemma B.13 implies that they
will likely behave similarly to the truncated case. As we will see in the detailed proof
in Appendix B.3.1.2, the total contribution of edges in ⇢11(�) can be upper bounded by

=

�

✓
⌘3
2=

◆ |⇢11(�)|
. Note that the term

✓
⌘3
2=

◆ |⇢11(�)|
is the contribution of edges in ⇢11(�) in the

non-truncated case. The factor =

� comes from the fact that the edges in ⇢
1

1(�) are not
always safe: They are only likely to be so, and the small probability for the edges in ⇢11(�)

370

to be unsafe will ultimately cause a multiplication by a factor that can be upper bounded
by =

� .
For the edges in ⇢

0

1(�) [⇢31 (�), we did not find an easy way to get a good upper
bound on their contribution, so we used a potentially very loose upper bound. Roughly
speaking, we used the fact that

��YDE �� 6 |YDE | for every DE 2 ⌧(�) in order to upper bound
the contribution of an edge DE 2 ⇢01(�) [⇢31 (�) by Ö

⇥
|YDE |

��x⇤ 6 33
=

. Therefore, the total
contribution of edges in ⇢01(�) [⇢31 (�) can be upper bounded by

✓
33
=

◆ |⇢01(�)|+|⇢31 (�)|
=

✓
6
⌘

◆ |⇢01(�)| ✓6
⌘

◆ |⇢31 (�)| ✓
⌘3
2=

◆ |⇢01(�)|+|⇢31 (�)|
.

Now since the vertices in +(�) \ S>2(�) have degrees of at least �4 , we cannot have too
many vertices in +(�) \ S>2(�). Now since every edge in ⇢

3

1 (�) must be incident to a
vertex in S1(�) \

�
+(�) \ S>2(�)

�
and since every vertex in S1(�) is incident to at most �

vertices, we can deduce that we cannot have too many edges in ⇢31 (�). This observation be

used to show that
✓
6
⌘

◆ |⇢31 (�)|
6 =

� .

For edges of multiplicity >2, it is easy to see that
÷

DE2⇢>2(�)

��Y<�(DE)
DE

�� 6 ��Ỹ�

>2
��
.

By combining all these observations together, we get

��Ö⇥
Y�

��x⇤ �� 6 = 2
�

✓
6
⌘

◆ |⇢01(�)| ✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ .

⇤

B.1.2.4 Analyzing edges of multiplicity at least 2
Lemma B.16. For every multigraph � with at most BC = B log = vertices and at most BC
multi-edges, and for = large enough, we have

Ö
⇥
|Ỹ�

>2 |
��x⇤ 6 1

÷
E2L>2(�)

=

1
4(3�>2(E)��)

✓
3

=

◆ |Ö>2(�)| ÷
DE2⇢0>2(�)

1 + ⌘xDxE

2 + 3

=

�
,

where Ỹ�

>2 is as in Lemma B.15, and ⇢0>2(�) and ⇢1>2(�) are as in Definition B.6.

Proof. We only provide a proof sketch here. The detailed proof can be found in Ap-
pendix B.3.1.3.

371

For an edge DE 2 ⇢0>2(�), we use the fact that
��Ỹ
DE ,⇢>2(�)

�� 6 |YDE |, which allows us to
upper bound the contribution of DE by

Ö
⇥
|YDE |<�(DE)

��x⇤ 6 ⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2 .

For edges in ⇢1>2(�), notice the following:

• If an edge DE 2 ⇢1>2(�) is present in G, then its contribution to the expectation is at
most: ✓

1 � 3
=

◆
<�(DE) ⇣

1 + ⌘xDxE
2

⌘
3

=

6
23
=

. (B.1.9)

• If an edge DE 2 ⇢1>2(�) is not present in G, then its contribution to the expectation is
at most: ✓

� 3
=

◆
<�(DE)

·

1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

�
= $

✓
1
=

2

◆
=

23
=

· $
✓

1
=

◆
. (B.1.10)

Now notice that every edge in ⇢1>2(�) is incident to some vertex in L>2(�). On the other
hand, every vertex E 2 L>2(�) is incident to 3

�

>2(E) > � edges in ⇢
1

>2(�). These edges
cannot all be present in G without causing truncation. In fact, if more than � of these edges
are present in G, then Ỹ�

>2 = 0, so we can consider only the cases where at most � of these
edges are present in G. This ultimately makes it possible to show that the total contribution
of the edges in ⇢1>2(�) that are incident to a vertex E 2 L>2(�) is at most

$̃

✓
1
=

◆
3
�

>2(E)��
·
✓
23
=

◆
3
�

>2(E)
= $̃

✓
1
=

◆
3
�

>2(E)��
·
✓
3

=

◆
3
�

>2(E)
. (B.1.11)

If there is no edge in ⇢
1

>2(�) which has both its end-vertices in L>2(�), then we can
multiply the upper bounds Eq. (B.1.11) for every E 2 L>2(�), and deduce that the total
contribution of edges in ⇢1>2(�) can be upper bounded by

÷
E2L>2(�)

"
$̃

✓
1
=

◆
3
�

>2(E)��
·
✓
3

=

◆
3
�

>2(E)
#
=

1
÷

E2L>2(�)
⌦̃

⇣
=
3
�

>2(E)��
⌘ ·

✓
3

=

◆ |⇢1>2(�)|
.

However, since it is possible for an edge to have both its end-vertices in L>2(�), we cannot
just multiply the upper bounds Eq. (B.1.11) for every E 2 L>2(�) because some edges
would be counted twice. Instead, it is possible to show that the total contribution of edges
in ⇢1>2(�) can be upper bounded by

1
÷

E2L>2(�)
⌦̃

⇣
=

1
2(3�>2(E)��)

⌘ ·
✓
3

=

◆ |⇢1>2(�)|
6

1
÷

E2L>2(�)
=

1
4(3�>2(E)��)

·
✓
3

=

◆ |⇢1>2(�)|
.

372

Combining the contribution of edges in ⇢0>2(�) and edges in ⇢1>2(�), we get

Ö
⇥
|Ỹ�

>2 |
��x⇤ 6 1

÷
E2L>2(�)

=

1
4(3�>2(E)��)

✓
3

=

◆ |Ö>2(�)| ÷
DE2⇢0>2(�)

1 + ⌘xDxE

2 + 3

=

�
,

See Appendix B.3.1.3 for the details. ⇤

B.1.2.5 Proof of the upper bound for every multigraph
Now we are ready to prove the upper bound*�(x) on

��Ö⇥
Y� |x

⇤ ��:
Lemma B.17. For every multigraph � with at most BC = B log = vertices and at most BC
multi-edges, if*�(x) is as in Definition B.7 and = is large enough, then

��Ö⇥
Y� |x

⇤ �� 6 *�(x).

Proof. This is a direct corollary of Lemma B.15 and Lemma B.16, and the fact that9
3

=
6 33p

=

. ⇤

B.1.3 Bounds for nice multigraphs
In this section, we will prove a lower bound on Ö

⇥
Y�

⇤
for multigraghs � belonging to a

nice family of block self-avoid-avoiding walks.

Definition B.18. A block self-avoiding-walk � is said to be nice if it satisfies the following:

• � contains at most one cycle, and it should be formed by edges of multiplicity 1 in �.
In other words,

– ⇢1(�) is either empty or a cycle.10
– The edges of multiplicity >2 in � form a forest, i.e., ⇢>2(�) is a forest.
– There is no path in ⇢>2(�) between any two vertices D , E 2 +(⇢1(�)).

• L>2(�) = ú, i.e., ⇢>2(�) = S>2(�) [I>2(�) and so 3�>2(E) 6 � for all E 2 +(�).

• |⇢1(�)| > C

�
.

We denote the set of nice (B , C)-block self-avoiding-walks as NBSAW⇤
B ,C

.

9Note that if we put 3
2

=
2 instead of 332

=

p
=

in*�(x), we still get a valid upper bound on
��Ö⇥

Y� |x
⇤ ��. We used

the term 332

=

p
=

because it will be convenient when we upper bound Ö
h
Tr

⇣ �
&

(B) �Y�
� xxT� C ⌘i .

10Hence, if ⇢1(�) < ú, then 3�1 (E) = 2 for all E 2 +(⇢1(�)).

373

Remark B.19. The careful reader may notice that the set NBSAW⇤
B ,C

slightly differs from the
definition in Lemma 4.57, due to the additional constraint |⇢1(�)| > C

�
. The set of nice

block self-avoiding walks with |⇢1(�)| < C

�
however is negligible as shown in Lemma 4.70.

In fact, we will provide tight bounds on Ö
⇥
Y�

⇤
for a family of multigraphs that is larger

than NBSAW⇤
B ,C

. In the following two definitions, we introduce the family of (B , C)-pleasant
multigraphs.

Definition B.20. A multigraph � is said to be agreeable if satisfies one of the following
three conditions:

(1) The underlying graph of ⌧(�) is a cycle. In this case, we say that � is type-1 agreeable.

(2) There are two sets of edges ⇢0(�) ⇢ ⇢(�), ⇢00(�) ⇢ ⇢(�), and a vertex D� 2 +(�)
such that:

– ⇢(�) = ⇢0(�) [⇢00(�).
– ⇢

0(�) and ⇢00(�) are cycles.
– +(⇢0(�)) \+(⇢00(�)) = {D�}.

In this case, we say that � is type-2 agreeable.

(3) There are two sets of edges ⇢0(�) ⇢ ⇢(�) and ⇢00(�) ⇢ ⇢(�) such that:

– ⇢(�) = ⇢0(�) [⇢00(�).
– ⇢

0(�) and ⇢00(�) are cycles.
– ⇢

0(�) \ ⇢00(�) < ú and +(⇢0(�)) \+(⇢00(�)) = +
�
⇢
0(�) \ ⇢00(�)

�
.

– ⇢
0(�) \ ⇢00(�) is a simple path.

– ⇢
0(�) \ ⇢00(�) ⇢ ⇢>2(�), i.e., all the edges in ⇢0(�) \ ⇢00(�) are of multiplicity

at least 2 in �.

In this case, we say that � is type-3 agreeable.

Definition B.21. A multigraph � is said to be (B , C)-pleasant if it satisfies the following
conditions:

• � contains at most BC vertices and at most BC multi-edges.

• L>2(�) = ú.

• There are A� sub-multigraphs �(1)
, . . . ,�

(A�) of � such that:

– For every 8 2 [A�],�(8) is an induced sub-multigraph of�, i.e.,�(8) = �

�
+

�
�

(8)� � .
– �

(1)
, . . . ,�

(A�) are vertex-disjoint, i.e., +
�
�

(1)�
, . . . ,+

�
�

(A�)
�

are mutually dis-
joint.

374

– �
(1)
, . . . ,�

(A�) are agreeable.

– ⇢1(�) =
ÿ
82[A�]

⇢1
�
�

(8)� = ⇢1
�
�

(⇤)� , where �(⇤) =
ÿ
82[A�]

�
(8).11

– The only cycles in � are those inside �(⇤) =
ÿ
82[A�]

�
(8).12

• Every cycle in � contains at least C

�
multiplicity-1 edges.

The sub-multigraphs �(1)
, . . . ,�

(A�) are said to be the agreeable components of �.
It is easy to see that every nice (B , C)-block self-avoiding-walk is (B , C)-pleasant.

B.1.3.1 Informal discussion and proof strategy
In order to be able to show tights bound on Ö

⇥
Y�

⇤
for an (B , C)-pleasant multigraph �,

we need to be more precise in our calculations. The techniques that were developed in
Appendix B.1.2 will be useful, but we need more ideas in order to get precise calculations
that allow for a proof of tight bounds. In the following few paragraphs, we will informally
describe how we will prove the tight bounds on Ö

⇥
Y�

⇤
for a pleasant multigraph �.

Roughly speaking, if we write the exact expression of Ö
⇥
Y�

��x⇤ , we will get a very
complicated polynomial ,(x) of x. We can decompose the complicated polynomial ,(x) into
positive terms and negative terms, and we might hope to get a lower bound on Ö

⇥
Y�

��x⇤
by showing that the negative terms are negligible. However, it does not seem that we can
easily show that the negative monomials are negligible.13

Instead of proving a lower bound on Ö
⇥
Y�

��x⇤ = ,(x), we will prove a lower bound on
Ö

⇥
Y�

⇤
= Ö[,(x)]. The main reason why we considered lower bounding Ö

⇥
Y�

⇤
= Ö[,(x)]

instead of Ö
⇥
Y�

��x⇤ = ,(x) is that Ö[xDxE] = 0 for every edge DE. This property implies
that the expectation of the vast majority of the monomials that appear in ,(x) is actually

zero. In fact, it is possible to show that for any set E of edges, we have Ö

"÷
DE2E

xDxE

#
< 0 if

and only if E is the disjoint union of cycles, in which case we have Ö

"÷
DE2E

xDxE

#
= 1. So

by computing Ö
⇥
Y�

⇤
= Ö[,(x)], we can get rid of the vast majority of the terms in ,(x).

This is the main reason why analyzing Ö
⇥
Y�

⇤
= Ö[,(x)] is much simpler than analyzing

Ö
⇥
Y�

��x⇤ = ,(x).

11This means that all edges in � � �(⇤) are of multiplicity at least 2.
12This means that if we contract �(1)

, . . . ,�
(A�) into A� vertices, � becomes a forest.

13In fact, this might not even be possible. It might be the case that the negative terms are not negligible, but
the total aggregate of the positive terms is more important than the total aggregate of the negative terms. For
example, consider = = 5= � 4=: While the negative term 4= is not negligible with respect to the positive term
5=, the positive term is more important. Something like this occurs in Ö

⇥
Y�

��x⇤ : In order to see this, consider
the case of a single edge of multiplicity 1, and suppose that ⌘ is very small.

375

The following lemma shows that the nice structure of pleasant multigraphs makes the
behavior of the expectation of monomials in (xDxE)DE2⇢(�) very simple:

Lemma B.22. Let � be an arbitrary multigraph and let E ⇢ ⇢(�). We have:

• If E is an edge-disjoint union of cycles, then Ö

"÷
DE2E

xDxE

#
= 1.

• If E is not an edge-disjoint union of cycles, then Ö

"÷
DE2E

xDxE

#
= 0.

Proof. We have:
÷
DE2E

xDxE =
÷
E2+(E)

x3E(E)
E

,

where
3E(E) =

���
D 2 +(�) : DE 2 E

 ��
.

Since (xE)E2+(�) are i.i.d. Rademacher random variables, it follows that

Ö

"÷
DE2E

xDxE

#
=

(
1 if 3E(E) is even for all E 2 +(E),
0 if there exists at least one vertex E 2 +(E) such that 3E(E) is odd.

Now notice the following:

• If E is an edge-disjoint union of cycles, then 3E(E) is even for every E 2 +(E), and so

Ö

"÷
DE2E

xDxE

#
= 1.

• If E is not an edge-disjoint union of cycles, then there must exist one vertex E 2 +(E)

such that 3E(E) is odd, and so Ö

"÷
DE2E

xDxE

#
= 0.

⇤

As can be seen from Lemma B.22, if � is a pleasant multigraph, the behavior of the
expectation of monomials in (xDxE)DE2⇢(�) is very simple: Only the monomials correspond-
ing to

–
82� ⇠8(�) for some � ✓ [I] have nonzero expectation, where ⇠1(�), . . . , ⇠I(�) are

the cycles of ⇢1(�). If we could write Ö
⇥
Y�

��x⇤ = ,(x) as a polynomial that only depends
on (xDxE)DE2⌧(�), the expectation Ö

⇥
Y�

⇤
= Ö[,(x)] would be very simple. Unfortunately,

this is not the case because of truncation: The presence or absence of edges outside ⇢(�)
in G makes ,(x) also depend on (xDxE)DE8⇢(�). Therefore, even if we use the fact that for

376

every set E of edges14, Ö

"÷
DE2E

xDxE

#
< 0 if and only if E is a disjoint union of cycles, the

expression of Ö[,(x)] is still too complicated to analyze. In fact, we have two complications:

• �-cross-edges15 makes it possible to have monomials in ,(x) corresponding to cycles
in +(�), which are different than ⇢1(�).

• Edges from +(�) to [=] \ +(�) makes it possible to have monomials in ,(x) corre-
sponding to cycles that include vertices from +(�) and vertices from [=] \+(�).

The first complication is not too severe because we have very few�-cross-edges, namely
$(B2

C
2) = $̃(1) �-cross-edges, and the probability of any particular edge being present

in G is $
� 1
=

�
. Therefore, the event that at least one �-cross-edge is present in G has

negligible probability, and we can assume that no �-cross-edge is present in G. This does
not completely solve the first complication, because the probability that an �-cross-edge
DE is not present in G is

ê[DE 8 G] = 1 �
⇣
1 + ⌘xDxE

2

⌘
3

=

,

which contains a term that depends on xDxE . Therefore, even if we focus on the event that no
�-cross-edge is present in G, we still have monomials that depend on (xDxE)DE is an �-cross-edge.
Fortunately, the term in ê[DE 8 G] that depends on xDxE is negligible with respect to the
constant term that does not depend on xDxE . We can leverage this observation to show that
the total contribution of monomials containing �-cross-edges is negligible.

The second complication is a bit trickier to overcome. We know that the truncation event
depends only on

�
3G(E)

�
E2+(�), and so depends only on

�
3G�⌧(�)(E)

�
E2+(�) and (YDE)DE2⇢(�).

Only
�
3G�⌧(�)(E)

�
E2+(�) is problematic for us because it will lead to terms that depend on

(xDxE)DE8⇢(�). In order to analyze the conditional expectation of Y� given x and given that
no �-cross-edge is present in G, we will further condition over

�
3G�⌧(�)(E)

�
E2+(�). If no

�-cross-edge is present in G, then for every E 2 +(�), we have

3G�⌧(�)(E) = 3
>

G�⌧(�)(E) :=
���
DE 2 G : D 8 +(�)

 ��
.

The nice thing about
�
3
>

G�⌧(�)(E)
�
E2+(�) is that, unlike

�
3G�⌧(�)(E)

�
E2+(�), the random

variables
�
3
>

G�⌧(�)(E)
�
E2+(�) are conditionally mutually independent given x.16 Therefore,

for every (dE)E2+(�) 2 é+(�), we have

ê
⇥�
8E 2 +(�), 3>G�⌧(�)(E) = dE

 ��x⇤ = ÷
E2+(�)

ê
⇥
3
>

G�⌧(�)(E) = dE
��x⇤ ,

14Here E may or may not be a subset of ⇢(�).
15Recall that an �-cross-edge is an edge DE such that D , E 2 +(�) and DE 8 ⇢(�).
16Because of �-cross-edges, the random variables

�
3G�⌧(�)(E)

�
E2+(�) are not conditionally mutually

independent given x.

377

and for each E 2 +(�), we have

ê
⇥
3
>

G�⌧(�)(E) = dE
��x⇤ = ’

*✓[=]\+(�):
|(|=dE

"÷
D2*
ê[DE 2 G|x]

#
·
266664

÷
D2[=]\(*[+(�))

ê[DE 8 G|x]
377775

=
’

*✓[=]\+(�):
|(|=dE

"÷
D2*

⇣
1 + ⌘xDxE

2

⌘
3

=

#
·
266664

÷
D2[=]\(*[+(�))

1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
.

The second complication that we mentioned comes from the fact that for every E 2 +(�),
the probability ê

⇥
3
>

G�⌧(�)(E) = dE
��x⇤ depends on (xDxE)D2[=]\+(�), as can be seen from the

above equation. Now here comes the crucial observation that allows us to overcome this
complication: If x is balanced on [=] \+(�) in the sense that [=] \+(�) contains an equal
number of vertices from each community, then ê

⇥
3
>

G�⌧(�)(E) = dE
��x⇤ will not depend on

(xDxE)D2[=]8+(�), and it will only be a function of dE .
Unfortunately, [=] \ +(�) is not likely to be balanced. Nevertheless, from Hoeffding

inequality it can be easily seen that [=] \+(�) is very likely to be approximately balanced.
More precisely, if � > 0 is a fixed (but small) constant, then with high probability we can
find a subset+1(� , x) of [=] \+(�) that is exactly balanced, i.e., it contains an equal number
of vertices from each community, and such that

��[=] \ �
+(�) [+1(� , x)

� �� 6 = 1
2+� .

Notice that there are at most BC · = 1
2+� = $̃

�
=

1
2+�

�
= >(=) edges from +(�) to [=] \

�
+(�) [

+1(� , x)
�
. On the other hand, the probability that any particular one of these edges is

present in G is at most $
� 1
=

�
, hence, with high probability, none of these edges will be

present in G. Therefore, we can treat these edges exactly as we treated the �-cross-edges,
i.e., we can assume that none of them will be present in G. Furthermore, for any particular
edge DE between D 2 [=] \

�
+(�) [+1(� , x)

�
and E 2 +(�), the term that contains xDxE in

ê[DE 8 G] is negligible with respect to the constant term that does not depend on xDxE . This
means that we can completely discard the edges between+(�) and [=] \

�
+(�)[+1(� , x)

�
exactly as we did with �-cross-edges.

Now since +1(� , x) is exactly balanced, we can see that the remaining polynomial will
contain monomials that depend only on (xDxE)DE2⇢(�). By computing the expectation, many
terms will disappear and we will get a simple expression that is very easy to analyze, and
this will eventually yield tight bounds on Ö

⇥
Y�

⇤
.

In the following, we will turn the above informal discussion into a formal proof.

378

B.1.3.2 The well-behaved event
In the following, we assume that there is a fixed ordering17 of the vertices {1, . . . , =} of G.
This ordering will be used to define some useful concepts. We emphasize that this ordering
can be arbitrary, but it should not dependent on the (random) SBM sample (G, x).

Definition B.23. Let � be a multigraph with at most BC = B log = vertices. We say that x is
approximately balanced on [=] \+(�) if there are at least

l
=

2 � =
3
4

m
vertices from [=] \+(�) in

the first community, and at least
l
=

2 � =
3
4

m
vertices from [=] \+(�) in the second community,

i.e., ���
E 2 [=] \+(�) : xE = +1

 �� > l
=

2 � =
3
4

m
,

and ���
E 2 [=] \+(�) : xE = �1

 �� > l
=

2 � =
3
4

m
.

Now assume that x is approximately balanced on [=] \ +(�). Let +1(� , x) be the set
containing the first18

l
=

2 � =
3
4

m
vertices in [=] \+(�) of the first community and the firstl

=

2 � =
3
4

m
vertices in [=] \+(�) of the second community, i.e.,

+1(� , x) =
n
E 2 [=] \+(�) :

���
D 2 [=] \+(�) : D 6 E , xD = xE

 �� 6 l
=

2 � =
3
4

mo
. (B.1.12)

If x is not approximately balanced, we still define +1(� , x) as in Eq. (B.1.12), but now
+1(� , x) contains at most 2

l
=

2 � =
3
4

m
� 1 vertices, and +1(� , x) would not necessarily be

exactly balanced.

Remark B.24. If x is approximately balanced on [=] \+(�) then:

• |+1(� , x)| = 2
l
=

2 � =
3
4

m
.

• +1(� , x) contains exactly
l
=

2 � =
3
4

m
vertices of the first community and

l
=

2 � =
3
4

m
vertices

of the second community.

•
�� �[=] \+(�)

�
\+1(� , x)| 6

��[=] \+1(� , x)
�� 6 2= 3

4 .

Definition B.25. Let � be a multigraph with at most BC = B log = vertices. We say that
(G, x) is �-well-behaved if:

(1) x is approximately balanced on [=] \+(�).
17We can use the total order that is induced by the names of the vertices as integers between 1 and =, e.g.,

3 6 5 and 4 6 17.
18Here the vertices are chosen according to the fixed ordering of +(G) = [=].

379

(2) In the sampled graph G, no vertex in +(�) is adjacent to any vertex in
�
[=] \+(�)

�
\

+1(� , x).

(3) There is no �-cross-edge that is present in G.

(4) All edges in ⇢>2(�) are present19 in G.

We denote the event that (G, x) is �-well-behaved as EF1 ,� , i.e.,

EF1 ,� =
�
(G, x) is �-well-behaved

.

We will decompose Ö
⇥
Y�] into two parts by conditioning on the event EF1 ,� :

Ö
⇥
Y�

⇤
= Ö

⇥
Y�

��EF1 ,� ⇤
· ê[EF1 ,�] +Ö

⇥
Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
].

We will prove tight bounds on Ö
⇥
Y�

��EF1 ,� ⇤
· ê[EF1 ,�] and an upper bound on���Ö⇥

Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
]
���. These bounds will imply that the contribution of the not-well-

behaved event is negligible with respect to that of the well-behaved event.

B.1.3.3 Upper bound on the contribution of the not-well-behaved event
The following lemma provides an upper bound on the total contribution of the not-well-
behaved event in the expectation of Y� .

Lemma B.26. Let � be a multigraph with at most BC = B log = vertices and at most BC multi-
edges. Assume that L1(�) = L>2(�) = ú, and that ⇢>2(�) forms a forest. If � > max{100 , 1}
and = is large enough, then we have

���Ö⇥
Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
]
��� 6 2

=

1
6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

Proof. We only provide a proof sketch here. The detailed proof can be found in Ap-
pendix B.3.1.4.

We start by further conditioning on more refined events corresponding to the reasons
that caused (G, x) to be not-well-behaved. Define the following events:

E� ,1 =
�
Condition (1) of Definition B.25 is satisfied

=

�
x is approximately balanced on [=] \+(�)

,

(B.1.13)

E� ,, =
�
Conditions (2) and (3) of Definition B.25 are satisfied

, (B.1.14)

19Note that it is possible to show tight bounds without adding Condition (4) to the definition of the
well-behaved event. We only added this condition because it makes the proof of the bounds simpler and
easier to describe.

380

and
E� ,3 =

�
Condition (4) of Definition B.25 is satisfied

=

�
All edges in ⇢>2(�) are present in G

.

(B.1.15)

Clearly,
EF1 ,� = E� ,1 \ E� ,, \ E� ,3 .

We also define the following:

E� ,1, = E� ,1 \ E� ,, , (B.1.16)

E
� ,1, = E� ,1 \ E2

� ,, , (B.1.17)

and
E
� ,1,3 = E� ,1, \ E2

� ,3
. (B.1.18)

We will decompose E2
F1 ,�

into mutually exclusive events as follows:

E2
F1 ,�

= E2
� ,1
[E

� ,1, [E
� ,1,3 .

Therefore,

Ö
⇥
Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
] = Ö

⇥
Y�

��E2
� ,1

⇤
· ê[E2

� ,1
] +Ö

⇥
Y�

��E
� ,1,

⇤
· ê[E

� ,1,]
+Ö

⇥
Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3].

We will separately upper bound the absolute value of each term in the right hand side of
the above equation.

For Ö
⇥
Y�

��E2
� ,1

⇤
· ê[E2

� ,1
], we use Hoeffding’s inequality to deduce that

ê[E2
� ,1

] 6 24�
9
8
p
=
.

By combining this with Lemma B.17, it is possible to show that for = large enough, we have

���Ö⇥
Y�

��E2
� ,1

⇤
· ê[E2

� ,1
]
��� 6 4�p= ·

✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
. (B.1.19)

For Ö
⇥
Y�

��E
� ,1,

⇤
· ê[E

� ,1,], we first write

Ö
⇥
Y�

��E
� ,1,

⇤
· ê[E

� ,1,] = Ö
h
Ö

⇥
Y�

��x, E
� ,1,

⇤
· ê[x|E

� ,1,]
i
.

It is possible to show that
���Ö⇥

Y�

��x, E
� ,1,

⇤ ��� can be upper bounded using the same techniques
that allowed us to upper bound

��Ö⇥
Y�

��x⇤ �� in Lemma B.17. On the other hand, notice that
there are very few �-cross-edges20, and very few edges between21 +(�) and

�
[=] \+(�)

�
\

20There are at most (BC)2 = $̃(1) such edges.
21There are at most BC · 2= 3

4 = $̃

�
=

3
4
�

such edges.

381

+1(� , x). Now since each particular edge is present in G with probability $
� 1
=

�
, it can be

easily seen that ê[E
� ,1,] = $̃

�
=
� 1

4
�
. By carefully combining these facts together, we can

show that
���Ö⇥

Y�

��E
� ,1,

⇤
· ê[E

� ,1,]
��� 6 $̃

=

2
�

=

1
4

!
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|

6
1
=

1
6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
,

(B.1.20)

where the last inequality is true for = large enough.
For Ö

⇥
Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3], notice that E
� ,1,3 implies that at least one edge of

multiplicity >2 is absent from G. On the other hand, Eq. (B.1.9) and Eq. (B.1.10) imply that
the contribution of an edge DE 2 ⇢>2(�) in case it is absent from G is at least $

� 1
=

�
smaller

than its contribution when it is present. By the same techniques that allowed us to upper
bound

��Ö⇥
Y�

��x⇤ �� in Lemma B.17, together with the fact that we have at most BC = $̃(1)
edges in ⇢>2(�), and the fact that at least one of these edges is absent from G, it is possible
to show that

���Ö⇥
Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3]
��� 6 $̃

=

2
�

=

!
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|

6
1
=

1
2
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
,

(B.1.21)

where the last inequality is true for = large enough.
By combining Eq. (B.1.19), Eq. (B.1.20) and Eq. (B.1.21), we get the lemma. See Ap-

pendix B.3.1.4 for the details. ⇤

B.1.3.4 Upper bound on the negligible part of the contribution of the
well-behaved event

Now in order to study Ö
⇥
Y�

��EF1 ,� ⇤
·ê[EF1 ,�], we will divide this expression into the sum

of two terms: one that is negligible, and one that is significant. In this section, we prove an
upper bound on the negligible part. In the next section, we will prove tight bounds on the
significant part.

382

If we denote the set of �-cross-edges as ⇢2(�), then we have22

ê[EF1 ,� |x] =
266664

÷
42⇢2(�)

ê[4 8 G|x]
377775
·

2666666664

÷
E2+(�),

D2
�
[=]\+(�)

�
\+1(� ,x)

ê[DE 8 G|x]

3777777775
·
266664

÷
42⇢>2(�)

ê[4 2 G|x]
377775
· E� ,1

(x)

=
266664

÷
42⇢

12
(� ,x)

ê[4 8 G|x]
377775
·
266664

÷
42⇢>2(�)

ê[4 2 G|x]
377775
· E� ,1

(x),

where

⇢
12
(� , x) = ⇢2(�) [

�
DE : D 2

�
[=] \+(�)

�
\+1(� , x), E 2 +(�)

. (B.1.22)

Note that we could write E� ,1
= E� ,1

(x) as a function of x because the event E� ,1

depends only on x, i.e., it is �(x)-measurable. Hence,

ê[EF1 ,� |x] =
266664

÷
DE2⇢

12
(� ,x)

1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
·
266664

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
· E� ,1

(x)

=
266664

’
(✓⇢

12
(� ,x)

÷
DE2(

�
⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
·
266664

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
· E� ,1

(x)

= %F11,�(x) + %
F1

2,�(x),
where

%
F1

1,�(x) =
266664

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
· E� ,1

(x), (B.1.23)

and

%
F1

2,�(x) =

26666664
’

(✓⇢
12
(� ,x):

(<ú

÷
DE2(

�
⇣
1 + ⌘xDxE

2

⌘
3

=

�37777775
·
266664

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
· E� ,1

(x). (B.1.24)

It is easy to see that %F11,�(x) contains the monomials in ê[EF1 ,� |x] that do not depend
on (xDxE)DE2⇢

12
(� ,x), whereas %F12,�(x) contains the monomials in ê[EF1 ,� |x] that depend on

(xDxE)DE2⇢
12
(� ,x). We will decompose Ö

⇥
Y�

��EF1 ,� ⇤
· ê[EF1 ,�] as follows:

Ö
⇥
Y�

��EF1 ,� ⇤
· ê[EF1 ,�] = Ö

h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· ê[EF1 ,� |x]

i
= Ö

h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i
+Ö

h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F12,�(x)

i
.

(B.1.25)
22Recall that +1(� , x) is always defined, i.e., it is defined even when x is not approximately balanced on

[=] \+(�).

383

The following lemma provides an upper bound on
���Öh
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F12,�(x)

i ���.
Lemma B.27. Let � be a multigraph with at most BC = B log = vertices and at most BC multi-
edges. Assume that L1(�) = L>2(�) = ú, and that ⇢>2(�) forms a forest. If � > max{100 , 1}
and = is large enough, then we have

Ö
h���Ö⇥

Y�

��x, EF1 ,� ⇤
· %F12,�(x)

���i 6 1
=

1
6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
,

where %F12,�(x) is defined in Eq. (B.1.24).

Proof. We only provide a proof sketch here. The detailed proof can be found in Ap-
pendix B.3.1.5.

Recall that %F12,�(x) contains only the monomials in ê[EF1 ,� |x] that depend on
(xDxE)DE2⇢

12
(� ,x), where ⇢

12
(� , x) is as in Eq. (B.1.22). On the other hand, for every

DE 2 ⇢
12
(� , x), the term in ê[DE 8 G|x] that depends on xDxE is equal to $

� 1
=

�
, whereas

the term that does not depend on xDxE is equal to 1 � $
� 1
=

�
. Now since there are at most

B
2
C
2 + 2BC · = 3

4 = $̃

⇣
=

3
4

⌘
edges in ⇢

12
(� , x), after carrying out a few careful calculations, it

is possible to show that

|%F12,�(x)| 6 $̃
✓

1
=

1
4

◆
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�
.

By using the same techniques that allowed us to prove the upper bound in Lemma B.17,
we can now show that

Ö
h���Ö⇥

Y�

��x, EF1 ,� ⇤
· %F12,�(x)

���i 6 $̃

=

�

=

1
4

!
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|

6
1
=

1
6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

See Appendix B.3.1.5 for the details. ⇤

B.1.3.5 Tight bounds on the significant part of the contribution of the
well-behaved event

The following lemma provides tight bounds for Ö
h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i
.

Definition B.28. Let � be an (B , C)-pleasant multigraph and let �(1)
, . . . ,�

(A�) be the
agreeable components of �. For every 8 2 [A�], we define ⇢000>2(�(8)) as follows:

• If �(8) is an agreeable component of type 1 or type 2, we define ⇢000>2(�(8)) = ⇢>2
�
�

(8)� .
384

• If �(8) is an agreeable component of type 3, let ⇢0
�
�

(8)� and ⇢
00 �
�

(8)� be as in
Definition B.20, i.e., ⇢0

�
�

(8)� and ⇢00
�
�

(8)� are cycles and ⇢0
�
�

(8)�\⇢00 ��(8)� is a simple
path of edges of multiplicity at least 2. We define

⇢
000
>2

�
�

(8)� = ⇢>2
�
�

(8)� \ ⇣
⇢
0 �
�

(8)� \ ⇢00 ��(8)� ⌘
.

We also define ⇢000>2(�) =
ÿ
82[A�]

⇢
000
>2

�
�

(8)� .
Lemma B.29. Let � be an (B , C)-pleasant multigraph, where C = log =. If � >
max

�
1, 100 , 100

and = is large enough, then

✓
%
�

B
� 2p

=

◆
·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6 Ö
h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i

6
✓
%
�

B
+ 2p

=

◆
·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
,

where
%
�

B
= ê

⇥�
8E 2 +(�), D�

E
+ 3�1 (E) + 3�>2(E) 6 �

 ��E� ,1

⇤
,

and D�

E
= |{D 2 +1(� , x) : DE 2 G}| is the number of edges from E to+1(� , x) which are present

in G.

Proof. Roughly speaking, since Ö
⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x) contains monomials that depend

only on (xDxE)DE2⇢(�), Lemma B.22 implies that by taking the expectation, we can get rid of
most of the terms, and obtain a simple expression that can be easily bounded. The detailed
proof can be found in Appendix B.3.1.6. ⇤

B.1.3.6 Tight bounds for pleasant multigraphs
The following two lemmas study the probability of safety %�

B
:

Lemma B.30. There exists a non-decreasing function %B : ö! [0, 1] such that:

• %B(✓) = 0 for every ✓ < 0.

• %B(✓) > 4�43 for every ✓ > 0.

• %B(✓) > 1 � ◆
2 for every ✓ > �

4 , where ◆ is as in Lemma B.9.

• If = is large enough, then for every (B , C)-pleasant multigraph � with C = log =, we have

%
�

B
=

÷
E2+(�)

%B

�
� � 3�1 (E) � 3�>2(E)

�
,

where %�
B

is as in Lemma B.29.

385

Proof. The proof can be found in Appendix B.3.1.7. ⇤

Lemma B.31. Let � be an (B , C)-pleasant multigraph, where C = log =. Let %�
B

be as in
Lemma B.29. Assume that � > 1. We have the following:

• If 3�1 (E) + 3�>2(E) 6 � for every E 2 +(�), then for = large enough, we have %�
B
> 1

=

2
�

.

• If there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then %�
B
= 0.

Proof. The proof can be found in Appendix B.3.1.7. ⇤

Now we are ready to prove tight lower and upper bounds on Ö
⇥
Y�

⇤
for every pleasant

multigraph.
Lemma B.32. Let � be an (B , C)-pleasant multigraph, where C = log =. If � >
max

�
1, 100 , 100

and = is large enough, then

• If |⇢000>2(�)| 6 log =
12 log(2

⌘) and 3�1 (E)+ 3�>2(E) 6 � for every E 2 +(�), then for = large enough,
we have

%
�

B

✓
1 � 1

=

1
16

◆ ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6 Ö
⇥
Y�

⇤
6 %�

B

✓
1 + 1

=

1
16

◆ ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

(B.1.26)

• If |⇢000>2(�)| > log =
12 log(2

⌘) or there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then for =
large enough, we have

|Ö
⇥
Y�

⇤
| 6 4

=

1
12

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
, (B.1.27)

where %�
B

is as in Lemma B.29.
Proof. We have:

Ö
⇥
Y�

⇤
= Ö

⇥
Y�

��EF1 ,� ⇤
· ê[EF1 ,�] +Ö

⇥
Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
]

= Ö
h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i
+Ö

h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F12,�(x)

i
+Ö

⇥
Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
],

where the last equality follows from Eq. (B.1.25). By combining this with Lemma B.26,
Lemma B.27 and Lemma B.29, we get
%
�

B
� 2p

=

� 3
=

1
6
·
✓
2
⌘

◆ |⇢000>2(�)|! ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6 Ö
⇥
Y�

⇤
6

%
�

B
+ 2p

=

+ 3
=

1
6
·
✓
2
⌘

◆ |⇢000>2(�)|! ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
,

(B.1.28)

386

We distinguish between two cases:

(1) If |⇢000>2(�)| 6 log =
12 log(2

⌘) , we have

3
=

1
6
·
✓
2
⌘

◆ |⇢000>2(�)|
6

3
=

1
6
· = 1

12 =
3
=

1
12
.

In this case, we get
✓
%
�

B
� 4
=

1
12

◆ ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6 Ö
⇥
Y�

⇤
6

✓
%
�

B
+ 4
=

1
12

◆ ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
,

(B.1.29)

We will further split case (1) into two subcases:

(i) If 3�1 (E) + 3�>2(E) 6 � for every E 2 +(�), then Lemma B.31 implies that for =
large enough, we have %�

B
> 1

=

2
�

. Since � > 100 , we have

4
=

1
12%�

B

6
4= 2

�

=

1
12
6

4= 1
50

=

1
12
6

1
=

1
16
,

where the last inequality is true for = large enough. By combining this with
Eq. (B.1.29), we get Eq. (B.1.26).

(ii) If there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then Lemma B.31 implies
that %�

B
= 0. By combining this with Eq. (B.1.29) and using the fact that ⌘

2 6 1,
we get Eq. (B.1.27).

(2) If |⇢000>2(�)| > log =
12 log(2

⌘) , we have

⇣ ⌘
2

⌘ |⇢000>2(�)|
=

1� 2
⌘

� |⇢000>2(�)| 6
1
=

1
12
,

hence, Eq. (B.1.28) implies that

��Ö⇥
Y�

⇤ �� 6
✓✓
%
�

B
+ 2p

=

◆ ⇣ ⌘
2

⌘ |⇢000>2(�)|
+ 3
=

1
6

◆ ✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|

6
✓✓
%
�

B
+ 2p

=

◆
1
=

1
12

+ 3
=

1
6

◆ ✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|

6
4
=

1
12

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
.

387

⇤

The following lemma provides an upper bound on the expectation Ö
⇥
Y�

⇤
for a

significant (B , C)-pleasant multigraph � in terms of the expectation Ö
⇥
Y⇠

⇤
for a cycle ⇠

with BC edges of multiplicity 1.

Lemma B.33. Assume that � > max
�
1, 100 , 100

, and let � 2 NBSAW⇤

B ,C
.

• If 3�1 (E) + 3�>2(E) 6 � for every E 2 +(�), then for = large enough, we have

Ö
⇥
Y�

⇤
>

1
2= 2

�

·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

• If there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then for = large enough, we have

��Ö⇥
Y�

⇤ �� 6 4
=

1
12

·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

Proof. This is a direct corollary of Lemma B.32, Lemma B.31, and the fact that every
� 2 NBSAW⇤

B ,C
is an (B , C)-pleasant multigraph that satisfies ⇢000>2(�) = ú. ⇤

B.1.4 Bounds for products of block self-avoiding-walks
Lemma B.34. Let � = �(1) � �(2), where �(1) and �(2) are two (B , C)-pleasant multigraphs
such that +(�(1)) \ +(�(2)) = ú, and C = log =. Assume that |⇢000>2(�)| 6 log =

12 log(2
⌘) and

3
�

1 (E) + 3�>2(E) 6 � for every E 2 +(�). If � > max
�
1, 200 , 100

, then for = large enough, we

have
Ö

⇥
Y�

⇤
6

✓
1 + 4

=

1
16

◆
· Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤
.

Proof. From Lemma B.30, we have

%
�

B
=

÷
E2+(�)

%B

�
� � 3�1 (E) � 3�>2(E)

�

= ©≠
´

÷
E2+(�(1))

%B

�
� � 3�1 (E) � 3�>2(E)

�™Æ
¨
· ©≠
´

÷
E2+(�(2))

%B

�
� � 3�1 (E) � 3�>2(E)

�™Æ
¨

= ©≠
´

÷
E2+(�(1))

%B

�
� � 3�(1)

1 (E) � 3�(1)
>2 (E)

�™Æ
¨
· ©≠
´

÷
E2+(�(2))

%B

�
� � 3�(2)

1 (E) � 3�(2)
>2 (E)

�™Æ
¨

= %
�(1)
B

· %�(2)
B

.

(B.1.30)

Since �(1) and �(2) are (B , C)-pleasant and +(�(1)) \+(�(2)) = ú, the multigraph � =
�(1) ��(2) is (B , 2C)-pleasant, i.e., � is (B , 2 log =)-pleasant. Now since+(�1)\+(�2) = ú,
|⇢000>2(�)| 6 log =

12 log(2
⌘) and 3�1 (E) + 3�>2(E) 6 � for every E 2 +(�), we have:

388

• For every E 2 +(�(1)), we have 3�(1)
1 (E) + 3�(1)

>2 (E) = 3
�

1 (E) + 3�>2(E) 6 �.

• For every E 2 +(�(2)), we have 3�(2)
1 (E) + 3�(2)

>2 (E) = 3
�

1 (E) + 3�>2(E) 6 �.

• Since |⇢000>2(�)| = |⇢000>2(�(1))| + |⇢000>2(�(2))|, we have |⇢000>2(�(1))| 6 log =
12 log(2

⌘) and

|⇢000>2(�(2))| 6 log =
12 log(2

⌘) .

Now if we apply Lemma B.32 to � ,�(1) and �(2) and use the fact that |⇢1(�)| =
|⇢1(�(1))| + |⇢1(�(2))|, |⇢>2(�)| = |⇢>2(�(1))| + |⇢>2(�(2))| and |⇢000>2(�)| = |⇢000>2(�(1))| +
|⇢000>2(�(2))|, we get

Ö
⇥
Y�

⇤
Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤ 6
%
�

B

✓
1 + 1

=

1
16

◆

%

�(1)
B

✓
1 � 1

=

1
16

◆
%

�(2)
B

✓
1 � 1

=

1
16

◆ (⇤)
=

✓
1 + 1

=

1
16

◆
✓
1 � 1

=

1
16

◆ ✓
1 � 1

=

1
16

◆ (†)
6

✓
1 + 4

=

1
16

◆
,

where (⇤) follows from Equation (B.1.30) and (†) is true for = is large enough. ⇤

Lemma B.35. Let� = �(1)��(2), where�(1),�(2) 2 NBSAW⇤
B ,C

are such that+(�(1))\+(�(2)) =
ú, and C = log =. If � > max

�
1, 200 , 100

, then

• If 3�1 (E) + 3�>2(E) 6 � for every E 2 +(�), then for = large enough, we have

Ö
⇥
Y�

⇤
6

✓
1 + 4

=

1
16

◆
· Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤
.

• If there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then for = large enough, we have

��Ö⇥
Y�

⇤ �� 6 4
=

1
12

·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

Proof. Since �(1),�(2) 2 NBSAW⇤
B ,C

and +(�(1)) \+(�(2)) = ú, we have |⇢000>2(�)| = ú. The
lemma now follows immediately from Lemma B.32 and Lemma B.34. ⇤

Now we will study products of nice block self-avoiding-walks sharing a vertex.

Lemma B.36. Let� = �(1)��(2), where�(1),�(2) 2 NBSAW⇤
B ,C

are such that+(�(1))\+(�(2)) <
ú, � is an (B , 2C)-pleasant multigraph, and C = log =. If � > max

�
1, 200 , 100

, then

• If |⇢000>2(�)| 6 log =
12 log(2

⌘) and 3�1 (E)+ 3�>2(E) 6 � for every E 2 +(�), then for = large enough,
we have

Ö
⇥
Y�

⇤
6

⇣
1 +

◆

2

⌘
·
✓
4= · 4163/�

⌘2
3(1 � ◆)

◆ |⇢(�(1))\⇢(�(2))|
· Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤
,

where ◆ is as in Lemma B.9.

389

• If |⇢000>2(�)| > log =
12 log(2

⌘) or there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then for =
large enough, we have

��Ö⇥
Y�

⇤ �� 6 4
=

1
12

·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

Proof. If |⇢000>2(�)| > log =
12 log(2

⌘) or there exists E 2 +(⇢1(�)) such that 3�1 (E) + 3�>2(E) > �, then
Lemma B.32 implies that

Ö
⇥
Y�

⇤
6

4
=

1
12

·
✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
.

Now assume that |⇢000>2(�)| 6 log =
12 log(2

⌘) and 3�1 (E) + 3�>2(E) 6 � for every E 2 +(�). If we
apply Lemma B.32 to � ,�(1) and �(2), and using the fact that ⇢000>2(�(1)) = ⇢

000
>2(�(2)) = ú,

we get

Ö
⇥
Y�

⇤
Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤ 6
%
�

B

✓
1 + 1

=

1
16

◆

%

�(1)
B

✓
1 � 1

=

1
16

◆
%

�(2)
B

✓
1 � 1

=

1
16

◆
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)|�|⇢1(�(1))|�|⇢1(�(2))|

⇥
✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|�|⇢>2(�(1))|�|⇢>2(�(2))|
.

Now since ⌘ 6 2, if = is large enough, we get

Ö
⇥
Y�

⇤
Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤ 6
✓
1 + 4

=

1
16

◆
· %

�

B

%

�(1)
B

%

�(2)
B

·
✓
⌘3
2=

◆ |⇢1(�)|�|⇢1(�(1))|�|⇢1(�(2))| ✓
3

=

◆ |⇢>2(�)|�|⇢>2(�(1))|�|⇢>2(�(2))|
.

(B.1.31)
Now since � = �(1) � �(2), we have

⇢1(�) ✓ ⇢1(�(1)) [⇢1(�(2)) and ⇢>2(�(1)) [⇢>2(�(2)) ✓ ⇢>2(�).

Furthermore,
�
⇢1(�(1)) [⇢1(�(2))

�
\ ⇢1(�)

=
�
⇢1(�(1)) \ ⇢1(�(2))

�
[

�
⇢1(�(1)) \ ⇢>2(�(2))

�
[

�
⇢>2(�(1)) \ ⇢1(�(2))

�
,

which implies that,

|⇢1(�(1))| + |⇢1(�(2))| � |⇢1(�)|
= |⇢1(�(1)) \ ⇢1(�(2))| + |⇢1(�(1)) \ ⇢1(�(2))| � |⇢1(�)|
= 2

��
⇢1(�(1)) \ ⇢1(�(2))

�� + ��
⇢1(�(1)) \ ⇢>2(�(2))

�� + ��
⇢>2(�(1)) \ ⇢1(�(2))

��
.

(B.1.32)

390

On the other hand,

⇢>2(�) \
�
⇢>2(�(1)) [⇢>2(�(2))

�
=

�
⇢1(�(1)) \ ⇢1(�(2))

�
,

which implies that

|⇢>2(�)| � |⇢>2(�(1))| � |⇢>2(�(2))|
= |⇢>2(�)| � |⇢>2(�(1)) [⇢>2(�(2))| � |⇢>2(�(1)) \ ⇢>2(�(2))|
= |⇢1(�(1)) \ ⇢1(�(2))| � |⇢>2(�(1)) \ ⇢>2(�(2))|

(B.1.33)

By combining Eq. (B.1.32) and Eq. (B.1.33), we get

✓
⌘3
2=

◆ |⇢1(�)|�|⇢1(�(1))|�|⇢1(�(2))| ✓
3

=

◆ |⇢>2(�)|�|⇢>2(�(1))|�|⇢>2(�(2))|

6
✓
⌘3
2=

◆�2|⇢1(�(1))\⇢1(�(2))|�|⇢1(�(1))\⇢>2(�(2))|�|⇢>2(�(1))\⇢1(�(2))|
·
✓
3

=

◆ |⇢1(�(1))\⇢1(�(2))|�|⇢>2(�(1))\⇢>2(�(2))|

=
✓
⌘2
3

4=

◆�|⇢1(�(1))\⇢1(�(2))|
·
✓
⌘3
2=

◆�|⇢1(�(1))\⇢>2(�(2))|�|⇢>2(�(1))\⇢1(�(2))|
·
✓
3

=

◆�|⇢>2(�(1))\⇢>2(�(2))|

(⇤)
6

✓
⌘2
3

4=

◆�|⇢1(�(1))\⇢1(�(2))|�|⇢1(�(1))\⇢>2(�(2))|�|⇢>2(�(1))\⇢1(�(2))|�|⇢>2(�(1))\⇢>2(�(2))|

=
✓
⌘2
3

4=

◆�|⇢(�(1))\⇢(�(2))|
.

where the last inequality follows from the fact that ⌘ 6 2. By combining this with Eq. (B.1.31),
we get

Ö
⇥
Y�

⇤
Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤ 6
✓
1 + 4

=

1
16

◆
· %

�

B

%

�(1)
B

%

�(2)
B

·
✓

4=
⌘2
3

◆ |⇢(�(1))\⇢(�(2))|
. (B.1.34)

Now from Lemma B.30, we have

%
�

B
=

÷
E2+(�)

%B

�
� � 3�1 (E) � 3�>2(E)

�

= ©≠
´

÷
E2+(�(1))\+(�(2))

%B

�
� � 3�1 (E) � 3�>2(E)

�™Æ
¨
· ©≠
´

÷
E2+(�(2))\+(�(1))

%B

�
� � 3�1 (E) � 3�>2(E)

�™Æ
¨

⇥ ©≠
´

÷
E2+(�(1))\+(�(2))

%B

�
� � 3�1 (E) � 3�>2(E)

�™Æ
¨
.

Now for every E 2 +(�), we have

3
�

1 (E) + 3�>2(E) = 3
⌧(�)(E) > 3⌧(�(1))(E) = 3

�(1)
1 (E) + 3�(1)

>2 (E).

391

Similarly, we gave
3
�

1 (E) + 3�>2(E) > 3
�(2)
1 (E) + 3�(2)

>2 (E).
From Lemma B.30, we know that the function %B is non-decreasing. Therefore,

%
�

B
6 ©≠

´
÷

E2+(�(1))\+(�(2))
%B

�
� � 3�(1)

1 (E) � 3�(1)
>2

�™Æ
¨
· ©≠
´

÷
E2+(�(2))\+(�(1))

%B

�
� � 3�(2)

1 (E) � 3�(2)
>2 (E)

�™Æ
¨

⇥ ©≠
´

÷
E2+(�(1))\+(�(2))

min
n
%B

�
� � 3�(1)

1 (E) � 3�(1)
>2

�
, %B

�
� � 3�(2)

1 (E) � 3�(2)
>2 (E)

�o™Æ
¨

=

©≠
´

÷
E2+(�(1))

%B

�
� � 3�(1)

1 (E) � 3�(1)
>2

�™Æ
¨
· ©≠
´

÷
E2+(�(2))

%B

�
� � 3�(2)

1 (E) � 3�(2)
>2 (E)

�™Æ
¨÷

E2+(�(1))\+(�(2))
max

n
%B

�
� � 3�(1)

1 (E) � 3�(1)
>2

�
, %B

�
� � 3�(2)

1 (E) � 3�(2)
>2 (E)

�o

=
%

�(1)
B

%

�(2)
B÷

E2+(�(1))\+(�(2))
max

n
%B

�
� � 3�(1)

1 (E) � 3�(1)
>2

�
, %B

�
� � 3�(2)

1 (E) � 3�(2)
>2 (E)

�o ,

where the last equality follows from applying Lemma B.30 to �(1) and �(2). Therefore,

%
�

B

%

�(1)
B

%

�(2)
B

6
÷

E2+(�(1))\+(�(2))
�E , (B.1.35)

where

�E = min
8><
>:

1

%B

�
� � 3�(1)

1 (E) � 3�(1)
>2

� , 1

%B

�
� � 3�(2)

1 (E) � 3�(2)
>2 (E)

�
9>=
>;.

Now for every vertex E 2 +(�(1)) \+(�(2)), we have:

• If 3�(1)
1 (E) + 3�(1)

>2
�
6 3�

4 or 3�(2)
1 (E) + 3�(2)

>2
�
6 3�

4 , then Lemma B.30 implies that

�E 6
1

1 � ◆
2
. (B.1.36)

• If 3�(1)
1 (E) + 3�(1)

>2
�
> 3�

4 and 3�(2)
1 (E) + 3�(2)

>2
�
> 3�

4 , then Lemma B.30 implies that

�E 6 443
. (B.1.37)

Now for every set E of edges, let 3E(E) be the number of edges in E which are incident
to E. We have:

3
⇢(�(1))[⇢(�(2))(E) = 3

⌧(�)(E) = 3
�

1 (E) + 3�>2(E) 6 �,

392

3
⇢(�(1))(E) = 3

⌧(�(1))(E) = 3

�(1)
1 (E) + 3�(1)

>2 (E) > 3�
4 ,

and

3
⇢(�(2))(E) = 3

⌧(�(2))(E) = 3

�(2)
1 (E) + 3�(2)

>2 (E) > 3�
4 .

Therefore, if 3�(1)
1 (E) + 3�(1)

>2
�
> 3�

4 and 3�(2)
1 (E) + 3�(2)

>2
�
> 3�

4 , we have

3
⇢(�(1))\⇢(�(2))(E) = 3

⇢(�(1))(E) + 3⇢(�(2))(E) � 3⇢(�(1))[⇢(�(2))(E) >
�
2 . (B.1.38)

Now define the sets

+
3=0
�(1) ,�(2)

=
n
E 2 +(�(1)) \+(�(2)) : 3

⇢(�(1))\⇢(�(2))(E) = 0
o

and
+
3>0
�(1) ,�(2)

=
n
E 2 +(�(1)) \+(�(2)) : 3

⇢(�(1))\⇢(�(2))(E) > 0
o
.

Clearly,
n
+
3=0
�(1) ,�(2)

,+
3>0
�(1) ,�(2)

o
is a partition of+(�(1))\+(�(2)). Therefore, from Eq. (B.1.35)

and Eq. (B.1.36), we get

%
�

B

%

�(1)
B

%

�(2)
B

6
©≠≠≠
´

÷
E2+3=0

�(1) ,�(2)

�E

™ÆÆÆ
¨
·
©≠≠≠
´

÷
E2+3>0

�(1) ,�(2)

�E

™ÆÆÆ
¨
6

1
�
1 � ◆

2
� ��+3=0

�(1) ,�(2)

�� ·
÷

E2+3>0
�(1) ,�(2)

�E

=
1

�
1 � ◆

2
� ��+3=0

�(1) ,�(2)

�� ·
÷

E2+3>0
�(1) ,�(2)

�̃
3
⇢(�(1))\⇢(�(2))(E),

(B.1.39)

where
�̃ = max

E2+3>0
�(1) ,�(2)

�

1/3
⇢(�(1))\⇢(�(2))(E)

E
.

Now from Eq. (B.1.36), Eq. (B.1.37) and Eq. (B.1.38), we get

�̃ 6 max

(
1

1 � ◆
2
, 4

43
�/2

)
6
4

83/�

1 � ◆
2
.

On the other hand, since

+
3>0
�(1) ,�(2)

=
ÿ

DE2⇢(�(1))\⇢(�(2))
{D , E},

393

it is easy to see that÷
E2+3>0

�(1) ,�(2)

�̃
3
⇢(�(1))\⇢(�(2))(E) = �̃

2|⇢(�(1))\⇢(�(2))|

6

4

83/�

1 � ◆
2

!2|⇢(�(1))\⇢(�(2))|

6
✓
4

163/�

1 � ◆

◆ |⇢(�(1))\⇢(�(2))|
.

By combining this with Eq. (B.1.34) and Eq. (B.1.39), we get

Ö
⇥
Y�

⇤
Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤ 6
✓
1 + 4

=

1
16

◆

�
1 � ◆

2
� ��+3=0

�(1) ,�(2)

�� ·
✓
4= · 4163/�

⌘2
3(1 � ◆)

◆ |⇢(�(1))\⇢(�(2))|
. (B.1.40)

Now since �(1),�(2) 2 NBSAW⇤
B ,C

and � = �(1) � �(2) is (B , C)-pleasant, we can have at
most one vertex in +3=0

�(1) ,�(2)
. Therefore,

Ö
⇥
Y�

⇤
Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤ 6
✓
1 + 4

=

1
16

◆

1 � ◆
2

·
✓
4= · 4163/�

⌘2
3(1 � ◆)

◆ |⇢(�(1))\⇢(�(2))|

6
⇣
1 +

◆

2

⌘
·
✓
4= · 4163/�

⌘2
3(1 � ◆)

◆ |⇢(�(1))\⇢(�(2))|
,

where the last inequality is true for = large enough. ⇤

Lemma B.37. Let � = �
0 � �00, where �0 = �

0
(1) � �

0
(2) and �

00 = �
00
(1) � �

00
(2) for some

�
0
(1),�

0
(2),�

0
(1),�

0
(2) 2 NBSAW⇤

B ,C
, where C = log =. Assume that

• +(�0) \+(�00) = ú, +(�0(1)) \+(�0(2)) < ú and +(�00(1)) \+(�00(2)) < ú.

• �
0 and �00 are (B , 2C)-pleasant multigraphs.

If � > max
�
1, 400 , 100

, then

• If |⇢000>2(�)| 6 log =
12 log(2

⌘) and 3�1 (E)+ 3�>2(E) 6 � for every E 2 +(�), then for = large enough,
we have

Ö
⇥
Y�

⇤
6

✓
1 + 4

=

1
16

◆
· Ö

⇥
Y�(1)

⇤
· Ö

⇥
Y�(2)

⇤
.

• If |⇢000>2(�)| > log =
12 log(2

⌘) or there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then for =
large enough, we have

��Ö⇥
Y�

⇤ �� 6 4
=

1
12

·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

Proof. The lemma follows immediately from Lemma B.32 and Lemma B.34. ⇤

394

B.2 Bounds for the centered matrix
In this section, we will study

���Öh
Tr

⇣ �
&

(B) �Y�
� xxT� C⌘i ���.

Definition B.38. For every � 2 BSAWB ,C , we denote the B self-avoiding-walks that form �

as,1(�), . . . ,,C(�), and we denote the set
�
,1(�), . . . ,,C(�)

asW(�).

Definition B.39. For every self-avoiding-walk, , define

x, =
÷
DE2,

xDxE .

It is easy to see that x, = x8x9 , where 8 and 9 are the end-vertices of, . In other words, for
every 8 , 9 2 [=] and every, 2 SAWB

89
, we have x, = x8x9 .

Let us now analyze Tr
⇣ �
&

(B) �Y�
� xxT� C⌘ :

Tr
⇣ �
&

(B) �Y�
� xxT� C⌘ =

’
81 ,...,8C+12[=]:

8C+1=81

÷
;2[C]

2666664
©≠≠
´

1
|SAWB

8; 8;+1
|

✓
2=
⌘ · 3

◆
B ’
,2SAWB

8
;
8
;
+1

Y,
™ÆÆ
¨
� x8; 8;+1

3777775
=

’
81 ,...,8C+12[=]:

8C+1=81

÷
;2[C]

2666664
1

|SAWB

8; 8;+1
|

✓
2=
⌘ · 3

◆
B

·
’

,2SAWB

8
;
8
;
+1

✓
Y, �

✓
⌘3
2=

◆
B

x8; 8;+1

◆3777775
=

(= � B + 1)!

=!

✓
2=
⌘ · 3

◆
B
� C

·
’

81 ,...,8C+12[=]:
8C+1=81

÷
;2[C]

2666664
’

,2SAWB

8
;
8
;
+1

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆3777775
.

Therefore,

Tr
⇣ �
&

(B) �Y�
� xxT� C⌘ = (1 ± >(1)) · =C

✓
2

⌘ · 3

◆
BC

·
’

81 ,...,8C+12[=]:
8C+1=81

’
,12SAWB

81 82
,

,22SAWB

82 83
,

...,

,C2SAWB

8
C
8
C+1

÷
;2[C]

Y, �

✓
⌘3
2=

◆
B

x,
�

= (1 ± >(1)) · =C
✓

2
⌘ · 3

◆
BC

·
’

�2BSAWB ,C

÷
;2[C]

Y
,;(�) �

✓
⌘3
2=

◆
B

x
,;(�)

�

= (1 ± >(1)) · =C
✓

2
⌘ · 3

◆
BC

·
’

�2BSAWB ,C

Ŷ� ,

(B.2.1)

395

where
Ŷ� :=

÷
,2W(�)

Y, �

✓
⌘3
2=

◆
B

x,
�
. (B.2.2)

If we compare Eq. (B.2.1) with the non-centered case, we can see that Tr
⇣ �
&

(B) �Y�
� xxT� C⌘

has the same expression as Tr
⇣
&

(B) �Y�
C

⌘
, except that Y� is replaced with Ŷ� . The next

section is dedicated for the proof of an upper bound on
��Ö⇥

Ŷ�

��x⇤ �� for every � 2 BSAWB ,C .
This will allow us to prove an upper bound on

���Öh
Tr

⇣ �
&

(B) �Y�
� xxT� C⌘i ���.

B.2.1 An upper bound for every block self-avoiding-walk
Before proving the upper bound on

��Ö⇥
Ŷ�

��x⇤ ��, we will first informally analyze the same
quantity but for the non-truncated case. The main reason for doing so is that the non-
truncated case is much simpler, and the analysis of the non-truncated case contains many of
the elements of the proof of the truncated case. Therefore, understanding the non-truncated
case will be helpful later in understanding the much more complicated truncated case.

B.2.1.1 Warm-up with the non-truncated case
We would like to upper bound the following quantity:

������Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775

������.

The following lemma shows that the expectation of every multiplicand in the above
expression is exactly zero.

Lemma B.40. For every 8 , 9 2 [=] and every, 2 SAWB

89
, we have

Ö[Y, |x] =
✓
⌘3
2=

◆
B

x, =
✓
⌘3
2=

◆
B

x8x9 .

Proof. We have:

Ö[Y, |x] = Ö
" ÷
DE2,

YDE

�����x
#
=

÷
DE2,

Ö[YDE |x] =
÷
DE2,

✓
⌘3xDxE

2=

◆

=
✓
⌘3
2=

◆
B ÷
DE2,

xDxE =
✓
⌘3
2=

◆
B

x, =
✓
⌘3
2=

◆
B

x8x9 .

⇤

396

Lemma B.40 implies that for every, 2 W(�), we have:

Ö

Y, �

✓
⌘3
2=

◆
B

x,
����x
�
= 0.

Therefore, if there is one walk ,
0 2 W(�) such that all the edges in ,

0

have multiplicity 1 in �, then Y,0 �
✓
⌘3
2=

◆
B

x,0 is conditionally independent from✓
Y,00 �

✓
⌘3
2=

◆
B

x,00
◆
,
002W(�)\{,0}

, hence

Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775
= Ö

Y,0 �

✓
⌘3
2=

◆
B

x,0
����x
�
· Ö

266664
÷

,
002W(�)\{,0}

✓
Y,00 �

✓
⌘3
2=

◆
B

x,00
◆������x

377775
= 0.

(B.2.3)
On the other hand, if every walk, 2 W(�) has at least one edge of multiplicity >2,

we can do the following:

Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775
=

’
W✓W(�)

(�1)|W(�)|�|W | · Ö
266664

 ÷
,2W

Y,

!
· ©≠
´

÷
,2W(�)\W

✓
⌘3
2=

◆
B

x,
™Æ
¨

������x
377775

=
’

W✓W(�)
(�1)C�|W | · ©≠

´
÷

,2W(�)\W

✓
⌘3
2=

◆
B

x,
™Æ
¨
· Ö

" ÷
,2W

Y,

�����x
#
.

Therefore,������Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775

������ 6
’

W✓W(�)

✓
⌘3
2=

◆
B(|W(�)|�|W |)

·
�����Ö

" ÷
,2W

Y,

�����x
�����

=
’

W✓W(�)

✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ ��,
(B.2.4)

where
�W =

,2W

, .

397

Recall that in the non-truncated case, for every edge DE 2 ⇢(�), we have

Ö
⇥
Y<�(DE)
DE

��x⇤ =
(⌘xDxE3

2= if <�(DE) = 1,�
1 + ⌘xDxE

2
�
3

=
+ $

⇣
1
=

2

⌘
if <�(DE) > 2.

Let W 2 W(�) and let , 2 W. Define W0 = W \ {,}. We have the following
possibilities:

(a) , \ ⇢(�W0) = ú, in which case we have

Ö
⇥
Y�W

��x⇤ = Ö⇥
Y,

��x⇤ · Ö⇥
Y�W0

��x⇤ =
✓
⌘3
2=

◆
B

x, · Ö
⇥
Y�W0

��x⇤ ,
which implies that

✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ �� =
✓
⌘3
2=

◆
B(C�|W0 |)

·
��Ö⇥

Y�W0

��x⇤ ��. (B.2.5)

(b) , \ ⇢(�W0) < ú. In this case, let E =, \ ⇢(�W0) and partition E into

E1 =, \ ⇢1(�W0) =
�
4 2, \ ⇢(�W0) : 4 has multiplicity 1 in �W0

,

and

E>2 =, \ ⇢>2(�W0) =
�
4 2, \ ⇢(�W0) : 4 has multiplicity at least 2 in �W0

.

It is easy to see that we have:

��Ö⇥
Y�W

��x⇤ �� = (1 ± >(1)) ·
✓
⌘3
2=

◆ |, |�|E|
·
" ÷
DE2E1

⇣
1 + ⌘xDxE

2

⌘
3

=

+ $
✓

1
=

2

◆� #
·
��Ö⇥

Y�W0

��x⇤ ��� ⌘3
2=

� |E1 |

= (1 ± >(1))
✓
⌘3
2=

◆
B�|E1 |�|E|

·
" ÷
DE2E1

⇣
1 + ⌘xDxE

2

⌘
3

=

#
·
��Ö⇥

Y�W0

��x⇤ ��.
Therefore,
✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ ��

= (1 ± >(1))
✓
⌘3
2=

◆
B(C�|W |+1)�|E1 |�|E|

·
" ÷
DE2E1

⇣
1 + ⌘xDxE

2

⌘
3

=

#
·
��Ö⇥

Y�W0

��x⇤ ��

= (1 ± >(1))
✓
⌘3
2=

◆
B(C�|W0 |)�|E1 |�|E|

·
" ÷
DE2E1

⇣
1 + ⌘xDxE

2

⌘
3

=

#
·
��Ö⇥

Y�W0

��x⇤ ��

398

> (1 ± >(1))
✓
⌘3
2=

◆�|E1 |�|E|
·
✓⇣

1 � ⌘
2

⌘
3

=

◆ |E1 |
·
✓
⌘3
2=

◆
B(C�|W0 |)

·
��Ö⇥

Y�W0

��x⇤ ��,
which implies that

✓
⌘3
2=

◆
B(C�|W0 |)

·
��Ö⇥

Y�W0

��x⇤ ��

6 (1 ± >(1))
✓ ⌘

2
1 � ⌘

2

◆ |E1 |
·
✓
⌘3
2=

◆ |E|
·
✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ ��

= $

✓
1
=
|⇢ |

◆
·
✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ ��.
(B.2.6)

From Eq. (B.2.5) and Eq. (B.2.6), we conclude that if = is large enough, then we always
have ✓

⌘3
2=

◆
B(C�|W0 |)

·
��Ö⇥

Y�W0

��x⇤ �� 6
✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ ��. (B.2.7)

Remark B.41. Note that in Eq. (B.2.6) and in the above equation, we implicitly used ⌘
2�⌘ = >(=).

This means that if ⌘ is close to 2, then = should be large in order for the above equation to be
true. We used ⌘

2�⌘ = >(=) here because this is an informal discussion, and using ⌘
2�⌘ = >(=)

will help us in illustrating the proof strategy in a simple way. However, when we formally
compute the upper bound for the truncated case, we will not use ⌘

2�⌘ = >(=). The main
reason why we avoided using ⌘

2�⌘ = >(=) in the formal proof is because we do not want
to require = to be larger than necessary in order for our results to hold. More precisely, if
3 � 1 and ⌘ is close to 2, the weak recovery problem should be easy, and we should not
require = to be too large.

If, \ ⇢(�W0) < ú, then Eq. (B.2.6) implies that
✓
⌘3
2=

◆
B(C�|W0 |)

·
��Ö⇥

Y�W0

��x⇤ �� 6 $
✓

1
=

◆
·
✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ ��.
Now if every walk inW(�) contains at least one edge of multiplicity >2 in �, then for

every, 2 W(�), we have
✓
⌘3
2=

◆
B(C�|W(�)\{,}|)

·
��Ö⇥

Y�W(�)\{,}

��x⇤ �� 6 $
✓

1
=

◆
·
✓
⌘3
2=

◆
B(C�|W(�)|)

·
��Ö⇥

Y�W(�)

��x⇤ ��
= $

✓
1
=

◆
·
��Ö⇥

Y�

��x⇤ ��.
On the other hand, for every W (W(�), there exists , 2 W(�) such that W ✓
W(�) \ {,}. From Eq. (B.2.7) we can deduce that

✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ �� 6
✓
⌘3
2=

◆
B(C�|W(�)\{,}|)

·
��Ö⇥

Y�W(�)\{,}

��x⇤ ��
399

6 $
✓

1
=

◆
·
��Ö⇥

Y�

��x⇤ ��.
If we put this in Eq. (B.2.4), we get������Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775

������ 6
��Ö⇥

Y�

��x⇤ �� + ’
W(W(�)

✓
⌘3
2=

◆
B(C�|W |)

·
��Ö⇥

Y�W

��x⇤ ��

6
��Ö⇥

Y�

��x⇤ �� + ’
W(W(�)

$

✓
1
=

◆
·
��Ö⇥

Y�

��x⇤ ��

6
✓
1 + $

✓
2|W(�)| � 1

=

◆◆
·
��Ö⇥

Y�

��x⇤ ��
=

✓
1 + $

✓
2C � 1
=

◆◆
·
��Ö⇥

Y�

��x⇤ ��
= (1 + >(1)) ·

��Ö⇥
Y�

��x⇤ ��,

(B.2.8)

where the last equality follows from the fact that 2C 6 2 log = = =
 = >(=), assuming that

 < 1.
In summary, if there is at least one walk inW(�) such that all its edges have multiplicity

1 in �, then ������Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775

������ = 0.

On the other hand, if every walk inW(�) contains at least one edge of multiplicity >2 in
�, then ������Ö

266664
÷

,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775

������ 6 (1 + >(1)) ·
��Ö⇥

Y�

��x⇤ ��.
An approximate version of this phenomenon occurs in the truncated case. We will show

that if there is at least one walk inW(�) such that all its edges have multiplicity 1 in �
and all its vertices have low degrees in �, then

��Ö⇥
Ŷ�

��x⇤ �� will be very small. In all the other
cases, we will show that

��Ö⇥
Ŷ�

��x⇤ �� is not too large compared to
��Ö⇥

Y�

��x⇤ ��.
As we will see, most nice block self-avoiding-walks have many walks whose edges are

all of multiplicity 1. This means that the multigraphs that contributed significantly in the
case of the non-centered matrix Ö

h
Tr

⇣
&
B
�
Y
�
C

⌘i
, will contribute very little in the case of the

centered matrix Ö
h
Tr

⇣ �
&

(B) �Y�
� xxT� C⌘i .

On the other hand, multigraphs that contributed negligibly in the case of the non-
centered matrixÖ

h
Tr

⇣
&
B
�
Y
�
C

⌘i
, will contribute a comparable amount in the case of the cen-

400

tered matrix Ö
h
Tr

⇣ �
&

(B) �Y�
� xxT� C⌘i . This essentially means that Ö

h
Tr

⇣ �
&

(B) �Y�
� xxT� C⌘i

is negligible with respect to Ö
h
Tr

⇣
&
B
�
Y
�
C

⌘i
.

B.2.1.2 Analyzing walks of multiplicity 1
The discussion in the previous section motivates the following definition:

Definition B.42. Let � 2 BSAWB ,C . For every, 2 W(�), we say that, is of multiplicity
1 in � if every edge in, is of multiplicity 1 in �. Define

W1(�) =
�
, 2 W(�) : , is of multiplicity 1 in �

,

and
W>2(�) =W(�) \W1(�).

In the previous section, we used the fact that if � contains a walk of multiplicity 1, then������Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x

377775

������ = 0.

We would like to show something similar for the truncated case. Recall that if an edge
has both its end-vertices in S1(�) \ S>2(�),23 then there is a significant probability that it
will be a safe edge24, in which case it will behave similarly to the non-truncated case. This
motivates the following definition:

Definition B.43. A walk , 2 W1(�) is said to be reassuring if +(,) ✓ S1(�) \ S>2(�).
We denote the set of reassuring walks inW1(�) asW1A(�).

A walk, 2 W1(�) that is not reassuring is said to be disturbing. We denote the set of
disturbing walks inW1(�) asW13(�).

Clearly,
�
W1A(�),W13(�)

is a partition ofW1(�).

Roughly speaking, if � contains a reassuring walk, then with significant probability
this walk will behave similarly to the truncated case. This will cause

��Ö⇥
Ŷ�

��x⇤ �� to be small.

Definition B.44. Recall Definition B.2 and let � 2 BSAWB ,C . For every walk , 2 W(�),
if +(,) is completely (G,�)-safe, we say that , is (G,�)-walk-safe. We say that , is
(G,�)-walk-unsafe if it is not (G,�)-walk-safe.

We say that a subsetW ofW(�) is completely (G,�)-walk-safe if all the walks in it are
(G,�)-walk-safe. Similarly, we say thatW is completely (G,�)-walk-unsafe if all the walks in
it are (G,�)-walk-unsafe.

If G and � are clear from the context, we drop (G,�) and simply write walk-safe,
completely walk-safe, walk-unsafe, and completely walk-unsafe.

23Recall Definition B.4 and Definition B.5
24Recall Definition B.2

401

We emphasize that in order for a set of walks to be completely walk-unsafe, it is not
necessary that the set of vertices forming the walks in it is completely unsafe: It is sufficient
that every walk contains at least one unsafe vertex.
Definition B.45. Let � 2 BSAWB ,C . For everyW ⇢W(�), we define

�W =

,2W

, ,

and so
Y�W = Y

,2W
,
=

÷
,2W

Y, .

Lemma B.46. Let � 2 BSAWB ,C be such that C = log =. We have

��Ö⇥
Ŷ�

��x⇤ �� 6 =

2
�

23�B·|W1A(�)| ·
✓
6
⌘

◆ |⇢01(�)|
· 2|W1(�)| ·

✓
⌘3
2=

◆
B |W1(�)|

·
’

W>2✓W>2(�)
�W>2(x),

where

�W>2(x) =
✓
33
=

◆
B(|W>2(�)|�|W>2 |) ✓ ⌘3

2=

◆ |⇢1(�W>2)|
· Ö

⇥
|Ỹ
⇢>2(�W>2) |

��x⇤ ,
and Ỹ

⇢>2(�W>2) is as in Definition B.14
Proof. We only provide a high level description of the proof here. The detailed proof can
be found in Appendix B.3.2.1.

We start by upper bounding the probability that no reassuring walk is walk-safe. Then,
we show that in the event that there is at least one reassuring walk that is walk-safe, the
conditional expectation will be zero.

Now for the case that no reassuring walk is walk-safe, we write an equation that is
similar to Eq. (B.2.4), and upper bound each summand using the same techniques that
allowed us to prove Lemma B.15.

See Appendix B.3.2.1 for the details. ⇤

B.2.1.3 Analyzing walks of multiplicity at least 2
Lemma B.47. Let � 2 BSAWB ,C be such that C = · log = and let �W>2(x) be as in Lemma B.46.
If 6 1

100 and = is large enough, we have

’
W>2✓W>2(�)

�W>2(x) 6
2 ·

� ⌘3
2=

� |⇢1(�W>2(�))| ·
�
3

=

� |⇢1>2(�)|

÷
E2L>2(�)

=

1
4(3�>2(E)��)

·
÷

DE2⇢0>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 332

=

p
=

�
,

(B.2.9)
where �W>2(x) is as in Lemma B.46.
Proof. We use Lemma B.16 and perform calculations that are similar to those in Eq. (B.2.8).
The detailed proof can be found in Appendix B.3.2.2. ⇤

402

B.2.1.4 Proof of the upper bound for every block self-avoiding walk
Definition B.48. For every � 2 BSAWB ,C , define the following quantity:

*̂�(x) = 2=

� · 2|⇢01(�)|

2�B·|W1A(�)| ·*�(x),

where*�(x) is as in Definition B.7.

Lemma B.49. If � > max{100 , 1}, 6 1
100 and = is large enough, then for every� 2 BSAWB ,C ,

we have ��Ö⇥
Ŷ�

��x⇤ �� 6 *̂�(x),

where *̂�(x) is as in Definition B.48.

Proof. From Lemma B.46 and Lemma B.47, we have
��Ö⇥

Ŷ�

��x⇤ ��
6

2|W1(�)|+1

23�B·|W1A(�)| ·
=

2
� ·

� 6
⌘

� |⇢01(�)| ·
� ⌘3

2=
� B |W1(�)|+|⇢1(�W>2(�))| ·

�
3

=

� |⇢1>2(�)|

÷
E2L>2(�)

=

1
4(3�>2(E)��)

⇥
÷

DE2⇢0>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 332

=

p
=

�

=
2|W1(�)|+1

23�B·|W1A(�)| ·
=

2
� ·

� 6
⌘

� |⇢01(�)| ·
� ⌘3

2=
� |⇢1(�)| ·

�
3

=

� |⇢1>2(�)|

÷
E2L>2(�)

=

1
4(3�>2(E)��)

·
÷

DE2⇢0>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 332

=

p
=

�

=
2|W1(�)|+1

23�B·|W1A(�)| ·*�(x).

Now since � > max{100 , 1} and B > 1, we have

3�B · |W1A(�)| > �B · |W1A(�)| + |W1A(�)|,

hence

��Ö⇥
Ŷ�

��x⇤ �� 6 2|W1A(�)|+|W13(�)|+1

2�B·|W1A(�)|+|W1A(�)| ·*�(x)

= 2 · 2|W13(�)|

2�B·|W1A(�)| ·*�(x).

Observe that for every , 2 W13(�), there exists at least one edge 4 2 , such that
4 2 ⇢01(�) or 4 2 ⇢31 (�), where ⇢31 (�) is as in Eq. (B.1.8). Therefore,

|W13(�)| 6 |⇢01(�)| + |⇢31 (�)|,

403

which implies that

2|W13(�)| 6 2|⇢01(�)| · 2|⇢31 (�)| 6 2|⇢01(�)| ·
✓
6
⌘

◆ |⇢31 (�)| (⇤)
6 2|⇢01(�)| · =

� ,

where (⇤) follows from Lemma B.51. We conclude that

��Ö⇥
Ŷ�

��x⇤ �� 6 2=

� · 2|⇢01(�)|

2�B·|W1A(�)| ·*�(x) = *̂�(x).

⇤

B.3 Proofs of technical lemmas for the trace
bounds

B.3.1 Proofs of technical lemmas for the non-centered ma-
trix

B.3.1.1 Upper bound on the probability of having unsafe vertices
Proof of Lemma B.9. By the union bound, we have

ê

3
>

G�⌧(�)(E) >
�
4

����x
�

6
’

(✓[=]\+(�):
|(|=d�/4e

ê
⇥�
8D 2 (, DE 2 G}

��x⇤ = ’
(✓[=]\+(�):
|(|=d�/4e

÷
D2(

⇣
1 + ⌘

2xDE
⌘
3

=

�

6
’

(✓[=]\+(�):
|(|=d�/4e

✓
23
=

◆ |(|
=

✓
= � |+(�)|
d�/4e

◆ ✓
23
=

◆ d�/4e
6

✓
=

d�/4e

◆ ✓
23
=

◆ d�/4e

6
=
d�/4e(23)d�/4e

d�/4e!= d�/4e 6
(23)d�/4e

(d�/4e/2)d�/4e/2 6
(23)2d�/4e

(d�/4e/2)d�/4e/2 .

Now from Eq. (B.1.1), we have � > 12844
3

4 and so d�/4e/2 > 1644
3

4. Therefore,

ê

3
>

G�⌧(�)(E) >
�
2

����x
�
6

(23)2d�/4e

(1644
3

4)d�/4e/2 =
(23)2d�/4e

(243)2d�/2e = 4
�2d�/4e 6 4��/2

.

From Eq. (B.1.1), we also have

�
2 > log(2�B) + 6��B2 · log 2 + 4�2�2

B
2
✓
log 6

⌘

◆2

404

> log(2�B) + 6��B2 · log 2 + 4�2
B

2
✓
log 6

⌘

◆

= log

"
2�B · 26��B2

✓
6
⌘

◆4�2
B

2#
.

Therefore,

ê

3
>

G�⌧(�)(E) >
�
2

����x
�
6

1
2�B · 26��B2

⇣ ⌘
6

⌘4�2
B

2

.

⇤

Proof of Lemma B.11. If (is completely crossing, then for every vertex in (, we have at least
one �-cross-edge that is present in G, and which is incident to it. Therefore, we have at
least d|(|/2e �-cross-edges that are present in G. Since we have at most |+(�)|2 6 B2

C
2

�-cross-edges, the number of collections of �-cross-edges of size d|(|/2e is at most
✓
B

2
C
2

d|(|/2e

◆
6 (B2

C
2)d|(|/2e

.

Given x, the conditional probability that any particular edge is present in G is at most
⇣
1 + ⌘

2

⌘
3

=

6
23
=

.

Therefore, given x, the conditional probability that (is completely crossing can be
upper bounded by:

ê
⇥�
(is completely �-crossing in G

 ��x⇤ 6 (B2
C
2)d|(|/2e

✓
23
=

◆ d|(|/2e

=
✓
23B2

C
2

=

◆ d|(|/2e
6

✓
23B2

C
2

=

◆ |(|/2
,

where the last inequality is true for = large enough. ⇤

Proof of Lemma B.12. First notice that if E 2 S1(�) \ S>2(�), then

3
�

1 (E) 6 � 6
1
4 ·

"
log(2�B) + 12��B2 · log 2 + 8�2�2

B
2
✓
log 6

⌘

◆2
#
6
�
4 ,

and
3
�

>2(E) 6 � 6
�
4 .

Therefore,
3�(E) = 3

�

1 (E) + 3�>2(E) 6
�
2 ,

405

which implies that

ê
⇥�
+ is completely unsafe

 ��x⇤ = ê⇥�
8E 2 + , 3G�⌧(�)(E) > � � 3⌧(�)(E)

 ��x⇤
6 ê

⇢
8E 2 + , 3G�⌧(�)(E) > � �

�
2

�����x
�

= ê
⇢
8E 2 + , 3G�⌧(�)(E) >

�
2

�����x
�
.

Now for every (✓ + , define the events

E(,� ,2-2 5 =
n
(is completely �-cross-free in G

o
,

and
E(,� ,2-2 =

n
(is completely �-crossing in G

o
.

We have:

ê
⇥�
+ is completely unsafe

 ��x⇤
6 ê

⇢
8E 2 + , 3G�⌧(�)(E) >

�
2

�����x
�

=
’
(✓+
ê
⇢
8E 2 + , 3G�⌧(�)(E) >

�
2

�����x, E(,� ,2-2 5 \ E+\(,� ,2-2

�
ê
⇥
E(,� ,2-2 5 \ E+\(,� ,2-2

��x⇤

6
’
(✓+
ê
⇢
8E 2 (, 3G�⌧(�)(E) >

�
2

�����x, E(,� ,2-2 5 \ E+\(,� ,2-2

�
ê
⇥
E
+\(,� ,2-2

��x⇤

6
’
(✓+
ê
⇢
8E 2 (, 3>G�⌧(�)(E) >

�
2

�����x, E(,� ,2-2 5 \ E+\(,� ,2-2

� ✓
23B2

C
2

=

◆ (|+ |�|(|)/2
,

where the last inequality follows from Lemma B.11 and the fact that if E is cross-free, then
3
8

G�⌧(�)(E) = 0 and so 3G�⌧(�)(E) = 3
>

G�⌧(�)(E).
Now since (3>G�⌧(�)(E))E2(are conditionally mutually independent given x, and since

they are conditionally independent from E(,� ,2-2 5 \ E+\(,� ,2-2 given x, we have

ê
⇥�
+ is completely unsafe

 ��x⇤ 6 ’
(✓+

 ÷
E2(
ê

3
>

G�⌧(�)(E) >
�
2

����x
� ! ✓

23B2
C
2

=

◆ (|+ |�|(|)/2
.

Now from Lemma B.9 we get

ê
⇥�
+ is completely unsafe

 ��x⇤ 6 ’
(✓+

⇣◆
2

⌘ |(|
BC

r
23
=

! |+ |�|(|

=

◆

2 + BC
r

23
=

! |+ |

6 ◆ |+ |
,

where the last inequality is true for = large enough. ⇤

406

B.3.1.2 Upper bound on the contribution of edges of multiplicity 1
In order to prove Lemma B.15, we need a few lemmas.

The following lemma proves a result that is similar to Lemma B.15, but instead of using
the best upper bound for all the edges in ⇢11(�), we use loose upper bounds for the edges
that are incident to

�
S1(�)\S>2(�)

�
* , where* is some subset of S1(�)\S>2(�). This

lemma will be useful later in situations where we cannot guarantee that these edges are
likely to be safe.

Lemma B.50. Let � be a multigraph such that |+(�)| 6 BC = B log =. Recall Definition B.4,
Definition B.5 and Definition B.6, and let ⇢11(�) and ⇢31 (�) be as in Eq. (B.1.7) and Eq. (B.1.8),
respectively.

Let S(�) = S1(�) \ S>2(�) and let* ✓ S(�). Let E be an event such that:

(a) The event E depends only on x and G�⇢1(�), i.e., the event E is �(x,G�⇢1(�))-measurable.
In other words, if we condition on x, then E depends only (DE2G)D ,E2[=]: DE8⇢1(�). This implies
that given x, the event E is conditionally independent from (DE2G)DE2⇢1(�).

(b) For every + ✓ * , we have

ê
⇥�
+ is completely unsafe

 ��x, E⇤ 6 ◆ |+ |
.

(c) If we are given x and E, then for every + ✓ * , the event�
+ is completely safe

\

�
* \+ is completely unsafe

,

is conditionally independent from ({DE2G})DE2⇢(�).

Then,

��Ö⇥
Y�

��x, E⇤ �� 6 =

�

✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|+�(|S(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤ ,

where Ỹ�

>2 is as in Definition B.14.

Proof. It is easy to see that {⇢01(�), ⇢11(�), ⇢31 (�)} is a partition of ⇢1(�).
For every + ✓ * , define the events

E+ ,� ,2-B =
n
+ is completely �-safe in G

o
,

and
E+ ,� ,2-DB =

n
+ is completely �-unsafe in G

o
.

We have:

Ö
⇥
Y�

��x, E⇤ = ’
+✓*

Ö
⇥
Y�

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤
· ê

⇥
E+ ,� ,2-B \ E*\+ ,� ,2-DB

��x, E⇤ .
407

Now let + ✓ * and suppose that E+ ,� ,2-B \ E*\+ ,� ,2-DB occurs, i.e., + is completely
safe and * \ + is completely unsafe. Since S(�) \ + ✓ S(�) ✓ S1(�), there are at most
� · |S(�) \ + | edges of multiplicity 1 in � that are incident to vertices in S(�) \ + . In
particular, there are at most � · |S(�) \+ | edges in ⇢11(�) which are incident to vertices in
S(�) \+ .

Since every edge in⇢11(�)has both its ends inS(�), there are at least |⇢11(�)|��·|S(�)\+ |
edges in ⇢11(�) which have both their end-vertices in + . This means that there are at least
|⇢11(�)| � � · |S(�) \+ | safe edges in ⇢11(�). For every + ✓ * , let (+ be an arbitrary subset
of ⇢11(�) containing exactly max{0, |⇢11(�)|� � · |S(�) \+ |} safe edges. Note that the choice
of (+ depends only on the structure of �, and does not depend on the random sample
(G, x).

Property (a) implies that we can apply Lemma B.13 to the event E\E+ ,� ,2-B\E*\+ ,� ,2-DB
and the edges in (+ . We get:

Ö
⇥
Y�

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤

=

 ÷
DE2(+

Ö[YDE |x]
!
· Ö

⇥
Y��(+

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤

=

 ÷
DE2(+

⌘xDxE3
2=

!
· Ö

⇥
Y��(+

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤
.

Therefore,

��Ö⇥
Y�

��x, E⇤ �� 6 ’
+✓*

✓
⌘3
2=

◆ |(+ |���Ö⇥
Y��(+

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤ ���

⇥ ê
⇥
E+ ,� ,2-B \ E*\+ ,� ,2-DB

��x, E⇤

6
’
+✓*

✓
⌘3
2=

◆ |(+ |
Ö

⇥
|Y��(+ |

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤

⇥ ê
⇥
E
*\+ ,� ,2-DB

��x, E⇤

6
’
+✓*

✓
⌘3
2=

◆ |(+ |
Ö

⇥
|Y��(+ |

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤
· ◆ |* |�|+ |

,

(B.3.1)

where the last inequality follows from Property (b).
Now we upper bound |Y��(+ | as follows:

|Y��(+ | = |Y��(+ | · E2
+(��(

+
)

= |Y��(+ | ·
÷

DE2⇢(�)\(+

�
{3G(D)6�} · {3G(E)6�}

�

408

6 |Y��(+ | ·
÷

DE2⇢>2(�)

�
{3G(D)6�} · {3G(E)6�}

�

6 |Y��(+ | ·
÷

DE2⇢>2(�)

⇣
{3G\⇢>2(�)(D)6�} · {3G\⇢>2(�)(E)6�}

⌘

= |Y(��(+)\⇢1(�) | ·
÷

DE2⇢>2(�)

⇣
Y<�(DE)
DE {3G\⇢>2(�)(D)6�} · {3G\⇢>2(�)(E)6�}

⌘

= |Y
⇢1(�)\(+ | · |Ỹ�

>2 |.

Therefore,

Ö
⇥
|Y��(+ |

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤

6 Ö
h
|Y
⇢1(�)\(+ | · |Ỹ�

>2 |
���x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB

i
(⇤)
= Ö

h
|Y
⇢1(�)\(+ | · |Ỹ�

>2 |
���x, Ei

(†)
= Ö

⇥
|Y
⇢1(�)\(+ |

��x, E⇤ · Ö⇥
|Ỹ�

>2 |
��x, E⇤

(‡)
= Ö

⇥
|Y
⇢1(�)\(+ |

��x⇤ · Ö⇥
|Ỹ�

>2 |
��x, E⇤ ,

where (⇤) follows from Property (c), (†) and (‡) follow from the fact that E is �(x,G�⇢1(�))-
measurable. Hence,

Ö
⇥
|Y��(+ |

��x, E \ E+ ,� ,2-B \ E*\+ ,� ,2-DB
⇤
6 ©≠

´
÷

DE2⇢1(�)\(+
Ö

⇥
|YDE |

��x⇤™Æ
¨
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤

6
266664

÷
DE2⇢1(�)\(+

⇣
2 + ⌘

2

⌘
3

=

377775
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤

6
✓
33
=

◆ |⇢1(�)\(+ |
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤ ,

(B.3.2)

Combining Eq. (B.3.1) and Eq. (B.3.2), we get:

��Ö⇥
Y�

��x, E⇤ �� 6 ’
+✓*

✓
⌘3
2=

◆ |(+ |
· ◆ |* |�|+ |

✓
33
=

◆ |⇢1(�)\(+ |
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤

(o)
=

✓
33
=

◆ |⇢01(�)|+|⇢31 (�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤ · ’

+✓*

✓
⌘3
2=

◆ |(+ |
· ◆ |* |�|+ |

✓
33
=

◆ |⇢11(�)\(+ |

=
✓
33
=

◆ |⇢01(�)|+|⇢31 (�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤ ·

✓
⌘3
2=

◆ |⇢11(�)|
·
’
+✓*

◆ |* |�|+ |
✓
6
⌘

◆ |⇢11(�)\(+ |
,

where (o) follows from the fact that
�
⇢
0

1(�), ⇢11(�) \ (+ , ⇢31 (�)

is a partition of ⇢1(�) \ (+ .

409

Now since |(+ | > |⇢11(�)| � � · |S(�) \+ |, we have

|⇢11(�) \ (+ | 6 � · |S(�) \+ |.

Therefore,

’
+✓*

◆ |* |�|+ |
✓
6
⌘

◆ |⇢11(�)\(+ |

6
’
+✓*

◆ |* |�|+ |
✓
6
⌘

◆�·(|S(�)|�|+ |)
=

✓
6
⌘

◆�(|S(�)|�|* |) ’
+✓*

◆

✓
6
⌘

◆�� |* |�|+ |

=
✓
6
⌘

◆�(|S(�)|�|* |)
1 + ◆

✓
6
⌘

◆�� |* |
6

✓
6
⌘

◆�(|S(�)|�|* |)
1 + 1

�B

⇣ ⌘
6

⌘� ✓6
⌘

◆�� BC

=
✓
6
⌘

◆�(|S(�)|�|* |) ✓
1 + 1

�B

◆
BC

6 4
1
�B
BC

✓
6
⌘

◆�(|S(�)|�|* |)

= 4

1
�
· ·log =

✓
6
⌘

◆�(|S(�)|�|* |)
= =

�

✓
6
⌘

◆�(|S(�)|�|* |)
.

We conclude that

��Ö⇥
Y�

��x, E⇤ ��
6 =

�

✓
6
⌘

◆�(|S(�)|�|* |)
·
✓
33
=

◆ |⇢01(�)|+|⇢31 (�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤ ·

✓
⌘3
2=

◆ |⇢11(�)|

= =

�

✓
6
⌘

◆�(|S(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢01(�)|+|⇢31 (�)|+|⇢11(�)|
·
✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤

= =

�

✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|+�(|S(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤ .

⇤

Lemma B.51. Let� be a multigraph with at most BC = B log = vertices and at most BC multi-edges,
we have ✓

6
⌘

◆ |⇢31 (�)|
6 =

� .

Proof. Recall that

⇢
3

1 (�) =
�
DE 2 ⇢1(�) \ ⇢01(�) : D 8 S>2(�) or E 8 S>2(�)

.

Since every edge DE 2 ⇢31 (�) satisfies DE 2 ⇢1(�) \ ⇢01(�), we must have D 2 S1(�) and
E 2 S1(�). On the other hand, every edge in ⇢

3

1 (�) is incident to at least one vertex in

410

+(�) \ S>2(�) = I>2(�) [L>2(�). Therefore, every edge in ⇢31 (�) is a multiplicity-1 edge
that is incident to at least one vertex in S1(�) \ (I>2(�) [L>2(�)).

Since we have at most BC edges in ⌧(�), we have

�
4 · |I>2(�) [L>2(�)| 6

’
E2I>2(�)[L>2(�)

3
⌧(�)(E) 6

’
E2+(�)

3
⌧(�)(E) 6 2BC . (B.3.3)

Therefore, ��S1(�) \
�
I>2(�) [L>2(�)

� �� 6 |I>2(�) [L>2(�)|

6
8BC
�

(⇤)
6

8BC
8�2

�
2
B

2
�
log 6

⌘

�2 6
C

��
�
log 6

⌘

� ,
where (⇤) follows from Eq. (B.1.1). Now since every edge in ⇢31 (�) is is incident to at least
one vertex in S1(�) \ (I>2(�) [L>2(�)), and since every vertex in S1(�) is incident to at
most � multiplicity-1 edges, we conclude that

|⇢31 (�)| 6 C

��
�
log 6

⌘

� · � 6 C

� log 6
⌘

,

and ✓
6
⌘

◆ |⇢31 (�)|
6 4

C

� log 6
⌘

log 6
⌘ = 4

1
�
· log = = =

� .

⇤

Lemma B.52. Let � be a multigraph with at most BC = B log = vertices and at most BC multi-
edges, and let S(�) = S1(�) \ S>2(�). Assume that* ✓ S(�) and E satisfy the conditions of
Lemma B.50. Furthermore, assume that E satisfies the following additional condition:

(d) Given x, the event E is conditionally independent from ({DE2G})DE2⇢>2(�).

Then, ��Ö⇥
Y�

��x, E⇤ �� 6 = 2
�

✓
6
⌘

◆ |⇢01(�)|+�(|S(�)|�|* |) ✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ .

Proof. Let ⇢11(�) and ⇢
3

1 (�) be as in Eq. (B.1.7) and Eq. (B.1.8), respectively. From
Lemma B.50, we know that

��Ö⇥
Y�

��x, E⇤ �� 6 =

�

✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|+�(|S(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤ .

On the other hand, Property (d) implies that Ö
⇥
|Ỹ�

>2 |
��x, E⇤ = Ö⇥

|Ỹ�

>2 | |x
⇤
. Therefore,

��Ö⇥
Y�

��x, E⇤ �� 6 =

�

✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|+�(|S(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ . (B.3.4)

411

Combining this with Lemma B.51, we get

���Ö⇥
Y�

��x, E⇤ ��� 6 = 2
�

✓
6
⌘

◆ |⇢01(�)|+�(|S(�)|�|* |) ✓
⌘3
2=

◆ |⇢1(�)|
·
��Ö⇥

|Ỹ�

>2 |
��x⇤ ��.

⇤

Now we are ready to prove Lemma B.15.

Proof of Lemma B.15. Let S(�) = S1(�) \ S>2(�). By using Lemma B.12, it can be easily
seen that if we take* = S(�) and E to be an "almost sure event", i.e., ê[E] = 1, then the
conditions of Lemma B.50 and Lemma B.52 are satisfied. Therefore,��Ö⇥

Y�

��x⇤ �� = ��Ö⇥
Y�

��x, E⇤ ��
6 =

2
�

✓
6
⌘

◆ |⇢01(�)| ✓
⌘3
2=

◆ |⇢1(�)|
·
��Ö⇥

|Ỹ�

>2 |
��x⇤ ��.

⇤

B.3.1.3 Upper bound on the contribution of edges of multiplicity at
least 2

Proof of Lemma B.16. Recall the definitions of ⇢0>2(�) and ⇢1>2(�) from Definition B.6.
We have

|Ỹ�

>2 | =
÷

DE2⇢>2(�)

��Ỹ<�(DE)
DE ,⇢>2(�)

��
=

÷
DE2⇢>2(�)

��Y<�(DE)
DE

�� · {3G\⇢>2(�)(D)6�} · {3G\⇢>2(�)(E)6�}

6 ©≠
´

÷
DE2⇢0>2(�)

��Y<�(DE)
DE

��™Æ
¨
·
©≠≠
´

÷
DE2⇢1>2(�)

��Y<�(DE)
DE

��™ÆÆ
¨
· ©≠
´

÷
E2L>2(�)

{3G\⇢1>2(�)(E)6�}
™Æ
¨

=
��Y�

0

>2

�� · ��Y
�
1

>2

�� · E1 ,�>2
,

where
Y�

0

>2
=

÷
DE2⇢0>2(�)

Y<�(DE)
DE

,

Y
�
1

>2
=

÷
DE2⇢1>2(�)

Y<�(DE)
DE

,

and

E1 ,�>2 =
Ÿ

E2L>2(�)

�
3G\⇢1>2(�)(E) 6 �

.

412

Therefore,

Ö
⇥
|Ỹ�

>2 |
��x⇤ = Ö⇥

|Y�
0

>2
| · |Y

�
1

>2
| · E1 ,�>2

��x⇤
(⇤)
= Ö

⇥
|Y�

0

>2
|
��x⇤ · Ö⇥

|Y
�
1

>2
| · E1 ,�>2

��x⇤ , (B.3.5)

where (⇤) follows from the fact that given x, the random variable Y�
0

>2
is conditionally

independent from (Y
�
1

>2
, E1 ,�>2

). This is because the presence or absence of edges in ⇢0>2(�)
do not affect the degree 3G\⇢1>2(�)(E) of any vertex E 2 L>2(�).

Now let us evaluate Ö
⇥
|Y�

0

>2
|
��x⇤ and Ö

⇥
|Y
�
1

>2
| · E1 ,�>2

��x⇤ . We have

Ö
⇥
|Y�

0

>2
|
��x⇤ = ÷

DE2⇢0>2(�)
Ö

⇥
|YDE |<�(DE)

��x⇤

=
÷

DE2⇢0>2(�)

"⇣
1 + ⌘xDxE

2

⌘
3

=

✓
1 � 3

=

◆
<�(DE)

+
✓
1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

◆ ✓
3

=

◆
<�(DE)

#

6
÷

DE2⇢0>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
.

(B.3.6)
On the other hand,

Ö
⇥
|Y
�
1

>2
| · E1 ,�>2

��x⇤

=
’

(✓⇢1>2(�):
8E2L>2(�),3((E)6�

"÷
DE2(

⇣
1 + ⌘xDxE

2

⌘
3

=

✓
1 � 3

=

◆
<�(DE)

#

⇥
266664

÷
DE2⇢1>2(�)\(

✓
1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

◆ ✓
3

=

◆
<�(DE)377775

6
’

(✓⇢1>2(�):
8E2L>2(�), 3((E)6�

"÷
DE2(

23
=

#
·
266664

÷
DE2⇢1>2(�)\(

✓
23
=

◆2377775
=

’
(✓⇢1>2(�):

8E2L>2(�), 3((E)6�

✓
23
=

◆ |(|+2|⇢1>2(�)|�2|(|

=
✓
23
=

◆ |⇢1>2(�)| ’
(✓⇢1>2(�):

8E2L>2(�), 3((E)6�

✓
23
=

◆ |⇢1>2(�)|�|(|
.

(B.3.7)
Now define

⇢
1 ,8

>2(�) =
�
DE 2 ⇢1>2(�) : D 2 L>2(�) and E 2 L>2(�)

.

413

The superscript 8 indicates that the edges in ⇢
1 ,8

>2(�) are internal to L>2(�), i.e., both
end-vertices are in L>2(�). Furthermore, for every E 2 L>2(�), define:

⇢
1

>2(E ,�) =
�
DE : DE 2 ⇢1>2(�)

,

⇢
1 ,8

>2(E ,�) =
�
DE : DE 2 ⇢1>2(�) and D 2 L>2(�)

,

and
⇢
1 ,>

>2 (E ,�) =
�
DE : DE 2 ⇢1>2(�) and D 8 L>2(�)

.

The superscript > in ⇢
1 ,>

>2 (E ,�) indicates that the edges in ⇢
1 ,>

>2 (E ,�) go from E to
+(�) \ L>2(�), i.e., they go to the "outside" of L>2(�). We have the following:

• For every E 2 L>2(�),
�
⇢
1 ,8

>2(E ,�), ⇢1 ,>>2 (E ,�)

is a partition of ⇢1>2(E ,�).

• For every E 2 L>2(�), we have |⇢1>2(E ,�)| = 3
�

>2(E) > �.

•
�
⇢
1 ,8

>2(�)

[

�
⇢
1 ,>

>2 (E ,�) : E 2 L>2(�)

is a partition of ⇢1>2(�).

Now for every (✓ ⇢1>2(�), define

(
8 = (\ ⇢1 ,8>2(�),

and for every E 2 L>2(�), define

(E = (\ ⇢1>2(E ,�), (
8

E
= (\ ⇢1 ,8>2(E ,�) and (

>

E
= (\ ⇢1 ,>>2 (E ,�).

It is easy to see that (8
E
= (E \ ⇢1 ,8>2(E ,�) = (8 \ ⇢1 ,8>2(E ,�) and (>

E
= (E \ ⇢1 ,>>2 (E ,�).

Now for two sequences of sets (�8)82� and (⌫8)82� that are indexed by the same index set
�, we write (�8)82� ✓ (⌫8)82� to indicate that �8 ✓ ⌫8 for all 8 2 �. We have

’
(✓⇢1>2(�):

8E2L>2(�), 3((E)6�

✓
23
=

◆ |⇢1>2(�)|�|(|

=
’

(
8✓⇢1 ,8>2(�),

((>
E
)
E2L2(�)✓(⇢1 ,>>2 (E ,�))

E2L2(�):
8E2L>2(�), |(8

E
|+|(>

E
|6�

✓
23
=

◆ |⇢1>2(�)|�|(8 |�Õ
E2L>2(�) |(>E |

=
’

(
8✓⇢1 ,8>2(�),

((>
E
)
E2L2(�)✓(⇢1 ,>>2 (E ,�))

E2L2(�):
8E2L>2(�), |(8

E
|+|(>

E
|6�

✓
23
=

◆ |⇢1 ,8>2(�)|�|(8 | ÷
E2L>2(�)

✓
23
=

◆ |⇢1 ,>>2 (E ,�)|�|(>
E
|
,

414

hence,

’
(✓⇢1>2(�):

8E2L>2(�), 3((E)6�

✓
23
=

◆ |⇢1>2(�)|�|(|

=
’

(
8✓⇢1 ,8>2(�)

✓
23
=

◆ |⇢1 ,8>2(�)|�|(8 | ÷
E2L>2(�)

2666666664

’
(
>

E
✓⇢1 ,>>2 (E ,�):

|(8
E
|+|(>

E
|6�

✓
23
=

◆ |⇢1 ,>>2 (E ,�)|�|(>
E
|

3777777775

6
’

(
8✓⇢1 ,8>2(�)

 r
23
=

!2|⇢1 ,8>2(�)|�2|(8 | ÷
E2L>2(�)

2666666664

’
(
>

E
✓⇢1 ,>>2 (E ,�):

|(8
E
|+|(>

E
|6�

 r
23
=

! |⇢1 ,>>2 (E ,�)|�|(>
E
|
3777777775

=
’

(
8✓⇢1 ,8>2(�)

 r
23
=

!Õ
E2L>2(�) 2(|⇢1 ,8>2(E ,�)|�|(8

E
|) ÷
E2L>2(�)

2666666664

’
(
>

E
✓⇢1 ,>>2 (E ,�):

|(8
E
|+|(>

E
|6�

 r
23
=

! |⇢1 ,>>2 (E ,�)|�|(>
E
|
3777777775
.

Therefore,

’
(✓⇢1>2(�):

8E2L>2(�), 3((E)6�

✓
23
=

◆ |⇢1>2(�)|�|(|

6
’

(
8✓⇢1 ,8>2(�)

÷
E2L>2(�)

2666666664

’
(
>

E
✓⇢1 ,>>2 (E ,�):

|(8
E
|+|(>

E
|6�

 r
23
=

! |⇢1 ,>>2 (E ,�)|�|(>
E
|+|⇢1 ,8>2(E ,�)|�|(8

E
|
3777777775

6
÷

E2L>2(�)

2666666664

’
(
8

E
✓⇢1 ,8>2(E ,�)

’
(
>

E
✓⇢1 ,>>2 (E ,�):

|(8
E
|+|(>

E
|6�

 r
23
=

! |⇢1 ,>>2 (E ,�)|�|(>
E
|+|⇢1 ,8>2(E ,�)|�|(8

E
|
3777777775

=
÷

E2L>2(�)

266666664

’
(E✓⇢1>2(E ,�):

|(E |6�

 r
23
=

! |⇢1>2(E ,�)|�|(E |
377777775
.

(B.3.8)

415

Now for every E 2 L>2(�), we have

’
(E✓⇢1>2(E ,�):

|(E |6�

 r
23
=

! |⇢1>2(E ,�)|�|(E |

6 (� + 1)
✓|⇢1>2(E ,�)|

�

◆ r
23
=

! |⇢1>2(E ,�)|��

6 (� + 1)
✓
BC

�

◆ r
23
=

! |⇢1>2(E ,�)|��

6 (� + 1)(BC)
�

�!

 r
23
=

!
3
�

>2(E)��

,

By combining this with Eq. (B.3.7) and Eq. (B.3.8), we get

Ö
⇥
|Y
�
1

>2
| · E1 ,�>2

��x⇤ 6
✓
23
=

◆ |⇢1>2(�)| ÷
E2L>2(�)

266664
(� + 1)(BC)

�

�!

 r
23
=

!
3
�

>2(E)��377775
(†)
6

✓
3

=

◆ |⇢1>2(�)| ÷
E2L>2(�)

266664
23

�

>2(E) · (� + 1)(BC)
�

�!

 r
23
=

!
3
�

>2(E)��377775
=

✓
3

=

◆ |⇢1>2(�)| ÷
E2L>2(�)

266664
2� · (� + 1)(BC)

�

�!

2
r

23
=

!
3
�

>2(E)��377775
(‡)
6

✓
3

=

◆ |⇢1>2(�)| 1
÷

E2L>2(�)
=

1
4(3�>2(E)��)

,

where (†) follows from the fact that |⇢1>2(�)| 6
’

E2L>2(�)
3
�

>2(E), and (‡) is true for = large

enough25. By combining this with Eq. (B.3.5) and Eq. (B.3.6), we get

Ö
⇥
|Ỹ�

>2 |
��x⇤ 6 1

÷
E2L>2(�)

=

1
4(3�>2(E)��)

✓
3

=

◆ |⇢1>2(�)| ÷
DE2⇢0>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

=
1

÷
E2L>2(�)

=

1
4(3�>2(E)��)

✓
3

=

◆ |⇢>2(�)| ÷
DE2⇢0>2(�)

1 + ⌘xDxE

2 + 3

=

�
.

⇤

25Recall that 3�>2(E) > � for all E 2 L>2(�)

416

B.3.1.4 Upper bounds for the contribution of the not-well-behaved
event

We will prove Lemma B.26 in three steps. We start by proving an upper bound on���Ö⇥
Y�

��E2
� ,1

⇤
· ê[E2

� ,1
]
���, where E� ,1 is as in Eq. (B.1.13).

Lemma B.53. Let � be a multigraph with at most BC = B log = vertices and let E� ,1 be the event
that x is approximately balanced on [=] \+(�). If = is large enough, then

ê[E2
� ,1

] 6 24�
9
8
p
=
.

Proof. Define
([=]\+(�) =

’
E2[=]\+(�)

xE ,

where the sum is performed according to the arithmetic of integers in ö. It is easy to see
that if E2

� ,1
occurs, then |([=]\+(�) | > = � |+(�)| � 2

l
=

2 � =
3
4

m
. Therefore,

ê[E2
� ,1

] 6 ê
h
|([=]\+(�) | > = � |+(�)| � 2

l
=

2 � =
3
4

mi
6 ê

h
|([=]\+(�) | > = � BC � 2

⇣
=

2 � =
3
4 + 1

⌘i

= ê

|([=]\+(�) | > 2

✓
=

3
4 � BC2 � 1

◆�
6 ê

|([=]\+(�) | >

3
2 · = 3

4

�
,

where the last inequality is true for = large enough. By applying Hoeffding’s inequality, we
get:

ê[E2
� ,1

] 6 2 · 4�2

3
2 ·=

3
4
!2

(=�|+(�)|)·(1�(�1))2 = 24�
18=

3
2

16(=�|+(�)|) 6 24�
9=

3
2

8= = 24�
9
8
p
=
.

⇤

Lemma B.54. Let� be a multigraph with at most BC = B log = vertices and at most BC multi-edges,
and assume that ⇢01(�) = ú. If = is large enough, then

���Ö⇥
Y�

��E2
� ,1

⇤
· ê[E2

� ,1
]
��� 6 4�p= ·

✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
.

Proof. Since ⇢01(�) = ú, it follows from Definition B.7 and Lemma B.17 that for = large
enough, we have
��Ö⇥

Y�

��x⇤ �� 6 *�(x)

= =

2
�

✓
6
⌘

◆ |⇢01(�)| 1÷
E2L>2(�)

=

1
4(3�>2(E)��)

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |Ö>2(�)| ÷
DE2⇢0>2(�)

1 + ⌘xDxE

2 + 33p
=

�
.

417

(⇤)
6 =

2
�

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
3|⇢0>2(�)| 6 =

2
�

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
· 3BC ,

where (⇤) is true for = large enough. Since C = · log =, we have 3BC = 4
(log 3)B log = = =

B log 3.
Therefore,

��Ö⇥
Y�

��x⇤ �� 6 = 2
�
+B log 3

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
.

Now since the event E2
� ,1

depends only on x, i.e., it is �(x)-measurable, we deduce that
for = large enough, we have

���Ö⇥
Y�

��E2
� ,1

⇤
· ê[E2

� ,1
]
��� 6 = 2

�
+B log 3

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
· ê[E2

� ,1
]

(†)
6 =

2
�
+B log 3

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
· 24�

9
8
p
=

(‡)
6

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
· 4�
p
=
,

where (†) follows from Lemma B.53 and (‡) is true for = large enough. ⇤

Next, we prove an upper bound on
���Ö⇥

Y�

��E
� ,1,

⇤
· ê[E

� ,1,]
���, where E

� ,1, is as in
Eq. (B.1.17). We will need the following definition:

Definition B.55. Assume that x is approximately balanced on [=] \ +(�). We say that a
vertex E 2 +(�) is (G, x,�)-lucky if it satisfies the following two conditions:

(1) There is no �-cross-edge that is present in G, and which is incident to it. In other
words26, 38G�⌧(�)(E) = 0.

(2) In the sampled graph G, the vertex E is not adjacent to any vertex in
�
[=] \+(�)

�
\

+1(� , x).

We say that E 2 +(�) is (G, x,�)-unlucky if it is not (G, x,�)-lucky.
A subset of +(�) is said to be completely (G, x,�)-lucky if all the vertices in it are

(G, x,�)-lucky. We say that it is completely (G, x,�)-unlucky if all the vertices in it are
(G, x,�)-unlucky.

If G, x and � are clear from the context, we drop (G, x,�) and simply write lucky,
unlucky, completely lucky, and completely unlucky.

26Recall Definition B.8

418

Lemma B.56. Let � be a multigraph with at most BC = B log = vertices. If = is large enough,
then for every (✓ +(�), the conditional probability that (is completely (G, x,�)-unlucky given
x that is approximately balanced on [=] \+(�) can be upper bounded by:

ê
⇥�
(is completely (G, x,�)-unlucky

 ��x, E� ,1

⇤
6

1
=
|(|/5 .

Proof. Given x, the conditional probability that any particular edge is present in G is at
most ⇣

1 + ⌘
2

⌘
3

=

6
23
=

.

A vertex can be unlucky either because it is incident to an �-cross-edge, or because it is
adjacent to a vertex in

�
[=] \+(�)

�
\+1(� , x).

Since |
�
[=]\+(�)

�
\+1(� , x)| 6 2

l
=

3
4

m
, it follows from the union bound that, given x that

is approximately balanced on [=] \+(�), the conditional probability that any particular
vertex E 2 (is adjacent to some vertex in

�
[=] \+(�)

�
\+1(� , x) is at most

2
l
=

3
4

m23
=

6
8= 3

4 3

=

=
83
=

1
4
.

Let (0 ✓ (be the set of vertices in (that are not adjacent to any vertex in
�
[=] \

+(�)
�
\ +1(� , x). If (is completely (G, x,�)-unlucky, then for every E 2 (0, we have at

least one �-cross-edge that is present in G, and which is incident to it. Therefore, we have
at least

l
|(0 |
2

m
�-cross-edges that are present in G. Since we have at most |+(�)|2 6 B2

C
2

�-cross-edges, the number of collections of �-cross-edges of size
l
|(0 |
2

m
is at most

✓
B

2
C
2l

|(0 |
2

m◆ 6 (B2
C
2)

l
|(0 |
2

m
.

Therefore, for = large enough, given x that is approximately balanced on [=] \+(�),
the conditional probability that (is completely unlucky can be upper bounded by:

ê
⇥�
(is completely (G, x,�)-unlucky

 ��E� ,1

⇤

6
’
(
0✓(

✓
83
=

1
4

◆ |(|�|(0 |
· (B2

C
2)

l
|(0 |
2

m ✓
23
=

◆l
|(0 |
2

m
(⇤)
6

’
(
0✓(

✓
83
=

1
4

◆ |(|�|(0 |
·
✓
23B2

C
2

=

◆ |(0 |
2

=
’
(
0✓(

✓
83
=

1
4

◆ |(|�|(0 |
·
✓p

23 · BC
=

1
2

◆ |(0 |
6

’
(
0✓(

✓
83BC
=

1
4

◆ |(|�|(0 |
·
✓
83BC
=

1
4

◆ |(0 |
=

’
(
0✓(

✓
83BC
=

1
4

◆ |(|

= 2|(|
✓
83BC
=

1
4

◆ |(|
=

✓
163BC
=

1
4

◆ |(| (†)
6

1
=
|(|/5 ,

where (⇤) and (†) are true for = large enough. ⇤

419

Lemma B.57. Let� be a multigraph with at most BC = B log = vertices and at most BC multi-edges.
Assume that L1(�) = ú. Let + ✓ S>2(�), and for every E 2 + , define

3
>

G�⌧(�),1(E) =
���
D 2 +1(� , x) : DE 2 G

 ��
,

and
3
>

G�⌧(�),1
(E) =

���
D 2

�
[=] \+(�)

�
\+1(� , x) : DE 2 G

 ��
.

Clearly27, 3>G�⌧(�)(E) = 3
>

G�⌧(�),1(E) + 3
>

G�⌧(�),1
(E). Let E be an event such that:

• E implies that x is approximately balanced on [=] \+(�), i.e., E� ,1 ✓ E.

• E implies that+ is completely (G,� , x)-lucky, i.e., 38G�⌧(�)(E) = 3
>

G�⌧(�),1
(E) = 0 for every

E 2 + .

• Given x, the event E is conditionally independent from
�
3
>

G�⌧(�),1(E)
�
E2+ .

Then
ê
⇥�
+ is completely �-unsafe in G

 ��x, E⇤ 6 ⇣◆
2

⌘ |+ |
,

where ◆ is as in Lemma B.9.

Proof. Since 38G�⌧(�)(E) = 3
>

G�⌧(�),1
(E) = 0 for every E 2 + , then E is unsafe if and only if

3
>

G�⌧(�),1(E) > � � 3⌧(�)(E). Therefore, for every + ✓ +(�), we have

ê
⇥�
+ is completely unsafe

 ��x, E⇤ = ê⇥�
3
>

G�⌧(�),1(E) > � � 3⌧(�)(E), 8E 2 +
 ��x, E⇤

(⇤)
= ê

⇥�
3
>

G�⌧(�),1(E) > � � 3⌧(�)(E), 8E 2 +
 ��x⇤

=
÷
E2+
ê
⇥
3
>

G�⌧(�),1(E) > � � 3⌧(�)(E)
��x⇤

6
÷
E2+
ê
⇥
3
>

G�⌧(�)(E) > � � 3⌧(�)(E)
��x⇤ ,

where (⇤) follows from the fact that given x, the event E is conditionally independent from�
3
>

G�⌧(�),1(E)
�
E2+(�).

Now since + ⇢ S>2(�) and since L1(�) = ú, we have 3
⌧(�)(E) = 3

�

1 (E) + 3
�

>2(E) 6
�
4 + � 6 �

2 . Therefore,

ê
⇥�
+ is completely unsafe

 ��x, E⇤ 6÷
E2+
ê
⇥
3
>

G�⌧(�)(E) > � � 3⌧(�)(E)
��x⇤

6
÷
E2+
ê
⇥
3
>

G�⌧(�)(E) >
�
2
��x⇤ (†)
6

⇣◆
2

⌘ |+ |
,

(B.3.9)

where (†) follows from Lemma B.9. ⇤
27Recall Definition B.8

420

Lemma B.58. Let � be a multigraph with at most BC = B log = vertices and at most BC multi-
edges. Assume that L1(�) = L>2(�) = ú, and that ⇢>2(�) forms a forest. If � > max{100 , 1}
and = is large enough, then we have

���Ö⇥
Y�

��E
� ,1,

⇤
· ê[E

� ,1,]
��� 6 1

=

1
6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
,

where E
� ,1, is an in Eq. (B.1.17).

Proof. Recall Definition B.4, Definition B.5 and Definition B.6. Since L1(�) = L>2(�) = ú,
we have ⇢01(�) = ú, ⇢1>2(�) = ú, and ⇢>2(�) = ⇢

0

>2(�). Furthermore, S1(�) = +(�) and
so S(�) := S1(�) \ S>2(�) = S>2(�).

For every + ✓ +(�), define the events

E+ ,� ,2-; =
n
+ is completely (G, x,�)-lucky

o
,

E+ ,� ,2-D; =
n
+ is completely (G, x,�)-unlucky

o
.

If E2
� ,, occurs then there exists at least one vertex E 2 +(�) that is unlucky. Hence,�

E* ,� ,2-; \ E+(�)* ,� ,2-D; : * (+(�)

forms a partition of the event E2
� ,, . Therefore,

���Ö⇥
Y�

��x, E
� ,1,

⇤
· ê[E

� ,1, |x]
���

=

������
’

*(+(�)
Ö

⇥
Y�

��x, E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;
⇤
· ê

⇥
E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;

��x⇤
������

6
’

*(+(�)

���Ö⇥
Y�

��x, E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;
⇤ ��� · ê⇥

E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;
��x⇤

6
’

*(+(�)

���Ö⇥
Y�

��x, E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;
⇤ ��� · ê⇥

E
+(�)* ,� ,2-D;

��x, E� ,1

⇤

6
’

*(+(�)

���Ö⇥
Y�

��x, E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;
⇤ ��� · 1

=

1
5 |+(�)* |

,

(B.3.10)
where the last inequality follows from Lemma B.56.

Now fix* (+(�). Lemma B.57 implies that for every + ✓ * \ S(�), we have

ê
⇥�
+ is completely �-unsafe in G

 ��x, E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;
⇤
6

⇣◆
2

⌘ |+ |
6 ◆ |+ |

.

It is now easy to see that the conditions of Lemma B.50 are satisfied for* \ S(�) ⇢ S(�)

421

and E = E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D; . Therefore,���Ö⇥
Y�

��x, E� ,1 \ E* ,� ,2-; \ E+(�)* ,� ,2-D;
⇤ ��� = ��Ö⇥

Y�

��x, E⇤ ��
6 =

�

✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|+�(|S(�)|�|*\S(�)|)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E⇤

6 =
2
�

✓
6
⌘

◆�(|S(�)|�|*\S(�)|)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ ,

(B.3.11)

where the last equality follows from Lemma B.51, the fact that ⇢01(�) = ú, and the fact that
given x, the event E is conditionally independent from Ỹ�

>2.
Notice that

|S(�)| � |* \ S(�)| = |S(�) * | 6 |+(�) * | = |+(�)| � |* |. (B.3.12)

Now by combining Eq. (B.3.10) and Eq. (B.3.11) and Eq. (B.3.12), we get

���Ö⇥
Y�

��x, E
� ,1,

⇤
· ê[E

� ,1, |x]
���

6
’

*(+(�)
=

2
�

✓
6
⌘

◆�(|+(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ · 1

=

1
5 (|+(�)|�|* |)

= =

2
� ·

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ ’

*(+(�)

✓
6�

⌘� · = 1
5

◆ |+(�)|�|* |

= =

2
� ·

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ ·

"✓
1 + 6�

⌘� · = 1
5

◆ |+(�)|
� 1

#
.

Now since |+(�)| 6 BC = B log =, we have
✓
1 + 6�

⌘� · = 1
5

◆ |+(�)|
6

✓
1 + 6�

⌘� · = 1
5

◆
BC

6 4
6�

⌘� ·=
1
5
BC

= 1 + $
✓

6� · BC
⌘� · = 1

5

◆
.

Thus,

���Ö⇥
Y�

��x, E
� ,1,

⇤
· ê[E

� ,1, |x]
��� 6 $

6� · BC · = 2

�

⌘� · = 1
5

!
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x⇤ .

By using Lemma B.16 and the fact that ⇢1>2(�) = ú, ⇢0>2(�) = ⇢>2(�), and L>2(�) = ú,
we get

Ö
⇥
|Ỹ�

>2 |
��x⇤ 6

✓
3

=

◆ |⇢>2(�)| ÷
DE2⇢>2(�)

1 + ⌘xDxE

2 + 3

=

�
.

422

Therefore,���Ö⇥
Y�

��x, E
� ,1,

⇤
· ê[E

� ,1, |x]
���

6 $

6� · BC · = 2

�

⌘� · = 1
5

!
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)| ÷
DE2⇢>2(�)

1 + ⌘xDxE

2 + 3

=

�
.

If � > max{100 , 1}, and = is large enough, we get
���Ö⇥

Y�

��x, E
� ,1,

⇤
· ê[E

� ,1, |x]
��� 6 1

2= 1
6
·
✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)| ÷
DE2⇢>2(�)

1 + ⌘xDxE

2 + 3

=

�
.

We conclude that

���Ö⇥
Y�

��E
� ,1,

⇤
· ê[E

� ,1,]
��� 6 1

2= 1
6
·
✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
· Ö

266664
÷

DE2⇢>2(�)

1 + ⌘xDxE

2 + 3

=

�377775
(‡)
=

1
2= 1

6
·
✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
·
266664

÷
DE2⇢>2(�)

✓
1 + 3

=

◆377775
=

1
2= 1

6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
·
✓
1 + $

✓
3BC

=

◆◆

(o)
6

1
=

1
6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
,

where (‡) follows from Lemma B.22 and the fact that ⇢>2(�) forms a forest, and (o) is true
for = large enough. ⇤

Now we will prove an upper bound on
���Ö⇥

Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3]
���, where E

� ,1,3 is as
in Eq. (B.1.18).

Lemma B.59. Let � be a multigraph with at most BC = B log = vertices and at most BC multi-
edges. Assume that L1(�) = L>2(�) = ú, and that ⇢>2(�) forms a forest. If � > max{100 , 1}
and = is large enough, then we have

���Ö⇥
Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3]
��� 6 1

=

1
2
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
,

where E
� ,1,3 is an in Eq. (B.1.18).

Proof. Recall Definition B.4, Definition B.5 and Definition B.6. It is easy to see that if we take
* = S(�) := S1(�) \ S>2(�) = +(�) and E = E

� ,1,3, then the conditions of Lemma B.50
are satisfied. Therefore,��Ö⇥

Y�

��x, E
� ,1,3

⇤ ��
423

6 =

�

✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|+�(|S(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E

� ,1,3

⇤

6 =
2
�

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E

� ,1,3

⇤
,

where the last inequality follows from Lemma B.51 and the fact that ⇢01(�) = ú and
* = S(�).

Therefore,���Ö⇥
Y�

��x, E
� ,1,3

⇤
· ê[E

� ,1,3 |x]
���

6 =
2
�

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, E

� ,1,3

⇤
· ê[E

� ,1,3 |x]

= =

2
�

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Y�

>2 |
��x, E

� ,1,3

⇤
· ê[E

� ,1,3 |x],

(B.3.13)

where the last equality follows28 from the fact thatL>2(�) = ú, which means that Ỹ�

>2 = Y�

>2,
where

Y�

>2 =
÷

DE2⇢>2(�)
Y<�(DE)
DE

.

Now for every ⇢ ✓ ⇢>2(�), define the events:

E⇢,2-3 =
�
4 2 G, 84 2 ⇢

and E

⇢,2-3 =
�
4 8 G, 84 2 ⇢

.

Let E� ,1, be as in Eq. (B.1.16). Since
�
E⇢,2-3 \ E

⇢>2(�)\⇢,2-3 : ⇢ (⇢>2(�)

is a partition
of E2

� ,3
and since E

� ,1,3 = E� ,1, \ E2
� ,3

, we can write:

Ö
⇥
|Y�

>2 |
��x, E

� ,1,3

⇤
· ê[E

� ,1,3 |x]
= Ö

⇥
|Y�

>2 |
��x, E� ,1, \ E2

� ,3

⇤
· ê[E� ,1, \ E2

� ,3
|x]

=
’

⇢(⇢>2(�)
Ö

⇥
|Y�

>2 |
��x, E� ,1, \ E⇢,2-3 \ E

⇢>2(�)\⇢,2-3
⇤
· ê

⇥
E� ,1, \ E⇢,2-3 \ E

⇢>2(�)\⇢,2-3
��x⇤

6
’

⇢(⇢>2(�)
Ö

⇥
|Y�

>2 |
��x, E� ,1, \ E⇢,2-3 \ E

⇢>2(�)\⇢,2-3
⇤
· ê[E⇢,2-3 \ E

⇢>2(�)\⇢,2-3 |x]

=
’

⇢(⇢>2(�)

÷
DE2⇢

"✓
1 � 3

=

◆
<�(DE)

·
⇣
1 + ⌘xDxE

2

⌘
3

=

#
·

÷
DE2⇢>2(�)\⇢

"✓
1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

◆
·
✓
3

=

◆
<�(DE)

#

6
’

⇢(⇢>2(�)

÷
DE2⇢

⇣
1 + ⌘xDxE

2

⌘
3

=

�
·

÷
DE2⇢>2(�)\⇢

✓
3

=

◆2

28We could have used |Ỹ�

>2 | 6 |Y�

>2 |, which is true in general.

424

=
÷

DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3

=
2

�
�

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�
.

By combining this with Eq. (B.3.13), we get

���Ö⇥
Y�

��x, E
� ,1,3

⇤
· ê[E

� ,1,3 |x]
���

6 =
2
�

✓
⌘3
2=

◆ |⇢1(�)|
·
266664

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3

=
2

�
�

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
.

Therefore,���Ö⇥
Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3]
���

6 =
2
�

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

266664
÷

DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3

=
2

�
�

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
(⇤)
= =

2
�

✓
⌘3
2=

◆ |⇢1(�)|
·
266664

÷
DE2⇢>2(�)

✓
3

=

+ 3

=
2

◆
�

÷
DE2⇢>2(�)

✓
3

=

◆377775
6 =

2
�

✓
⌘3
2=

◆ |⇢1(�)|
·
"✓
3

=

◆ |⇢>2(�)| ✓
1 + $

✓
3BC

=

◆◆
�

✓
3

=

◆ |⇢>2(�)|#

= $

3BC · = 2

�

=

! ✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)| (†)
6

1p
=

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
,

where (⇤) follows from Lemma B.22 and the fact thatr ⇢>2(�) is a forest, and (†) is true
when � > max{100 , 1} and = is large enough. ⇤

Now we are ready to prove Lemma B.26

Proof of Lemma B.26. Since
�
E2
� ,1

, E
� ,1, , E

� ,1,3

is a partition of E2

F1 ,�
, we get:

Ö
⇥
Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
] = Ö

⇥
Y�

��E2
� ,1

⇤
· ê[E2

� ,1
] +Ö

⇥
Y�

��E
� ,1,

⇤
· ê[E

� ,1,]
+Ö

⇥
Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3].

It follows from Lemma B.54, Lemma B.58 and Lemma B.59 that:���Ö⇥
Y�

��E2
F1 ,�

⇤
· ê[E2

F1 ,�
]
��� 6 ���Ö⇥

Y�

��E2
� ,1

⇤
· ê[E2

� ,1
]
��� + ���Ö⇥

Y�

��E
� ,1,

⇤
· ê[E

� ,1,]
���

+
���Ö⇥

Y�

��E
� ,1,3

⇤
· ê[E

� ,1,3]
���

6
✓
4
�
p
= + 1

=

1
6
+ 1p

=

◆
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|

425

6
2
=

1
6
·
✓
⌘3
2=

◆ |⇢1(�)|
·
✓
3

=

◆ |⇢>2(�)|
,

where the last inequality is true for = large enough. ⇤

B.3.1.5 Upper bound on the negligible part of the contribution of the
well-behaved event

In order to prove Lemma B.27, we need the following lemma:

Lemma B.60. If %F12,�(x) is as in Eq. (B.1.24), then for = large enough, we have

|%F12,�(x)| 6
1
=

1
5
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�
.

Proof. If x is not approximately balanced on [=] \+(�), then

|%F12,�(x)| = 0 6 1
=

1
5
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�
.

Now assume that x is approximately balanced on [=] \+(�), and let ⇢
12
(� , x) be as in

Eq. (B.1.22). We have:

|%F12,�(x)| =

��������
’

(✓⇢
12
(� ,x):

(<ú

÷
DE2(

�
⇣
1 + ⌘xDxE

2

⌘
3

=

� ��������
·
266664

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
6

’
(✓⇢

12
(� ,x):

(<ú

✓
23
=

◆ |(|
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�
.

On the other hand, for = large enough, we have:

|⇢
12
(� , x)| = |⇢2(�)| + |+(�)| ·

�� �[=] \+(�)
�
\+1(� , x)

�� 6 B2
C
2 + 2BC · =3/4 6 3B2

C
2 · =3/4

.

Hence,
’

(✓⇢
12
(� ,x):

(<ú

✓
23
=

◆ |(|
=

✓
1 + 23

=

◆ |⇢
12
(� ,x)|

� 1 = $

✓23 · |⇢
12
(� , x)|
=

◆
6 $

63B2

C
2 · = 3

4

=

!
6

1
=

1
5
,

where the last inequality is true for = large enough. Therefore, we have

|%F12,�(x)| 6
1
=

1
5
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�
.

⇤

426

Now we are ready to prove Lemma B.27.

Proof of Lemma B.27. Lemma B.57 implies that for every + ✓ S(�), we have

ê
⇥�
+ is completely �-unsafe in G

 ��x, EF1 ,� ⇤
6

⇣◆
2

⌘ |+ |
6 ◆ |+ |

.

It is now easy to see that if we take E = EF1 ,� and * = S(�), then the conditions of
Lemma B.50 are satisfied. Therefore,

���Ö⇥
Y�

��x, EF1 ,� ⇤ ��� 6 =

�

✓
6
⌘

◆ |⇢01(�)|+|⇢31 (�)|+�(|S(�)|�|* |)
·
✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, EF1 ,� ⇤

(⇤)
6 =

2
�

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

⇥
|Ỹ�

>2 |
��x, EF1 ,� ⇤ (†)

6 =

�

✓
⌘3
2=

◆ |⇢1(�)|
,

where (⇤) follows from Lemma B.51 and the fact that ⇢01(�) = ú and * = S(�), and (†)
follows from the fact that |Ỹ�

>2 | 6 1. Combining this with Lemma B.60, we get:

���Ö⇥
Y�

��x, EF1 ,� ⇤
· %F12,�(x)

��� 6 =

2
�

=

1
5

✓
⌘3
2=

◆ |⇢1(�)|
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�

6
1
=

1
6

✓
⌘3
2=

◆ |⇢1(�)|
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�
,

where the last inequality is true if � > max{100 , 1} and = is large enough. Therefore,

Ö
h���Ö⇥

Y�

��x, EF1 ,� ⇤
· %F12,�(x)

���i 6 1
=

1
6

✓
⌘3
2=

◆ |⇢1(�)|
· Ö

266664
÷

DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
3

=

�377775
(‡)
=

1
=

1
6

✓
⌘3
2=

◆ |⇢1(�)| ÷
DE2⇢>2(�)

✓
3

=

◆
=

1
=

1
6

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
,

where (‡) follows from Lemma B.22 and the fact that ⇢>2(�) is a forest. ⇤

B.3.1.6 Tight bounds on the significant part of the contribution of the
well-behaved event in the case of pleasant multigraphs

In order to prove Lemma B.29, we need a few definitions and lemmas.

Definition B.61. For every E 2 +(�), let D�

E
be the number of edges in G between E and

+1(� , x). We denote (D�

E
)
E2+(�) as D� .

427

Note that if EF1 ,� occurs, then29

3G�⌧(�)(E) = 3
>

G�⌧(�)(E) = D�

E
.

Furthermore, |++
1
(� , x)| =

l
=

2 � =
3
4

m
and |+�

1
(� , x)| =

l
=

2 � =
3
4

m
, where

+
+
1
(� , x) =

�
D 2 +1(� , x) : xD = +1

,

and
+
�
1
(� , x) =

�
D 2 +1(� , x) : xD = �1

.

It is easy to see that given x that is approximately balanced on [=] \+(�), the random
variables {D�

E
}
E2+(�) are conditionally mutually independent, and they are conditionally

independent of (E� ,, , E� ,3).

Lemma B.62. Let � be a multigraph with at most BC = B log = vertices. For every E 2 +(�),
and every d = (dE)E2+(�) 2 é+(�), we have:

ê
⇥
D� = d

��x, EF1 ,� ⇤
= ê

⇥
D� = d

��EF1 ,� ⇤
= ê

⇥
D� = d

��x, E� ,1

⇤
= ê

⇥
D� = d

��E� ,1

⇤
= %F1(d),

where

%F1(d) =
÷

E2+(�)
%F1(dE)

and

%F1(dE) =
dE’
0=0

266664
✓⌃
=

2 � =
3
4
⌥

0

◆
·
⇣

1 + ⌘
2

⌘
3

=

�
0

·

1 �

⇣
1 + ⌘

2

⌘
3

=

�⌃ =
2�=

3
4
⌥
�0377775

⇥
266664
✓⌃
=

2 � =
3
4
⌥

dE � 0

◆
·
⇣

1 � ⌘
2

⌘
3

=

�dE�0
·

1 �

⇣
1 � ⌘

2

⌘
3

=

�⌃ =
2�=

3
4
⌥
�dE+0377775

.

Furthermore, for every E 2 +(�), we have

ê
⇥
D�

E
= dE

��x, E� ,1

⇤
= ê

⇥
D�

E
= dE

��E� ,1

⇤
= %F1(dE).

In other words, ê
⇥
D� = d

��x, EF1 ,� ⇤
depends only on d = (dE)E2+(�), i.e., it does not depend

on x, and it depends on G only through D� = (D�

E
)
E2+(�). Furthermore, given EF1 ,� , the random

variables (D�

E
)
E2+(�) are conditionally mutually independent. The same is true if we condition on

E� ,1 instead of EF1 ,� .
Note that if dE > 2

l
=

2 � =
3
4

m
, then %F1(dE) = 0.

29Recall Definition B.8

428

Proof. We have

ê
⇥
D� = d

��x, EF1 ,� ⇤
= ê

⇥
D� = d

��x, E� ,1 \ E� ,, \ E� ,3

⇤
(⇤)
= ê

⇥
D� = d

��x, E� ,1

⇤
=

÷
E2+(�)

ê
⇥
D�

E
= dE

��x, E� ,1

⇤
,

where (⇤) follows from the fact that given x that is approximately balanced on [=] \+(�),
the random variable D� is conditionally independent from (E� ,, , E� ,3).

Now for every E 2 +(�), we have

ê
⇥
D�

E
= dE

��x, E� ,1

⇤

=
’

*✓+1(� ,x):
|* |=dE

"÷
D2*
ê[DE 2 G|x, E� ,1]

#
·
266664

÷
D2+1(� ,x)*

ê[DE 8 G|x, E� ,1]
377775

=
dE’
0=0

©≠≠≠≠
´

’
*

+✓++
1
(� ,x):

|*+|=0

" ÷
D2*+

ê[DE 2 G|x, E� ,1]
#
·
266664

÷
D2++

1
(� ,x)*+

ê[DE 8 G|x, E� ,1]
377775
™ÆÆÆÆ
¨

⇥
©≠≠≠≠
´

’
*
�✓+�

1
(� ,x):

|*� |=dE�0

" ÷
D2*�

ê[DE 2 G|x, E� ,1]
#
·
266664

÷
D2+�

1
(� ,x)*�

ê[DE 8 G|x, E� ,1]
377775
™ÆÆÆÆ
¨
,

hence,

ê
⇥
D�

E
= dE

��x, E� ,1

⇤
=

dE’
0=0

266664
✓⌃
=

2 � =
3
4
⌥

0

◆ ⇣
1 + ⌘xE

2

⌘
3

=

�
0

·

1 �

⇣
1 + ⌘xE

2

⌘
3

=

�⌃ =
2�=

3
4
⌥
�0377775

⇥
266664
✓⌃
=

2 � =
3
4
⌥

dE � 0

◆ ⇣
1 � ⌘xE

2

⌘
3

=

�dE�0
·

1 �

⇣
1 � ⌘xE

2

⌘
3

=

�⌃ =
2�=

3
4
⌥
�dE+0377775

=
dE’
0=0

266664
✓⌃
=

2 � =
3
4
⌥

0

◆ ⇣
1 + ⌘

2

⌘
3

=

�
0

·

1 �

⇣
1 + ⌘

2

⌘
3

=

�⌃ =
2�=

3
4
⌥
�0377775

⇥
266664
✓⌃
=

2 � =
3
4
⌥

dE � 0

◆ ⇣
1 � ⌘

2

⌘
3

=

�dE�0
·

1 �

⇣
1 � ⌘

2

⌘
3

=

�⌃ =
2�=

3
4
⌥
�dE+0377775

= %F1(dE) = ê
⇥
D�

E
= dE

��E� ,1

⇤
,

where the last equality follows from the fact that ê
⇥
D�

E
= dE

��x, E� ,1

⇤
does not depend on x.

We conclude that

429

ê
⇥
D� = d

��x, EF1 ,� ⇤
=

÷
E2+(�)

%F1(dE) = %F1(d).

Furthermore, since ê
⇥
D� = d

��x, EF1 ,� ⇤
= ê

⇥
D� = d

��x, E� ,1

⇤
does not depend on x, we

have

ê
⇥
D� = d

��x, EF1 ,� ⇤
= ê

⇥
D� = d

��EF1 ,� ⇤
= ê

⇥
D� = d

��x, E� ,1

⇤
= ê

⇥
D� = d

��E� ,1

⇤
.

⇤

Lemma B.63. Let � be a multigraph with at most BC = B log = vertices. We have

Ö
⇥
Y�

��x, EF1 ,� ⇤
=

’
d2é+(�)

Ö
⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F1(d),

where %F1(d) is as in Lemma B.62.

Proof. We have:

Ö
⇥
Y�

��x, EF1 ,� ⇤
=

’
d2é+(�)

Ö
⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· ê[D� = d|x, EF1 ,�]

=
’

d2é+(�)

Ö
⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F1(d).

⇤

In the following, we will fix d 2 é+(�) and focus on studying Ö
⇥
Y�

��x, EF1 ,� ,D� = d
⇤
.

Definition B.64. Let� be an arbitrary multigraph and let d 2 é+(�). For every E 2 +(⇢1(�)),
we define the d-criticality of E in � as 2�d (E) = �� 3�>2(E)� dE . If 3�1 (E) 6 2�d (E), we say that
E is d-safe in �. If 3�1 (E) > 2

�

d (E), we say that E is d-unsafe in �.
An edge DE 2 ⇢1(�) is said to be d-safe if both D and E are d-safe. We denote the set of

d-safe edges in ⇢1(�) as (�d .

Remark B.65. If D = d and EF1 ,� occurs, then since all the edges of multiplicity at least 2
are present in G, we can see that a vertex E 2 +(⇢1(�)) causes truncation if and only if

���
4 2 ⇢1(�) \G : 4 is incident to E

 �� > 2
�

d (E).

As can be easily seen, the criticality of a vertex E is the maximum number of edges from�
4 2 ⇢1(�) : 4 is incident to E

which can be present in G without causing truncation.

If E is d-safe, then we are sure that E does not cause truncation. If DE is a d-safe vertex,
then we are sure that its presence in G will not cause truncation.

430

Definition B.66. Let � be an arbitrary multigraph and let d 2 é+(�). For every E ✓ ⇢1(�)
and every d 2 é+(�), we say that E is d-structurally safe if for every E 2 +(⇢1(�)) we have
3E(E) 6 2�d (E). For every E ✓ ⇢1(�), define:

S�d (E) =
�
S ✓ E : S is d-structurally safe

.

Remark B.67. Let � be an (B , C)-pleasant multigraph and let �(1)
, . . . ,�

(A�) be the agreeable
components of �. Since �(1)

, . . . ,�
(A�) are vertex-disjoint. We can deduce from this that

S�d (⇢1(�)) =
�
S1 [. . . [SA� : 88 2 [A�], S8 2 S�d

�
⇢1

�
�

(8)� �
,

and
�
E>2 : E>2 ✓ ⇢>2

�
�

(⇤)� =
n
E(1)
>2 [. . . [E(A�)

>2 : 88 2 [A�], E(8)
>2 ✓ ⇢>2

�
�

(8)�o
,

where �(⇤) =
ÿ
82[A�]

�
(8).

Lemma B.68. Let � be an (B , C)-pleasant multigraph and let �(1)
, . . . ,�

(A�) be its agreeable
components30. For every d 2 é+(�), we have

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|
· ê

⇥
E� ,1

⇤
·
÷
82[A�]

�� ,d,8 ,

where

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

’
S0
8
✓S8

’
S00
8
✓⇢1(�(8))\S8

’
E(8)
>2✓⇢>2(�(8))

⇣ ⌘
2

⌘ |S0
8
|+|E(8)

>2 | ·
✓
⌘̃
=

◆ |S00
8
|

⇥ (�1)|⇢1(�(8))|�|S8 |�|S00
8
| · Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
,

(B.3.14)

3̃ = 3

✓
1 � 3

=

◆
, and ⌘̃ =

⌘32

23̃
.

Proof. Let x be such that E� ,1 occurs31. From Remark B.65 we can see that if EF1 ,� occurs
and D� = d, then � is not truncated if and only if ⇢(G) \ ⇢1(�) 2 S�d (⇢1(�)). Now using
the fact that given x, the random variables (DE2G)DE2⇢1(�) are conditionally independent

30See Definition B.21
31Note that E� ,1 depends only on (xD)D2[=]\+(�), i.e., it is �

��
xD : D 2 [=] \+(�)

 �
-measurable.

431

from the events EF1 ,� and {D� = d}, and the fact that given EF1 ,� , we have YDE = 1 � 3

=

for every DE 2 ⇢>2(�), we deduce that:

Ö
⇥
Y�

��x, EF1 ,� ,D� = d
⇤

=
’

S2S�d (⇢1(�))

÷
DE2S

✓
1 � 3

=

◆
· ê[DE 2 G|x]

�
·

÷
DE2⇢1(�)\S

✓
� 3
=

◆
· ê[DE 8 G|x]

�
·

÷
DE2⇢>2(�)

✓
1 � 3

=

◆
<�(DE)

.

(B.3.15)
Now for every DE 2 ⇢1(�), we have

✓
1 � 3

=

◆
· ê[DE 2 G|x] =

✓
1 � 3

=

◆
·
⇣
1 + ⌘xDxE

2

⌘
3

=

=
⇣
1 + ⌘xDxE

2

⌘
3̃

=

. (B.3.16)

On the other hand,✓
� 3
=

◆
· ê[4 8 G|x] =

✓
� 3
=

◆
·

1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

�
= � 3

=

✓
1 � 3

=

� ⌘xDxE3
2=

◆

= � 3̃
=

+ ⌘xDxE32

2=2 = � 3̃
=

✓
1 � ⌘xDxE32

23̃=

◆
= � 3̃

=

✓
1 � ⌘̃xDxE

=

◆
.

(B.3.17)

By combining Eq. (B.1.23), Eq. (B.3.15), Eq. (B.3.16) and Eq. (B.3.16), we get

Ö
⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

=
’

S2S�d (⇢1(�))

÷
DE2S

⇣
1 + ⌘xDxE

2

⌘
3̃

=

�
·

÷
DE2⇢1(�)\S

� 3̃
=

✓
1 � ⌘̃xDxE

=

◆�

⇥
÷

DE2⇢>2(�)

"✓
1 � 3

=

◆
<�(DE)

·
⇣
1 + ⌘xDxE

2

⌘
3

=

#
· E� ,1

(x).

Now for every E ✓ ⇢(�), define <�(E) =
’
DE2E

<�(DE). We have:

Ö
⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|

⇥
’

S2S�d (⇢1(�))

÷
DE2S

⇣
1 + ⌘xDxE

2

⌘
·

÷
DE2⇢1(�)\S

✓
�1 + ⌘̃xDxE

=

◆
·

÷
DE2⇢>2(�)

⇣
1 + ⌘xDxE

2

⌘
· E� ,1

(x)

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|

⇥
’

S2S�d (⇢1(�))

"’
S0✓S

÷
DE2S0

⇣ ⌘xDxE
2

⌘#
·
266664

’
S00✓⇢1(�)\S

(�1)|⇢1(�)|�|S|�|S00 |
÷
DE2S00

✓
⌘̃xDxE
=

◆377775
432

⇥
266664

’
E>2✓⇢>2(�)

÷
DE2E>2

⇣ ⌘xDxE
2

⌘377775
· E� ,1

(x)

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|

⇥
’

S2S�d (⇢1(�))

’
S0✓S

’
S00✓⇢1(�)\S

’
E>2✓⇢>2(�)

⇣ ⌘
2

⌘ |S0 |+|E>2 |
·
✓
⌘̃
=

◆ |S00 |
· (�1)|⇢1(�)|�|S|�|S00 |

⇥ E� ,1
(x) ·

÷
DE2S0[S00[E>2

xDxE .

Now since E� ,1
(x) depends only on (xD)D2[=]\+(�), it is independent from (xE)E2+(�).

Therefore, for every S 2 S�d (⇢1(�)), S0 ✓ S, S00 ✓ ⇢1(�) \ S and E>2 ✓ ⇢>2(�), we have:

Ö

"
E� ,1

(x) ·
÷

DE2S0[S00[E>2

xDxE

#
= Ö

⇥
E� ,1

(x)
⇤
· Ö

" ÷
DE2S0[S00[E>2

xDxE

#

= ê
⇥
E� ,1

⇤
· Ö

" ÷
DE2S0[S00[E>2

xDxE

#
.

Notice that if E>2 contains an edge outside �(⇤), then S0 [S00 [E>2 cannot be a union of
edge-disjoint cycles32 (see Definition B.21). Lemma B.22 now implies that if E>2 * ⇢>2(�(⇤)),
then

Ö

" ÷
DE2S0[S00[E>2

xDxE

#
= 0.

Therefore,

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|
· ê

⇥
E� ,1

⇤

⇥
’

S2S�d (⇢1(�))

’
S0✓S

’
S00✓⇢1(�)\S

’
E>2✓⇢>2(�(⇤))

⇣ ⌘
2

⌘ |S0 |+|E>2 |
·
✓
⌘̃
=

◆ |S00 |
· (�1)|⇢1(�)|�|S|�|S00 |

⇥Ö
" ÷
DE2S0[S00[E>2

xDxE

#
.

(B.3.18)

32Recall that �(⇤) =
ÿ
82[A�]

�
(8).

433

Now since � is (B , C)-pleasant, the agreeable components �(1)
, . . . ,�

(A�) are vertex
disjoint. Combining this with Remark B.67, it is easy to see that we can rewrite Eq. (B.3.18)
as follows:

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|
· ê

⇥
E� ,1

⇤

⇥
÷
82[A�]

©≠≠
´

’
S82S�d (⇢1(�(8)))

’
S0
8
✓S8

’
S00
8
✓⇢1(�(8))\S8

’
E(8)
>2✓⇢>2(�(8))

⇣ ⌘
2

⌘ |S0
8
|+|E(8)

>2 | ·
✓
⌘̃
=

◆ |S00
8
|

⇥ (�1)|⇢1(�(8))|�|S8 |�|S00
8
| · Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
™ÆÆ
¨
.

Therefore,

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|
· ê

⇥
E� ,1

⇤
·
÷
82[A�]

�� ,d,8 .

⇤

We now turn to study the value of �� ,d,8 . The following lemma will be useful.

Lemma B.69. Let E ✓ ⇢1(�) and let {E0,E00} be a partition of E. Let

5 : {S00 : S00 ✓ E00}! í

be an arbitrary function on the subsets of E00. If E0 contains a d-safe edge DE then
’

S2S�d (E)
(�1)|E0 |�|S\E0 | · 5 (S \ E00) = 0.

Proof. Since DE 2 E is d-safe, we can write

S�d (E) = S�d (E \ {DE}) [
�
S [{DE} : S 2 S�d (E \ {DE})

.

Therefore,’
S2S�d (E)

(�1)|E0 |�|S\E0 | · 5 (S \ E00)

434

=
’

S2S�d (E\{DE})

⇥
(�1)|E0 |�|S\E0 | · 5 (S \ E00) + (�1)|E0 |�|(S[{DE})\E0 | · 5

�
(S [{DE}) \ E00

� ⇤

=
’

S2S�d (E\{DE})

⇥
(�1)|E0 |�|S\E0 | · 5 (S \ E00) + (�1)|E0 |�|(S\E0)[{DE}| · 5

�
S \ E00

� ⇤

=
’

S2S�d (E\{DE})
(�1)|E0 |�|S\E0 |[1 + (�1)] · 5

�
S \ E00

�
= 0.

⇤

Lemma B.70. Let � be an (B , C)-pleasant multigraph. Let �(8) be a type-1 agreeable component of
� and let �� ,d,8 be as in Lemma B.68. We have:

• If ⇢1(�(8)) contains a d-safe edge, then33

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |+|⇢000>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
.

• If ⇢1(�(8)) does not contain a d-safe edge, then

|�� ,d,8 | 6 4 · 2|⇢1(�(8))|
.

Proof. Since �(8) is a cycle, Lemma B.22 implies that

Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
< 0

if and only if S0
8
[S00

8
[E(8)

>2 2
�
ú, ⇢

�
�

(8)� , in which case we have

Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
= 1.

Notice the following:

• If S0
8
[S00

8
[E(8)

>2 = ú, then S0
8
= S00

8
= E(8)

>2 = ú, in which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
| =

��
⇢1

�
�

(8)� �� � |S8 |,

and
|S0
8
| +

��E(8)
>2

�� = |S00
8
| = 0.

33Recall that for a type-1 agreeable component �(8), we have ⇢000>2(�(8)) = ⇢>2(�(8)). See Definition B.28.

435

• If S0
8
[S00

8
[E(8)

>2 = ⇢(�(8)), then S0
8
= S8 , S00

8
= ⇢1

�
�

(8)� \ S8 , and E(8)
>2 = ⇢>2(�(8)), in

which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
| = 0,

|S0
8
| +

��E(8)
>2

�� = |S8 | +
��
⇢>2

�
�

(8)� ��
,

and
|S00
8
| =

��
⇢1

�
�

(8)� �� � |S8 |.

Applying this to Eq. (B.3.14), we get

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

"
(�1)|⇢1(�(8))|�|S8 | +

⇣ ⌘
2

⌘ |S8 |+|⇢>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
#
.

It follows from Lemma B.69 that if there exists a d-safe edge in ⇢1
�
�

(8)� , then

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |+|⇢>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
.

On the other hand, if ⇢1
�
�

(8)� does not contain any d-safe edge, then

|�� ,d,8 | 6
’

S82S�d (⇢1(�(8)))
(1 + 1) = 2 · |S�d (⇢1(�(8)))| 6 2 · 2|⇢1(�(8))| 6 4 · 2|⇢1(�(8))|

.

⇤

Lemma B.71. Let � be an (B , C)-pleasant multigraph. Let �(8) be a type-2 agreeable component of
� and let �� ,d,8 be as in Lemma B.68. We have:

• If each cycle34 of ⇢(�(8)) contains a d-safe edge of multiplicity 1, then35

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |+|⇢000>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
.

• If there exists at least one cycle of ⇢(�(8)) that does not contain any d-safe edge of multiplicity
1, then

|�� ,d,8 | 6 4 · 2|⇢1(�(8))|
.

34There are two cycles in ⇢(�(8)).
35Recall that for a type-2 agreeable component �(8), we have ⇢000>2(�(8)) = ⇢>2(�(8)). See Definition B.28.

436

Proof. Let ⇢0
�
�

(8)� and ⇢00
�
�

(8)� be the two cycles of �(8) as in definition Definition B.20.
Define

⇢
0
1
�
�

(8)� = ⇢1
�
�

(8)� \ ⇢0 ��(8)�
,

⇢
00
1
�
�

(8)� = ⇢1
�
�

(8)� \ ⇢00 ��(8)�
,

⇢
0
>2

�
�

(8)� = ⇢>2
�
�

(8)� \ ⇢0 ��(8)�
,

and
⇢
00
>2

�
�

(8)� = ⇢>2
�
�

(8)� \ ⇢00 ��(8)�
.

Since ⇢0(�(8)) and ⇢00(�(8)) are two edge-disjoint cycles that intersect only in one vertex,
it follows from Lemma B.22 that

Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
< 0

if and only if S0
8
[S00

8
[E(8)

>2 2
�
ú, ⇢0(�(8)), ⇢00(�(8)), ⇢(�(8))

, in which case we have

Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
= 1.

Notice the following:

• If S0
8
[S00

8
[E(8)

>2 = ú, then S0
8
= S00

8
= E(8)

>2 = ú, in which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
| =

��
⇢1

�
�

(8)� �� � |S8 |
=

��
⇢
0
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� �� + ��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢001 �
�

(8)� ��
,

and
|S0
8
| +

��E(8)
>2

�� = |S00
8
| = 0.

• If S0
8
[S00

8
[E(8)

>2 = ⇢
0 �
�

(8)� , then S0
8
= S8 \ ⇢01

�
�

(8)� , S00
8
= ⇢

0
1
�
�

(8)� \ S8 and E(8)
>2 =

⇢
0
>2

�
�

(8)� , in which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
|

=
��
⇢
0
1
�
�

(8)� �� + ��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� �� � ��S8 \ ⇢001 �
�

(8)� �� � ��
⇢
0
1
�
�

(8)� \ S8
��

=
��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢001 �
�

(8)� ��
,

|S0
8
| +

��E(8)
>2

�� = ��S8 \ ⇢01 ��(8)� �� + ��
⇢
0
>2

�
�

(8)� ��
,

and
|S00
8
| =

��
⇢
0
1
�
�

(8)� \ S8
�� = ��

⇢
0
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� ��
.

437

• If S0
8
[S00

8
[E(8)

>2 = ⇢
00 �
�

(8)� , then S0
8
= S8 \ ⇢001

�
�

(8)� , S00
8
= ⇢

00
1
�
�

(8)� \ S8 and E(8)
>2 =

⇢
00
>2

�
�

(8)� , in which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
|

=
��
⇢
0
1
�
�

(8)� �� + ��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� �� � ��S8 \ ⇢001 �
�

(8)� �� � ��
⇢
00
1
�
�

(8)� \ S8
��

=
��
⇢
0
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� ��
,

|S0
8
| +

��E(8)
>2

�� = ��S8 \ ⇢001 �
�

(8)� �� + ��
⇢
00
>2

�
�

(8)� ��
,

and
|S00
8
| =

��
⇢
00
1
�
�

(8)� \ S8
�� = ��

⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢001 �
�

(8)� ��
.

• If S0
8
[S00

8
[E(8)

>2 = ⇢

�
�

(8)� , then S0
8
= S8 , S00

8
= ⇢1

�
�

(8)� \ S8 and E(8)
>2 = ⇢>2(�(8)), in

which case we have ��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
| = 0,

|S0
8
| +

��E(8)
>2

�� = |S8 | +
��
⇢>2

�
�

(8)� ��
,

and

|S00
8
| =

��
⇢1

�
�

(8)� �� � |S8 |.

Applying this to Eq. (B.3.14), we get

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

"
(�1)|⇢01(�(8))|�|S8\⇢01(�(8))| · (�1)|⇢001 (�(8))|�|S8\⇢001 (�(8))|

+ (�1)|⇢001 (�(8))|�|S8\⇢001 (�(8))| ·
⇣ ⌘
2

⌘ |S8\⇢01(�(8))|+|⇢0>2(�(8))|
·
✓
⌘̃
=

◆ |⇢01(�(8))|�|S8\⇢01(�(8))|

+ (�1)|⇢01(�(8))|�|S8\⇢01(�(8))| ·
⇣ ⌘
2

⌘ |S8\⇢001 (�(8))|+|⇢00>2(�(8))|
·
✓
⌘̃
=

◆ |⇢001 (�(8))|�|S8\⇢001 (�(8))|

+
⇣ ⌘
2

⌘ |S8 |+|⇢>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
#
.

It follows from Lemma B.69 that if there exists a d-safe edge in ⇢01
�
�

(8)� and a d-safe
edge in ⇢001

�
�

(8)� , then

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |+|⇢>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
.

438

On the other hand, if ⇢01
�
�

(8)� does not contain any d-safe edge or ⇢001
�
�

(8)� does not
contain any d-safe edge, then

|�� ,d,8 | 6
’

S82S�d (⇢1(�(8)))
(1 + 1 + 1 + 1) = 4 · |S�d (⇢1(�(8)))| 6 4 · 2|⇢1(�(8))|

.

⇤

Lemma B.72. Let � be an (B , C)-pleasant multigraph. Let �(8) be a type-3 agreeable component
of � and let �� ,d,8 be as in Lemma B.68. Let ⇢0

�
�

(8)� and ⇢00
�
�

(8)� be two cycles of �(8) as in
definition Definition B.20, i.e., ⇢0

�
�

(8)� \ ⇢00 ��(8)� is a simple path of edges of multiplicity at least
2. Define

⇢
000 �
�

(8)� = ⇣
⇢
0 �
�

(8)� [⇢00 ��(8)� ⌘ \ ⇣
⇢
0 �
�

(8)� \ ⇢00 ��(8)� ⌘
,

⇢
000
>2

�
�

(8)� = ⇢>2
�
�

(8)� \ ⇢000 ��(8)� = ⇢>2
�
�

(8)� \ ⇣
⇢
0 �
�

(8)� \ ⇢00 ��(8)� ⌘
,

⇢
0
1
�
�

(8)� = ⇢1
�
�

(8)� \ ⇢0 ��(8)�
,

and
⇢
00
1
�
�

(8)� = ⇢1
�
�

(8)� \ ⇢00 ��(8)�
.

We have:

• If there exists a d-safe edge in ⇢01
�
�

(8)� and a d-safe edge in ⇢001
�
�

(8)� , then

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |+|⇢000>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
.

• If ⇢01
�
�

(8)� does not contain any d-safe edge or ⇢001
�
�

(8)� does not contain any d-safe edge,
then

|�� ,d,8 | 6 4 · 2|⇢1(�(8))|
.

Proof. Define
⇢
0
>2

�
�

(8)� = ⇢>2
�
�

(8)� \ ⇢0 ��(8)�
,

and
⇢
00
>2

�
�

(8)� = ⇢>2
�
�

(8)� \ ⇢00 ��(8)�
.

The only subsets of ⇢
�
�

(8)� consisting of edge-disjoint unions of cycles are ú, ⇢0
�
�

(8)� ,
⇢
00 �
�

(8)� and ⇢000
�
�

(8)� . It follows from Lemma B.22 that

Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
< 0

439

if and only if S0
8
[S00

8
[E(8)

>2 2
�
ú, ⇢0(�(8)), ⇢00(�(8)), ⇢000(�(8))

, in which case we have

Ö

2666664
÷

DE2S0
8
[S00

8
[E(8)
>2

xDxE

3777775
= 1.

Notice the following:

• If S0
8
[S00

8
[E(8)

>2 = ú, then S0
8
= S00

8
= E(8)

>2 = ú, in which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
| =

��
⇢1

�
�

(8)� �� � |S8 |
=

��
⇢
0
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� �� + ��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢001 �
�

(8)� ��
,

and
|S0
8
| +

��E(8)
>2

�� = |S00
8
| = 0.

• If S0
8
[S00

8
[E(8)

>2 = ⇢
0 �
�

(8)� , then S0
8
= S8 \ ⇢01

�
�

(8)� , S00
8
= ⇢

0
1
�
�

(8)� \ S8 and E(8)
>2 =

⇢
0
>2

�
�

(8)� , in which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
|

=
��
⇢
0
1
�
�

(8)� �� + ��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� �� � ��S8 \ ⇢001 �
�

(8)� �� � ��
⇢
0
1
�
�

(8)� \ S8
��

=
��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢001 �
�

(8)� ��
,

|S0
8
| +

��E(8)
>2

�� = ��S8 \ ⇢01 ��(8)� �� + ��
⇢
0
>2

�
�

(8)� ��
,

and
|S00
8
| =

��
⇢
0
1
�
�

(8)� \ S8
�� = ��

⇢
0
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� ��
.

• If S0
8
[S00

8
[E(8)

>2 = ⇢
00 �
�

(8)� , then S0
8
= S8 \ ⇢001

�
�

(8)� , S00
8
= ⇢

00
1
�
�

(8)� \ S8 and E(8)
>2 =

⇢
00
>2

�
�

(8)� , in which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
|

=
��
⇢
0
1
�
�

(8)� �� + ��
⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� �� � ��S8 \ ⇢001 �
�

(8)� �� � ��
⇢
00
1
�
�

(8)� \ S8
��

=
��
⇢
0
1
�
�

(8)� �� � ��S8 \ ⇢01 ��(8)� ��
,

|S0
8
| +

��E(8)
>2

�� = ��S8 \ ⇢001 �
�

(8)� �� + ��
⇢
00
>2

�
�

(8)� ��
,

and
|S00
8
| =

��
⇢
00
1
�
�

(8)� \ S8
�� = ��

⇢
00
1
�
�

(8)� �� � ��S8 \ ⇢001 �
�

(8)� ��
.

440

• If S0
8
[S00

8
[E(8)

>2 = ⇢
000 �
�

(8)� , then S0
8
= S8 , S00

8
= ⇢1

�
�

(8)� \ S8 and E(8)
>2 = ⇢

000
>2(�(8)), in

which case we have
��
⇢1

�
�

(8)� �� � |S8 | � |S00
8
| = 0,

|S0
8
| +

��E(8)
>2

�� = |S8 | +
��
⇢
000
>2

�
�

(8)� ��
,

and

|S00
8
| =

��
⇢1

�
�

(8)� �� � |S8 |.

Applying this to Eq. (B.3.14), we get

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

"
(�1)|⇢01(�(8))|�|S8\⇢01(�(8))| · (�1)|⇢001 (�(8))|�|S8\⇢001 (�(8))|

+ (�1)|⇢001 (�(8))|�|S8\⇢001 (�(8))| ·
⇣ ⌘
2

⌘ |S8\⇢01(�(8))|+|⇢0>2(�(8))|
·
✓
⌘̃
=

◆ |⇢01(�(8))|�|S8\⇢01(�(8))|

+ (�1)|⇢01(�(8))|�|S8\⇢01(�(8))| ·
⇣ ⌘
2

⌘ |S8\⇢001 (�(8))|+|⇢00>2(�(8))|
·
✓
⌘̃
=

◆ |⇢001 (�(8))|�|S8\⇢001 (�(8))|

+
⇣ ⌘
2

⌘ |S8 |+|⇢000>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
#
.

It follows from Lemma B.69 that if there exists a d-safe edge in ⇢01
�
�

(8)� and a d-safe
edge in ⇢001

�
�

(8)� , then

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |+|⇢000>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
.

On the other hand, if ⇢01
�
�

(8)� does not contain any d-safe edge or ⇢001
�
�

(8)� does not
contain any d-safe edge, then

|�� ,d,8 | 6
’

S82S�d (⇢1(�(8)))
(1 + 1 + 1 + 1) = 4 · |S�d (⇢1(�(8)))| 6 4 · 2|⇢1(�(8))|

.

⇤

Lemma B.73. Let � be an (B , C)-pleasant multigraph. Let �(8) be an agreeable component of �
and let �� ,d,8 be as in Lemma B.68. We have:

441

• If every cycle of ⇢(�(8)) contains a d-safe edge of multiplicity 1, then

�� ,d,8 =
’

S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |+|⇢000>2(�(8))|
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
.

• If there exists at least one cycle of ⇢(�(8)) that does not contain any d-safe edge of multiplicity
1, then

|�� ,d,8 | 6 4 · 2|⇢1(�(8))|
.

Proof. This is a direct corollary of Lemma B.70, Lemma B.71 and Lemma B.72. ⇤

Lemma B.74. Let � be an (B , C)-pleasant multigraph and let �(8) be an agreeable component of �.
We have:

• If all the edges of ⇢1
�
�

(8)� are d-safe, then

’
S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
=

✓
⌘3

23̃

◆ |⇢1(�(8))|
.

• If there exists an edge in ⇢1
�
�

(8)� that is not d-safe, then

’
S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
6

1p
=

·
✓
⌘3

23̃

◆ |⇢1(�(8))|
.

Proof. Notice that

⌘
2 + ⌘̃

=

=
⌘
2 + ⌘32

23̃=
=

⌘
2

1 + 3

2

3

�
1 � 3

=

�
=

!
=

⌘
2

✓
1 + 3

= � 3

◆
=

⌘
2 · =

= � 3 =
⌘3

23̃
. (B.3.19)

• If all the edges of ⇢1
�
�

(8)� are d-safe, then all subsets of ⇢1
�
�

(8)� are d-structurally
safe, hence

’
S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
=

’
S8✓⇢1(�(8))

⇣ ⌘
2

⌘ |S8 |
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |

=
✓
⌘
2 + ⌘̃

=

◆ |⇢1(�(8))|
=

✓
⌘3

23̃

◆ |⇢1(�(8))|
.

442

• If there exists an edge in ⇢1
�
�

(8)� that is not d-safe, then ⇢1
�
�

(8)� is not d-structurally
safe, hence

’
S82S�d (⇢1(�(8)))

⇣ ⌘
2

⌘ |S8 |
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |

6
’

S8(⇢1(�(8))

⇣ ⌘
2

⌘ |S8 |
·
✓
⌘̃
=

◆ |⇢1(�(8))|�|S8 |
=

✓
⌘
2 + ⌘̃

=

◆ |⇢1(�(8))|
�

⇣ ⌘
2

⌘ |⇢1(�(8))|

(⇤)
=

✓
⌘3

23̃

◆ |⇢1(�(8))|
�

⇣ ⌘
2

⌘ |⇢1(�(8))|
=

✓
⌘3

23̃

◆ |⇢1(�(8))|©≠
´
1 �

✓
3̃

3

◆ |⇢1(�(8))|™Æ
¨

=
✓
⌘3

23̃

◆ |⇢1(�(8))|
1 �

✓
1 � 3

=

◆ |⇢1(�(8))|!
6

✓
⌘3

23̃

◆ |⇢1(�(8))|
1 �

✓
1 � 3

=

◆
BC

!

=
✓
⌘3

23̃

◆ |⇢1(�(8))| ✓
1 �

✓
1 � $

✓
BC3

=

◆◆◆
(†)
6

1p
=

·
✓
⌘3

23̃

◆ |⇢1(�(8))|
,

where (⇤) follows from Eq. (B.3.19) and (†) is true for = large enough.

⇤

Lemma B.75. Let � be an (B , C)-pleasant multigraph, where C = log =. Let ⇢000>2(�) be as in
Definition B.28. We have the following:

• If (�d = ⇢1(�), i.e., if all the edges of ⇢1(�) are d-safe, then

✓
1 � 1p

=

◆
·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6 Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
6

✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

• If (�d < ⇢1(�) and every cycle in ⇢(�) contains a d-edge of multiplicity 1, then for = large
enough, we have

0 6 Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
6

1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

• If there is a cycle in ⇢(�) that does not contain any d-safe edge of multiplicity 1, then for =
large enough, we have

���Öh
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i ��� 6
✓
16
⌘

◆
BC

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

443

Proof. From Lemma B.68 we have

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i

=
✓
3̃

=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|
· ê

⇥
E� ,1

⇤
·
÷
82[A�]

�� ,d,8 ,

We will provide tight bounds on Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
. In order to do

this, we will distinguish between three cases:
• If (�d = ⇢1(�), then for every 8 2 [A�], all the edges in ⇢1

�
�

(8)� are d-safe. Now
from Lemma B.68, Lemma B.73 and Lemma B.74, and from the fact that |⇢1(�)| =’
82[A�]

��
⇢1

�
�

(8)� �� and |⇢000>2(�)| =
’
82[A�]

��
⇢
000
>2

�
�

(8)� ��, we can deduce that

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i

=
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· ê

⇥
E� ,1

⇤
.

Now from Lemma B.53 we have

✓
1 � 3

=

◆
<�(⇢>2(�))

· ê
⇥
E� ,1

⇤
>

✓
1 � 3

=

◆
BC

·
�
1 � 24

9
8
p
=
�

>
✓
1 � $

✓
3BC

=

◆◆
·
�
1 � 24

9
8
p
=
�
> 1 � 1p

=

,

where the last inequality is true for = large enough. Therefore, if (�d = ⇢1(�), we have

✓
1 � 1p

=

◆
·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6 Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
6

✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

• If (�d < ⇢1(�) and every cycle in ⇢(�) has at least one d-safe edge of multiplicity 1,
define

I� ,d
⇢*(=

�
8 2 [A�] : ⇢1

�
�

(8)� * (�d
.

Since (
�

d < ⇢1(�), then we must have I� ,d
⇢*(< ú. Now from Lemma B.68,

Lemma B.73, Lemma B.74, and from the fact that |⇢1(�)| =
’
82[A�]

��
⇢1

�
�

(8)� �� and

|⇢000>2(�)| =
’
82[A�]

��
⇢
000
>2

�
�

(8)� ��, we can deduce that

444

0 6 Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i

6
✓

1p
=

◆ |I� ,d
⇢*(| ✓ ⌘3

2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· ê

⇥
E� ,1

⇤

6
1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

• If there is a cycle in ⇢(�) that does not contain any d-safe edge of multiplicity 1, define

I�d =
n
8 2 [A�] : �(8) contains a cycle that does not contain

any d-safe edge of multiplicity 1
o
.

From Lemma B.68, Lemma B.73, Lemma B.74, from the fact that |⇢1(�)| =’
82[A�]

��
⇢1

�
�

(8)� ��, and from the definition of I�d , we can deduce that

���Öh
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i ���
6

✓
⌘3
2=

◆ |⇢1(�)| ✓
1 � 3

=

◆
<�(⇢>2(�)) ✓

3

=

◆ |⇢>2(�)|
· ê

⇥
E� ,1

⇤
·
÷
82I�d

"
4 ·

✓
4
⌘

◆ |⇢1(�(8))|#

6
✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
·
÷
82I�d

"✓
16
⌘

◆ |⇢1(�(8))|#
6

✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
·
✓
16
⌘

◆ |⇢1(�)|

6
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
·
✓
16
⌘

◆ |⇢1(�)|+|⇢000>2(�)|

6
✓
16
⌘

◆
BC

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

⇤

Lemma B.76. Let � be an arbitrary multigraph with at most BC = B log = vertices. If � > 1,
then for every E 2 S1(�) \ S>2(�), we have

ê
⇥
D�

E
+ 3�1 (E) + 3�>2(E) > �

��x, EF1 ,� ⇤
6

1
2 ·

✓
2⌘
33

◆4�2
B

.

Proof. We have

ê
⇥
D�

E
+ 3�1 (E) + 3�>2(E) > �

��x, EF1 ,� ⇤
445

6 ê

D�

E
+ � + �4 > �

����x, EF1 ,�
�
6 ê

D�

E
>
�
2

����x, EF1 ,�
�

= ê

D�

E
>
�
2

����x, E� ,1 \ E� ,, \ E� ,3

�
(⇤)
= ê

D�

E
>
�
2

����x, E� ,1

�

(†)
6 ê

3
>

G�⌧(�)(E) >
�
2

����x, E� ,1

� (‡)
6

1
2�B · 26��B2

⇣ ⌘
6

⌘4B2�2 (o)
6

1
2 · 26�2

B

⇣ ⌘
6

⌘4�2
B

=
1
2 ·

✓
⌘

6 · 23/2

◆4�2
B

6
1
2 ·

✓
2⌘
33

◆4�2
B

,

where (⇤) follows from the fact that given x andE� ,1 , the random variable D�

E
is conditionally

independent from (E� ,, , E� ,3), (†) follows from the fact that D�

E
6 3

>

G�⌧(�)(E), and (‡)
follows from Lemma B.9 and the fact that E� ,1 is �(x)-measurable. (o) follows from the fact
that � = �B log 6

⌘ > � > 1 and the fact that B > 1. ⇤

Lemma B.77. Let � be an (B , C)-pleasant multigraph where C = log = vertices. Define the set

D� ,safe
cycles =

n
d 2 é+(�) : Every cycle of � has at least one d-safe edge of multiplicity 1

o
.

We have:

ê
h
D� 8 D� ,safe

cycles

���x, EF1 ,�i
6 3BC ·

✓
2⌘
33

◆
�BC

.

Proof. Let ⇠ be an arbitrary cycle of �. Since ⇠ is a cycle, it is easy to see that there is a
subset ⇠0 ⇢ ⇢1(⇠) of size at least

|⇠0| >
�
|⇢1(⇠)|

2

⌫
>

|⇢1(⇠)|
2 � 1,

in such a way that no two edges in ⇠0 are incident to each other. Let

⇠
00 =

⇢
DE 2 ⇠0 : 3�>2(D) 6

�
4 and 3�>2(E) 6

�
4

�

=
�
4 2 ⇠0 : 4 is not incident to any vertex in I>2(�)

.

Since there are no edges in ⇠0 that are incident to each other, it is easy to see that every
vertex in I>2(�) is incident to at most one vertex in ⇢1(⇠). Therefore, |⇠00| > |⇠0| � |I>2(�)|.
Now from Eq. (B.3.3) and Eq. (B.1.1) we have

|I>2(�)| 6 8BC
�
6

8BC
40�B3 =

C

5�3 6
C

5� .

Hence,
|⇠00| > |⇠0| � |I>2(�)| > |⇢1(⇠)|

2 � 1 � C

5� .

446

Recall that every cycle of an (B , C) pleasant multigraph contains at least C

�
edges of

multiplicity 1, hence |⇢1(⇠)| > C

�
. Therefore,

|⇠00| > C

2� � 1 � C

5� >
C

4� . (B.3.20)

If⇠ does not contain any D�-safe of multiplicity 1, then for every DE 2 ⇠00 ⇢ ⇢1(⇠), either
D is D�-unsafe or E is unsafe, i.e., we must have D�

D
+ 3�>2(D) > ��2 or D�

E
+ 3�>2(E) > ��2.

Therefore,

ê
⇥
⇠ does not contain any D�-safe of multiplicity 1

��x, EF1 ,� ⇤
6 ê

⇥�
8DE 2 ⇠00,D�

D
+ 3�>2(D) > � � 2 or D�

E
+ 3�>2(E) > � � 2

 ��x, EF1 ,� ⇤
(⇤)
=

÷
DE2⇠00

ê
⇥�

D�

D
+ 3�>2(D) > � � 2 or D�

E
+ 3�>2(E) > � � 2

 ��x, EF1 ,� ⇤

6
÷
DE2⇠00

⇣
ê
⇥
D�

D
+ 3�1 (D) + 3�>2(D) > �

��x, EF1 ,� ⇤
+ ê

⇥
D�

E
+ 3�1 (E) + 3�>2(E) > �

��x, EF1 ,� ⇤ ⌘

(†)
=

÷
DE2⇠00

1
2 ·

✓
2⌘
33

◆4�2
B

+ 1
2 ·

✓
2⌘
33

◆4�2
B

!
=

✓
2⌘
33

◆4�2
B·|⇠00 | (8)

6
✓
2⌘
33

◆4�2
B· C4�

=
✓
2⌘
33

◆
�BC

,

where (⇤) follows from the fact that given x and EF1 ,� , the random variables
�
D�

E

�
E2+(�)

are conditionally mutually independent and from the fact that for every two different
edges D1E1, D2E2 2 ⇠00, we have36 {D1, E1} \ {D2, E2} = ú. (†) follows from Lemma B.76. (8)
follows from Eq. (B.3.20).

Now since � is (B , C)-pleasant, there are A� agreeable components of �. Furthermore,
each agreeable component contains 1, 2 or 3 cycles depending on whether the agreeable
component is of type 1, 2 or 3, respectively. Since the cycles of � are exactly those of
its agreeable components, we conclude that there are at most 3A� 6 3BC cycles in �. We
conclude that

ê
h
D� 8 D� ,safe

cycles

���x, EF1 ,�i
6 3BC ·

✓
2⌘
33

◆
�BC

.

⇤

Lemma B.78. Let � be an (B , C)-pleasant multigraph where C = log =. If � > max
�
1, 100

and

= is large enough, then

’
d2é+(�):
d8D� ,safe

cycles

���Öh
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i ��� · %F1(d) 6 1p
=

·
✓
⌘3
2=

◆ |⇢1(�)| ✓
3

=

◆ |⇢>2(�)|
,

where %F1(d) = ê
⇥
⇡
� = d

��x, EF1 ,� ⇤
is as in Lemma B.62.

36This follows from the fact that there are no edges in ⇠00 that are incident to each other.

447

Proof. From Lemma B.75, we have
’

d2é+(�):
d8D� ,safe

cycles

���Öh
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i ��� · %F1(d)

6
’

d2é+(�):
d8D� ,safe

cycles

✓
16
⌘

◆
BC

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· %F1(d)

=
’

d2é+(�):
d8D� ,safe

cycles

✓
16
⌘

◆
BC

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
ê
⇥
⇡
� = d

��x, EF1 ,� ⇤

=
✓
16
⌘

◆
BC

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· ê

h
D� 8 D� ,safe

cycles

���x, EF1 ,�i

6
✓
16
⌘

◆
BC

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· 3BC ·

✓
2⌘
33

◆
�BC

,

(B.3.21)
where the last inequality follows from Lemma B.77. Now notice that

✓
16
⌘

◆
BC

· 3BC ·
✓
2⌘
33

◆
�BC (⇤)
6

✓
16
⌘

◆
�BC

· 3BC ·
✓
2⌘
33

◆
�BC

= 3BC ·
✓
32
33

◆
�BC

6 3BC ·
✓
32
33

◆
�C

= 3BC ·
✓
32
33

◆
� log =

=
3BC

=
� log 33

32
6

3BC
=
� · 1

100

(†)
6

1p
=

,

where (⇤) and (†) are true if � > max
�
1, 100

and = is large enough. By combining this

with Eq. (B.3.21), we get the lemma. ⇤

Now we are ready to prove Lemma B.29.

Proof of Lemma B.29. From Lemma B.63, we have

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i
=

’
d2é+(�):
!
�(d)=1

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
· %F1(d).

Now for every d 2 é+(�), define

!
�

B
(d) = {8E2+(�), dE+3�1 (E)+3�>2(E)6�}

.

Note that !�
B
(d) = 1 if and only if (�d = ⇢1(�). Note also that if !�

B
(d) = 1, then we must

have d 2 D� ,safe
cycles . Therefore,

448

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i
=

’
d2é+(�):
!
�

B
(d)=1

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
· %F1(d)

+
’

d2D� ,safe
cycles :

!
�

B
(d)=0

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
· %F1(d)

+
’

d2é+(�):
d8D� ,safe

cycles

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
· %F1(d).

(B.3.22)
If !�

B
(d) = 1, then (d = ⇢1(�) and Lemma B.75 implies that

✓
1 � 1p

=

◆
·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6 Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
6

✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

(B.3.23)
On the other hand, if d 2 D� ,safe

cycles and !
�

B
(d) = 0, then Lemma B.75 implies that for =

large enough, we have

0 6 Ö
h
Ö

⇥
Y�

��x, EF1 ,� ,D� = d
⇤
· %F11,�(x)

i
6

1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

(B.3.24)
By combining Eq. (B.3.22), Eq. (B.3.23),Eq. (B.3.24) and Lemma B.78, we get

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i

6
’

d2é+(�):
!
�

B
(d)=1

✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· %F1(d)

+
’

d2D� ,safe
cycles :

!
�

B
(d)=0

1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· %F1(d)

+ 1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

Now from Lemma B.62 we have %F1(d) = ê
⇥
D� = d

��E� ,1

⇤
. Therefore,

Ö
h
Ö

⇥
Y�

��x, E� ,1

⇤
· %F11,�(x)

i

449

6
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· ê

⇥
!
�

B
(D�) = 1

��E� ,1

⇤

+ 1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· ê

⇥
D� 2 D� ,safe

cycles and !�
B
(D�) = 0

��E� ,1

⇤

+ 1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

6
✓
ê
⇥
!
�

B
(D�) = 1

��E� ,1

⇤
+ 2p

=

◆ ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

Now recall from Lemma B.62 that ê
⇥
D� = d

��E� ,1

⇤
= ê

⇥
D� = d

��E� ,1

⇤
. Therefore,

ê
⇥
!
�

B
(D�) = 1

��E� ,1

⇤
= ê

⇥�
8E 2 +(�), D�

E
+ 3�1 (E) + 3�>2(E) 6 �

 ��E� ,1

⇤
= %�

B
.

(B.3.25)

Similarly, from Eq. (B.3.22), Eq. (B.3.23),Eq. (B.3.24), Eq. (B.3.25) and Lemma B.78, we
have

Ö
h
Ö

⇥
Y�

��x, EF1 ,� ⇤
· %F11,�(x)

i

>
©≠≠≠≠
´

’
d2é+(�):
!
�

B
(d)=1

✓
1 � 1p

=

◆ ✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
· %F1(d)

™ÆÆÆÆ
¨

� 1p
=

·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

=
✓

1 � 1p
=

◆
· ê

⇥
!
�

B
(D�) = 1

��E� ,1

⇤
� 1p

=

�
·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|

>
✓
%
�

B
� 2p

=

◆
·
✓
⌘3
2=

◆ |⇢1(�)|+|⇢000>2(�)| ✓
3

=

◆ |⇢>2(�)|�|⇢000>2(�)|
.

⇤

B.3.1.7 Probability of safety in pleasant multigraphs
Proof of Lemma B.30. Let � be an (B , C)-pleasant multigraph with C = · log =. From
Lemma B.62, we know that given E� ,1 , the random variables (D�

E
)
E2+(�) are conditionally

mutually independent, hence we can rewrite %�
B

as follows:

%
�

B
= ê

⇥�
8E 2 +(�), D�

E
+ 3�1 (E) + 3�>2(E) 6 �

 ��E� ,1

⇤

450

=
÷

E2+(�)
ê
⇥
D�

E
+ 3�1 (E) + 3�>2(E) 6 �

��E� ,1

⇤
.

Now for every E 2 +(�), we have:

ê
⇥
D�

E
+ 3�1 (E) + 3�>2(E) 6 �

��E� ,1

⇤
= ê

⇥
D�

E
6 � � 3�1 (E) � 3�>2(E)

��E� ,1

⇤
=

’
dE2é:

dE6��3�1 (E)�3�>2(E)

ê
⇥
D�

E
= dE

��E� ,1

⇤

= %B
�
� � 3�1 (E) � 3�>2(E)

�
,

where %B(✓) is defined for every ✓ 2 ö as

%B(✓) =
’

dE2é:
dE6d

%F1(dE),

and %F1(dE) is as in Lemma B.62. Clearly, %B is a non-decreasing function.
If ✓ < 0, then by picking an arbitrary E 2 +(�), we get

%B(✓) = ê
⇥
D�

E
6 ✓

��E� ,1

⇤
= 0.

On the other hand, if ✓ > 0, we have

%B(✓) = ê
⇥
D�

E
6 ✓

��E� ,1

⇤ (⇤)
= ê

⇥
D�

E
6 ✓

��x, E� ,1

⇤
(†)
> ê

⇥
3
>

G�⌧(�)(E) 6 ✓
��x, E� ,1

⇤ (‡)
= ê

⇥
3
>

G�⌧(�)(E) 6 ✓
��x⇤ , (B.3.26)

where (⇤) follows from the fact that given EF1 ,� , the random variable D� is conditionally
independent from x (see Lemma B.62). (†) follows from the fact that D�

E
6 3>G�⌧(�)(E) for

every E 2 +(�). (‡) follows from the fact that the event E� ,1 is �(x)-measurable. For every
✓ > 0, we can further lower bound %B(✓) as follows:

%B(✓) > ê
⇥
3
>

G�⌧(�)(E) 6 ✓
��x⇤ > êh

3
>

G�⌧(�)(E) = 0
���xi =

÷
D2[=]\+(�)

ê
⇥
DE 8 G

��x⇤

=
÷

D2[=]\+(�)

1 �

⇣
1 + ⌘xDxE

2

⌘
3

=

�
>

✓
1 � 23

=

◆
=�|+(�)|

>
✓
1 � 23

=

◆
=

=

1

1 + 23
=�23

!
=

(8)
>

1

1 + 43
=

!
=

> 4�43
,

where (8) is true for = large enough.
Now if ✓ > �

4 , we get from Eq. (B.3.26) and Lemma B.9 that

%B(✓) > ê
⇥
3
>

G�⌧(�) 6 ✓
��x⇤ > ê

3
>

G�⌧(�) 6
�
4

����x
�
> 1 �

◆

2 .

⇤

451

Proof of Lemma B.31. From Lemma B.30, we have

%
�

B
=

÷
E2+(�)

%B

�
� � 3�1 (E) � 3�>2(E)

�
.

If there exists E 2 +(�) such that 3�1 (E) + 3�>2(E) > �, then %B
�
� � 3�1 (E) � 3�>2(E)

�
= 0

and %�
B
= 0.

Now assume that 3�1 (E) + 3�>2(E) 6 � for every E 2 +(�). Since � is (B , C)-pleasant, we
have L>2(�) = ú, so +(�) = S>2(�) [I>2(�). Notice the following:

• If E 2 S>2(�), then 3
�

>2(E) 6
�
4 . Now since � is (B , C)-pleasant, we have 3�1 (E) 6 4,

and so
� � 3�1 (E) � 3�>2(E) > � � 4 � �4 >

�
2 .

Lemma B.30 and Lemma B.9 now imply that

%B

�
� � 3�1 (E) � 3�>2(E)

�
> 1 �

◆

2 > 1 � 1
2�B

⇣ ⌘
6

⌘�

> 1 � 1
2�B =

1
1 + 1

2�B�1

(⇤)
>

1
1 + 1

�B

,

(B.3.27)

where (⇤) is true if � > 1.

• If E 2 I>2(�), we will use the assumption � � 3�1 (E) � 3�>2(E) > 0. Lemma B.30 now
implies that

%B

�
� � 3�1 (E) � 3�>2(E)

�
> 4�43

. (B.3.28)

Now From Lemma B.30, we have

%
�

B
=

÷
E2+(�)

%B

�
� � 3�1 (E) � 3�>2(E)

�

= ©≠
´

÷
E2S>2(�)

%B

�
� � 3�1 (E) � 3�>2(E)

�™Æ
¨
· ©≠
´

÷
E2I>2(�)

%B

�
� � 3�1 (E) � 3�>2(E)

�™Æ
¨

(†)
>

1�
1 + 1

�B

� |S>2(�)| · 4
�43·|I>2(�)| (‡)>

1�
1 + 1

�B

�
BC
· 4�43· C

4�3 >
1
4

C

�

· 4� C

�

=
1
4

2C
�

=
1

4

2 log =
�

=
1
=

2
�

,

where (†) follows from Eq. (B.3.27) and Eq. (B.3.28). (‡) follows from Eq. (B.3.3) and
Eq. (B.1.1), which imply that |I>2(�)| 6 8BC

� 6
8BC

40�B3 6
C

4�3 . ⇤

452

B.3.2 Proofs of technical lemmas for the centered matrix
B.3.2.1 Analyzing walks of multiplicity 1
In order to prove Lemma B.46, we need two lemmas. The following lemma shows that it is
unlikely that the set of reassuring walks is completely walk-unsafe.

Lemma B.79. If� > max{100 , 1} and = is large enough, then given x, the conditional probability
thatW1A(�) is completely walk-unsafe can be upper bounded by:

ê
⇥�
W1A(�) is completely walk-unsafe

 ��x⇤ 6 (B◆) 1
2B� |W1A(�)|

,

where ◆ is as in Eq. (B.1.3).

Proof. Since every, 2 W1A(�) contains B + 1 vertices, and since 3�1 (E) 6 � for every vertex
E 2 +(,), we can see that , 2 W1A(�) intersects at most (B + 1)(� � 1) others walks in
W1A(�). Therefore, we can find a subsetW ✓W1A(�) such that:

• For every,1,,2 2 W, we have +(,1) \+(,2) = ú.

• |W | > 1
(B+1)(��1)+1 |W1A(�)| > 1

2B� |W1A(�)|.

Now ifW1A(�) is completely walk-unsafe, thenW is completely walk-unsafe, and
so every walk , 2 W is walk-unsafe. Therefore, for every , 2 W, the set +(,) is not
completely safe, which means that there exists at least one vertex E, 2 +(,) which is
unsafe. Now since +(,1) \ +(,2) = ú for every ,1,,2 2 W, we have E,1 < E,2 for
every,1,,2 2 W. Therefore, the set +W =

�
E, : , 2 W

✓ –

,2W1A +(,) satisfies the
following:

• |+W | = |W | > 1
2B� |W1A(�)|.

• |+W \+(,)| = 1 for every, 2 W.

• +W is completely unsafe.

Now since+(,) ✓ S1(�)\S>2(�) for every, 2 W1A(�), it follows from Lemma B.12
that for every + ✓

ÿ
,2W1A

+(,) satisfying |+ | = |W |, we have

ê
⇥�
+ is completely unsafe

 ��x⇤ 6 ◆ |+ | = ◆ |W |
.

On the other hand, since there are B
|W | subsets + ✓ –

,2W1A +(,) which satisfy
|+ | = |W | and |+W \+(,)| = 1 for every, 2 W, we conclude that

ê
⇥�
W1A(�) is completely walk-unsafe

 ��x⇤ 6 B |W | · ◆ |W | = (B◆)|W | 6 (B◆) 1
2B� |W1A(�)|

,

where the last inequality follows from the fact that if � > max{100 , 1} then B◆ < 1 (see
the definition of ◆ in Eq. (B.1.3)). ⇤

453

The following lemma shows that in the event that there is one walk of multiplicity 1
that is walk-safe, the conditional expectation of Ŷ� given this event and given x will be
zero. This can be seen as the truncated version of Eq. (B.2.3).

Lemma B.80. Let, 2 W1(�), and let E be an event satisfying:

• E implies that, is (G,�)-walk-safe, i.e., 8⌧ 2 E, the walk, is (⌧,�)-walk-safe.

• Given x and E, the random variable ({DE2G})DE2⇢(,) is conditionally independent from
(YD0E0)D0E02⇢(�)\⇢(,).

• Given x, the event E is conditionally independent of ({DE2G})DE2⇢(,).

We have
Ö

⇥
Ŷ�

��x, E⇤ = 0.

Proof. We have

Ö
⇥
Ŷ�

��x, E⇤ = Ö
266664
✓
Y, �

✓
⌘3
2=

◆
B

x,
◆
·

÷
,
02W(�)\{,}

✓
Y,0 �

✓
⌘3
2=

◆
B

x,0
◆������x, E

377775
(⇤)
= Ö

266664
✓
Y, �

✓
⌘3
2=

◆
B

x,
◆
·

÷
,
02W(�)\{,}

✓
Y,0 �

✓
⌘3
2=

◆
B

x,0
◆������x, E

377775
(†)
= Ö

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆����x, E

�
· Ö

266664
÷

,
02W(�)\{,}

✓
Y,0 �

✓
⌘3
2=

◆
B

x,0
◆������x, E

377775
(‡)
= Ö

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆����x

�
· Ö

266664
÷

,
02W(�)\{,}

✓
Y,0 �

✓
⌘3
2=

◆
B

x,0
◆������x, E

377775
(o)
= 0,

where (⇤) follows from the fact that if, is walk-safe, then Y, = Y, , (†) follows from the
fact that given x and E, the random variable ({DE2G})DE2⇢(,) is conditionally independent
from (YD0E0)D0E02⇢(�)\⇢(,), (‡) follows from the fact that given x, the event E is conditionally
independent of ({DE2G})DE2⇢(,), and (o) follows from Lemma B.40. ⇤

Now we are ready to prove Lemma B.46.

Proof of Lemma B.46. For everyW ✓W1A(�), define the following events:

EW ,� ,2-FB =
�
W is completely (G,�)-walk-safe

,

454

and
EW ,� ,2-FDB =

�
W is completely (G,�)-walk-unsafe

.

We have:

Ö
⇥
Ŷ�

��x⇤
=

’
W✓W1A(�)

Ö
⇥
Ŷ�

��x, EW ,� ,2-FB \ EW1A(�)\W ,� ,2-FDB
⇤
· ê

⇥
EW ,� ,2-FB \ EW1A(�)\W ,� ,2-FDB

⇤
.

Now from Lemma B.80, we know that for everyW ✓W1A(�) satisfyingW < ú, we
have

Ö
⇥
Ŷ�

��x, EW ,� ,2-FB \ EW1A(�)\W ,� ,2-FDB
⇤
= 0.

Therefore,
Ö

⇥
Ŷ�

��x⇤ = Ö⇥
Ŷ�

��x, EW1A(�),� ,2-FDB
⇤
· ê

⇥
EW1A(�),� ,2-FDB

⇤
. (B.3.29)

Now from Lemma B.79, we have

ê
⇥
EW1A(�),� ,2-FDB

⇤
6 (B◆) 1

2B� |W1A(�)| =
h
(B◆) 1

2B�

i |W1A(�)|
. (B.3.30)

On the other hand, we have

Ö
⇥
Ŷ�

��x, EW1A(�),� ,2-FDB
⇤

= Ö
266664

÷
,2W(�)

✓
Y, �

✓
⌘3
2=

◆
B

x,
◆������x, EW1A(�),� ,2-FDB

377775
=

’
W✓W(�)

266664
÷

,2W(�)\W

✓
�
✓
⌘3
2=

◆
B

x,
◆377775

· Ö
" ÷
,2W

Y,

�����x, EW1A(�),� ,2-FDB

#

=
’

W✓W(�)

266664
÷

,2W(�)\W

✓
�
✓
⌘3
2=

◆
B

x,
◆377775

· Ö
h
Y�W

���x, EW1A(�),� ,2-FDB

i
.

Therefore,

���Ö⇥
Ŷ�

��x, EW1A(�),� ,2-FDB
⇤ ��� 6 ’

W✓W(�)

✓
⌘3
2=

◆
B |W(�)\W |

·
���Öh

Y�W

���x, EW1A(�),� ,2-FDB

i ���.
(B.3.31)

Now fix W ✓ W(�) and let S(�W) = S1(�W) \ S>2(�W). If we take E =

EW1A(�),� ,2-FDB and* = S(�W) \ ©≠
´

ÿ
,2W1A(�)

+(,)™Æ
¨
, it is easy to see that the conditions of

Lemma B.50 and Lemma B.52 are satisfied. Therefore,

455

��Ö⇥
Y�

��x, EW1A(�),� ,2-FDB
⇤ �� 6 = 2

�

✓
6
⌘

◆ |⇢10(�W)|+�(|S(�W)|�|* |) ✓
⌘3
2=

◆ |⇢1(�W)|
· Ö

⇥
|Ỹ
⇢>2(�W) |

��x⇤ .
Now observe that ⇢10(�W) ✓ ⇢10(�) [

�
⇢1(�W) \ ⇢>2(�)

�
and

⇢1(�W) \ ⇢>2(�) ✓
ÿ

,2W>2(�)\W
, ,

which implies that
|⇢10(�W)| 6 |⇢10(�)| + B |W>2(�) \W |.

On the other hand, we have

|((�W)| � |* | 6

������
ÿ

,2W1A(�)
+(,)

������ 6
’

,2W1A(�)
|+(,)| = |W1A(�)| · (B + 1) 6 2B · |W1A(�)|.

Therefore,��Ö⇥
Y�

��x,EW1A(�),� ,2-FDB
⇤ ��

6 =
2
�

✓
6
⌘

◆ |⇢01(�)|+B |W>2(�)\W |+2B�·|W1A(�)| ✓
⌘3
2=

◆ |⇢1(�W)|
· Ö

⇥
|Ỹ
⇢>2(�W) |

��x⇤

6 =
2
�

✓
6
⌘

◆ |⇢01(�)|+B |W>2(�)\W |
·
"✓

6
⌘

◆2B�
|W1A(�)|

·
✓
⌘3
2=

◆ |⇢1(�W)|
· Ö

⇥
|Ỹ
⇢>2(�W) |

��x⇤

By combining this with Eq. (B.3.29) and Eq. (B.3.30) and Eq. (B.3.31), we get

��Ö⇥
Ŷ�

��x⇤ �� 6 ’
W✓W(�)

✓
⌘3
2=

◆
B |W(�)\W |

· = 2
� ·

✓
6
⌘

◆ |⇢01(�)|+B |W>2(�)\W |

⇥
"
(B◆) 1

2B� ·
✓
6
⌘

◆2B�
|W1A(�)|

·
✓
⌘3
2=

◆ |⇢1(�W)|
· Ö

⇥
|Ỹ
⇢>2(�W) |

��x⇤ .
Now if � > max{100 , 1}, we get from Eq. (B.1.3) that

◆ =
1

�B · 26��B2

⇣ ⌘
6

⌘4B2�2

6
1

B · 26��B2

⇣ ⌘
6

⌘4B2�2

,

hence

(B◆) 1
2B� ·

✓
6
⌘

◆2B�
6

✓
1

26��B2

⇣ ⌘
6

⌘4B2�2◆ 1
2B�

·
✓
6
⌘

◆2B�
=

1
23�B ·

⇣ ⌘
6

⌘2B�
·
✓
6
⌘

◆2B�
=

1
23�B .

456

Therefore,

��Ö⇥
Ŷ�

��x⇤ �� 6 =

2
�

23�B·|W1A(�)| ·
✓
6
⌘

◆ |⇢01(�)|
·

’
W✓W(�)

✓
6
⌘

◆
B |W>2(�)\W | ✓

⌘3
2=

◆
B |W(�)\W |+|⇢1(�W)|

· Ö
⇥
|Ỹ
⇢>2(�W) |

��x⇤ .
(B.3.32)

Now we have

’
W✓W(�)

✓
6
⌘

◆
B |W>2(�)\W | ✓

⌘3
2=

◆
B |W(�)\W |+|⇢1(�W)|

· Ö
⇥
|Ỹ
⇢>2(�W) |

��x⇤

=
’

W1✓W1(�)

’
W>2✓W>2(�)

✓
6
⌘

◆
B |W>2(�)\(W1[W>2)| ✓ ⌘3

2=

◆
B |W(�)\(W1[W>2)|+|⇢1(�W1[W>2)|

· Ö
⇥
|Ỹ
⇢>2(�W1[W>2) |

��x⇤ ,
(B.3.33)

Now for everyW1 ✓ W1(�) and everyW>2 ⇢ W>2(�), we have
��W>2(�) \

�
W1 [W>2

� �� = |W>2(�) \W>2 | = |W>2(�)| � |W>2 |, (B.3.34)

⇢1(�W1[W>2) = ⇢1(�W1) [⇢1(�W>2),
⇢1(�W1) \ ⇢1(�W>2) = ú,

and
|⇢1(�W1)| = B |W1 |,

hence
|⇢1(�W1[W>2)| = B |W1 | + |⇢1(�W>2)|.

On the other hand,

|W(�) \ (W1 [W>2)| = |W(�)| � |W1 | � |W>2 |
= |W1(�)| + |W>2(�)| � |W1 | � |W>2 |.

Therefore,

B |W(�)\(W1 [W>2)| + |⇢1(�W1[W>2)|
= B |W1(�)| + B |W>2(�)| � B |W1 | � B |W>2 | + B |W1 | + |⇢1(�W>2)|
= B |W1(�)| + B(|W>2(�)| � |W>2 |) + |⇢1(�W>2)|.

(B.3.35)

Furthermore, we have
⇢>2(�W1[W>2) = ⇢>2(�W>2). (B.3.36)

By combining Eq. (B.3.34), Eq. (B.3.33), Eq. (B.3.35), and Eq. (B.3.36), we get

’
W✓W(�)

✓
6
⌘

◆
B |W>2(�)\W | ✓

⌘3
2=

◆
B |W(�)\W |+|⇢1(�W)|

· Ö
⇥
|Ỹ
⇢>2(�W) |

��x⇤

457

=
’

W1✓W1(�)

’
W>2✓W>2(�)

✓
6
⌘

◆
B(|W>2(�)|�|W>2 |) ✓ ⌘3

2=

◆
B |W1(�)|+B(|W>2(�)|�|W>2 |)+|⇢1(�W>2)|

· Ö
⇥
|Ỹ
⇢>2(�W>2) |

��x⇤

=
✓
⌘3
2=

◆
B |W1(�)|

·
266664

’
W1✓W1(�)

1
377775
·

’
W>2✓W>2(�)

✓
33
=

◆
B(|W>2(�)|�|W>2 |) ✓ ⌘3

2=

◆ |⇢1(�W>2)|
· Ö

⇥
|Ỹ
⇢>2(�W>2) |

��x⇤

= 2|W1(�)| ·
✓
⌘3
2=

◆
B |W1(�)|

·
’

W>2✓W>2(�)

✓
33
=

◆
B(|W>2(�)|�|W>2 |) ✓ ⌘3

2=

◆ |⇢1(�W>2)|
· Ö

⇥
|Ỹ
⇢>2(�W>2) |

��x⇤

= 2|W1(�)| ·
✓
⌘3
2=

◆
B |W1(�)|

·
’

W>2✓W>2(�)
�W>2(x).

By combining this with Eq. (B.3.32) , we get the lemma. ⇤

B.3.2.2 Analyzing walks of multiplicity at least 2
In order to prove Lemma B.47, we need a few definitions and lemmas.

Definition B.81. Let � 2 BSAWB ,C . For everyW>2 ✓ W>2(�), define

 W>2(x) =
� 33
=

� B(|W>2(�)|�|W>2 |) � ⌘3
2=

� |⇢1(�W>2)|

÷
E2L>2(�W>2)

=

1
4

✓
3

�W>2
>2 (E)��

◆ ·
✓
3

=

◆ |⇢1>2(�W>2)|
·

÷
DE2⇢0>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
.

Lemma B.82. Let � 2 BSAWB ,C . For everyW>2 ✓ W>2(�), we have

�W>2(x) 6 W>2(x).

Proof. This is a direct corollary from Lemma B.16 and the fact that⇢>2(�W>2) = ⇢0>2(�W>2)[
⇢
1

>2(�W>2). ⇤

Lemma B.82 implies that
’

W>2✓W>2(�)
�W>2(x) 6

’
W>2✓W>2(�)

 W>2(x). In the following

few lemmas, we will prove an upper bound on
’

W>2✓W>2(�)
 W>2(x). This will yield an

upper bound on
’

W>2✓W>2(�)
�W>2(x).

The following lemma compares W>2(x) and W0
>2
(x) in the case whereW>2 andW0

>2
differ by exactly one walk.

Lemma B.83. If � 2 BSAWB ,C and = is large enough, then for everyW>2 ✓ W>2(�) and every
, 2 W>2, if we defineW0

>2 =W>2 \ {,}, then

 W0
>2
(x)

 W>2(x)

458

6

⇣
1 + 1p

=

⌘
·
� 33
=

� |⇢>2(�W0>2
)\, |

⇣
2
p
=

93

⌘ |⇢>2(�W>2)\⇢>2(�W0>2
)|
·
⇣
=

p
=

23

⌘ |⇢0>2(�W>2)\⇢>2(�W0>2
)|
·

÷
DE2⇢0>2(�W>2)\⇢>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Proof. We have

÷
E2L>2(�W>2)

=

1
4

✓
3

�W>2
>2 (E)��

◆
= =
��4 |L>2(�W>2)| · =

’
E2L>2(�W>2)

1
4 3

�W>2
>2 (E)

.

Furthermore, ’
E2L>2(�W>2)

3�W>2
(E) = 2 · |⇢1 ,8>2(�W>2)| + |⇢1 ,>>2 (�W>2)|,

where

⇢
1 ,8

>2(�W>2) =
�
DE 2 ⇢>2(�W>2) : D 2 L>2(�W>2) and E 2 L>2(�W>2)

,

and
⇢
1 ,>

>2 (�W>2) =
�
DE 2 ⇢>2(�W>2) : D 2 L>2(�W>2) and E 8 L>2(�W>2)

.

Therefore,

÷
E2L>2(�W>2)

=

1
4

✓
3

�W>2
>2 (E)��

◆
= =
��4 |L>2(�W>2)|+

1
2 |⇢

1 ,8

>2(�W>2)|+
1
4 |⇢

1 ,>

>2 (�W>2)| ,

hence

 W>2(x)

=

� 33
=

� B(|W>2(�)|�|W>2 |) � ⌘3
2=

� |⇢1(�W>2)|

=
��4 |L>2(�W>2)|+

1
2 |⇢

1 ,8

>2(�W>2)|+
1
4 |⇢

1 ,>

>2 (�W>2)|
·
✓
3

=

◆ |⇢1>2(�W>2)|
·

÷
DE2⇢0>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

= =

�
4 |L>2(�W>2)| ·

✓
33
=

◆
B(|W>2(�)|�|W>2 |) ✓ ⌘3

2=

◆ |⇢1(�W>2)|
·
✓
3

=

3
2

◆ |⇢1 ,8>2(�W>2)|
·
✓
3

=

5
4

◆ |⇢1 ,>>2 (�W>2)|

⇥
÷

DE2⇢0>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
.

If we apply the above equation toW0
2 and use the fact that |W0

>2 | = |W>2 | � 1, we get

 W0
>2
(x)

= =

�
4 |L>2(�W0>2

)| ·
✓
33
=

◆
B+B(|W>2(�)|�|W>2 |) ✓ ⌘3

2=

◆ |⇢1(�W0>2
)|
·
✓
3

=

3
2

◆ |⇢1 ,8>2(�W0>2
)|
·
✓
3

=

5
4

◆ |⇢1 ,>>2 (�W0>2
)|

459

⇥
÷

DE2⇢0>2(�W0>2
)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
.

Therefore,

 W0
>2
(x)

 W>2(x)

= =

�
4

⇣
|L>2(�W0>2

)|�|L>2(�W>2)|
⌘
·
✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

·
✓
3

=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)|

⇥
✓
3

=

5
4

◆ |⇢1 ,>>2 (�W0>2
)|�|⇢1 ,>>2 (�W>2)|

·

÷
DE2⇢0>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i
÷

DE2⇢0>2(�W>2)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .
(B.3.37)

Now since W0
>2 ✓ W>2, the multigraph �W0

>2
is a submultigraph of �W>2 , hence

3

�W0>2
>2 (E) 6 3

�W0>2
>2 (E) for every E 2 +(�W0

>2
). This means that L>2(�W0

>2
) ✓ L>2(�W>2).

Therefore,

� ·
⇣
|L>2(�W>2)| � |L>2(�W0

>2
)|
⌘

=
’

E2L>2(�W>2)\L>2(�W0>2
)
� >

’
E2L>2(�W>2)\L>2(�W0>2

)
3

�W0>2
>2 (E)

= 2 ·
���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 2 L>2(�W>2) \ L>2(�W0

>2
)
 ��

+
���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 8 L>2(�W>2) \ L>2(�W0

>2
)
 ��

= 2 ·
���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 2 L>2(�W>2) \ L>2(�W0

>2
)
 ��

+
���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 8 L>2(�W>2) and E 8 L>2(�W0

>2
)
 ��

+
���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 2 L>2(�W0

>2
)
 ��

(⇤)
= 2 ·

���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 2 L>2(�W>2) \ L>2(�W0

>2
)
 ��

+
���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 8 L>2(�W>2) and E 8 L>2(�W0

>2
)
 ��

+
���
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W>2) \ L>2(�W0

>2
) and E 2 L>2(�W>2) and E 2 L>2(�W0

>2
)
 ��

= 2 ·
��
⇢
0

>2(�W0
>2
) \ ⇢1 ,8>2(�W>2)

�� + ��
⇢
0

>2(�W0
>2
) \ ⇢1 ,>>2 (�W>2)

�� + ��
⇢
1 ,>

>2 (�W0
>2
) \ ⇢1 ,8>2(�W>2)

��
,

where (⇤) follows from the fact that L>2(�W0
>2
) ✓ L>2(�W>2). By combining this with

Eq. (B.3.37), we get

460

 W0
>2
(x)

 W>2(x)
6 =

� 1
2 |⇢0>2(�W0>2

)\⇢1 ,8>2(�W>2)|�
1
4 |⇢0>2(�W0>2

)\⇢1 ,>>2 (�W>2)|�
1
4 |⇢

1 ,>

>2 (�W0>2
)\⇢1 ,8>2(�W>2)|

⇥
✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

·
✓
23
=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)|

⇥
✓
23
=

5
4

◆ |⇢1 ,>>2 (�W0>2
)|�|⇢1 ,>>2 (�W>2)|

·

÷
DE2⇢0>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i
÷

DE2⇢0>2(�W>2)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .
(B.3.38)

Now we have:
÷

DE2⇢0>2(�W0>2
)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

=
÷

DE2⇢0>2(�W0>2
)\⇢1>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
·

÷
DE2⇢0>2(�W0>2

)\⇢1>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

6
÷

DE2⇢0>2(�W0>2
)\⇢1>2(�W>2)

23
=

+ 3
2

=
2

�
·

÷
DE2⇢0>2(�W0>2

)\⇢1>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

=
÷

DE2⇢0>2(�W0>2
)\⇢1>2(�W>2)

23
=

✓
1 + 3

2=

◆�
·

÷
DE2⇢0>2(�W0>2

)\⇢1>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

6
✓
1 + $

✓
3BC

2=

◆◆
·
✓
23
=

◆ |⇢0>2(�W0>2
)\⇢1>2(�W>2)| ÷

DE2⇢0>2(�W0>2
)\⇢1>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

6
✓
1 + 1p

=

◆
·
✓
23
=

◆ |⇢0>2(�W0>2
)\⇢1 ,8>2(�W>2)|

·
✓
23
=

◆ |⇢0>2(�W0>2
)\⇢1 ,>>2 (�W>2)|

⇥
÷

DE2⇢0>2(�W0>2
)\⇢1>2(�W>2)

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
,

where the last inequality is true for = large enough. By combining this with Eq. (B.3.38),
we get

 W0
>2
(x)

 W>2(x)

6
✓
1 + 1p

=

◆
· =�

1
4 |⇢

1 ,>

>2 (�W0>2
)\⇢1 ,8>2(�W>2)| ·

✓
23
=

3
2

◆ |⇢0>2(�W0>2
)\⇢1 ,8>2(�W>2)|

·
✓
23
=

5
4

◆ |⇢0>2(�W0>2
)\⇢1 ,>>2 (�W>2)|

461

⇥
✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

·
✓
23
=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)|

·
✓
23
=

5
4

◆ |⇢1 ,>>2 (�W0>2
)|�|⇢1 ,>>2 (�W>2)|

⇥

÷
DE2⇢0>2(�W0>2

)\⇢1>2(�W>2)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i

÷
DE2⇢0>2(�W>2)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Hence,

 W0
>2
(x)

 W>2(x)
6

✓
1 + 1p

=

◆
· =�

1
4 |⇢

1 ,>

>2 (�W0>2
)\⇢1 ,8>2(�W>2)| ·

✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

⇥
✓
23
=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)\⇢

0

>2(�W0>2
)|
·
✓
23
=

5
4

◆ |⇢1 ,>>2 (�W0>2
)|�|⇢1 ,>>2 (�W>2)\⇢

0

>2(�W0>2
)|

⇥

÷
DE2⇢0>2(�W0>2

)\⇢1>2(�W>2)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i

÷
DE2⇢0>2(�W>2)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Now since �W0
>2

is a submultigraph of �W>2 , we have ⇢>2(�W0
>2
) ✓ ⇢>2(�W>2) =

⇢
0

>2(�W>2) [⇢1>2(�W>2), which implies that

⇢
0

>2(�W0
>2
) ✓ ⇢0>2(�W>2) [⇢1>2(�W>2).

This means that
⇢
0

>2(�W0
>2
) \ ⇢1>2(�W>2) ✓ ⇢0>2(�W>2).

On the other hand, since ⇢0>2(�W>2) \ ⇢1>2(�W>2) = ú, we have

⇢
0

>2(�W>2) \
�
⇢
0

>2(�W0
>2
) \ ⇢1>2(�W>2)

�
= ⇢0>2(�W>2) \ ⇢0>2(�W0

>2
).

Therefore,

 W0
>2
(x)

 W>2(x)
6

✓
1 + 1p

=

◆
· =�

1
4 |⇢

1 ,>

>2 (�W0>2
)\⇢1 ,8>2(�W>2)| ·

✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

⇥
✓
23
=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)\⇢

0

>2(�W0>2
)|
·

⇣
23
=

5
4

⌘ |⇢1 ,>>2 (�W0>2
)|�|⇢1 ,>>2 (�W>2)\⇢

0

>2(�W0>2
)|

÷
DE2⇢0>2(�W>2)\⇢

0

>2(�W0>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Now since L>2(�W0
>2
) ✓ L>2(�W>2) and ⇢>2(�W0

>2
) ✓ ⇢>2(�W>2), we have

⇢
1

>2(�W0
>2
) =

�
DE 2 ⇢>2(�W0

>2
) : D 2 L>2(�W0

>2
) or E 2 L>2(�W0

>2
)

✓
�
DE 2 ⇢>2(�W>2) : D 2 L>2(�W>2) or E 2 L>2(�W>2)

= ⇢1>2(�W>2).

(B.3.39)

462

On the other hand, since ⇢
1 ,>

>2 (�W0
>2
) ✓ ⇢

1

>2(�W0
>2
) ✓ ⇢

1

>2(�W>2) and since�
⇢
1 ,8

>2(�W>2), ⇢1 ,>>2 (�W>2)

is a partition of ⇢1>2(�W>2), we have

⇢
1 ,>

>2 (�W0
>2
) = ⇢1 ,>>2 (�W0

>2
) \ ⇢1 ,>>2 (�W>2)

=
⇣
⇢
1 ,>

>2 (�W0
>2
) \ ⇢1 ,8>2(�W>2)

⌘
[

⇣
⇢
1 ,>

>2 (�W0
>2
) \ ⇢1 ,>>2 (�W>2)

⌘
.

Therefore,

 W0
>2
(x)

 W>2(x)
6

✓
1 + 1p

=

◆
· =�

1
4 |⇢

1 ,>

>2 (�W0>2
)\⇢1 ,8>2(�W>2)| ·

✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

⇥
✓
23
=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)\⇢

0

>2(�W0>2
)|
·
✓
23
=

5
4

◆ |⇢1 ,>>2 (�W0>2
)\⇢1 ,8>2(�W>2)|

⇥

⇣
23
=

5
4

⌘ |⇢1 ,>>2 (�W0>2
)\⇢1 ,>>2 (�W>2)|�|⇢

1 ,>

>2 (�W>2)\⇢
0

>2(�W0>2
)|

÷
DE2⇢0>2(�W>2)\⇢

0

>2(�W0>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i

=
✓
1 + 1p

=

◆
·
✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

·
✓
23
=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)\⇢

0

>2(�W0>2
)|

⇥
✓
23
=

3
2

◆ |⇢1 ,>>2 (�W0>2
)\⇢1 ,8>2(�W>2)|

·

⇣
23
=

5
4

⌘ |⇢1 ,>>2 (�W0>2
)\⇢1 ,>>2 (�W>2)|�|⇢

1 ,>

>2 (�W>2)\⇢
0

>2(�W0>2
)|

÷
DE2⇢0>2(�W>2)\⇢

0

>2(�W0>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Now since ⇢
1 ,>

>2 (�W0
>2
) \ ⇢

1 ,>

>2 (�W>2) ✓ ⇢
1 ,>

>2 (�W>2) and ⇢
1 ,>

>2 (�W0
>2
) \ ⇢

1 ,>

>2 (�W>2) \
⇢
0

>2(�W0
>2
) = ú, we have

⇢
1 ,>

>2 (�W0
>2
) \ ⇢1 ,>>2 (�W>2) ✓ ⇢1 ,>>2 (�W>2) \ ⇢0>2(�W0

>2
),

and so
|⇢1 ,>>2 (�W0

>2
) \ ⇢1 ,>>2 (�W>2)| � |⇢1 ,>>2 (�W>2) \ ⇢0>2(�W0

>2
)| 6 0.

Hence, for = large enough, we have

 W0
>2
(x)

 W>2(x)
6

✓
1 + 1p

=

◆
·
✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

·
✓
23
=

3
2

◆ |⇢1 ,8>2(�W0>2
)|�|⇢1 ,8>2(�W>2)\⇢

0

>2(�W0>2
)|

⇥
✓
23
=

3
2

◆ |⇢1 ,>>2 (�W0>2
)\⇢1 ,8>2(�W>2)|

·

⇣
23
=

3
2

⌘ |⇢1 ,>>2 (�W0>2
)\⇢1 ,>>2 (�W>2)|�|⇢

1 ,>

>2 (�W>2)\⇢
0

>2(�W0>2
)|

÷
DE2⇢0>2(�W>2)\⇢

0

>2(�W0>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

463

Now observe that

|⇢1>2(�W>2) \ ⇢>2(�W0
>2
)|

=
��
⇢
1

>2(�W>2) \
�
⇢
0

>2(�W0
>2
) [⇢1>2(�W0

>2
)
� ��

=
�� �
⇢
1

>2(�W>2) \ ⇢0>2(�W0
>2
)
�
\ ⇢1>2(�W0

>2
)
��

(†)
= |⇢1>2(�W>2) \ ⇢0>2(�W0

>2
)| � |⇢1>2(�W0

>2
)|

= |⇢1 ,8>2(�W>2) \ ⇢0>2(�W0
>2
)| + |⇢1 ,>>2 (�W>2) \ ⇢0>2(�W0

>2
)| � |⇢1 ,8>2(�W0

>2
)| � |⇢1 ,>>2 (�W0

>2
)|

= |⇢1 ,8>2(�W>2) \ ⇢0>2(�W0
>2
)| + |⇢1 ,>>2 (�W>2) \ ⇢0>2(�W0

>2
)|

� |⇢1 ,8>2(�W0
>2
)| � |⇢1 ,>>2 (�W0

>2
) \ ⇢1 ,8>2(�W>2)| � |⇢1 ,>>2 (�W0

>2
) \ ⇢1 ,>>2 (�W>2)|,

where (†) follows from the fact that ⇢1>2(�W0
>2
) ✓ ⇢1>2(�W>2) and ⇢1>2(�W0

>2
)\⇢0>2(�W0

>2
) =

ú, which imply that ⇢1>2(�W0
>2
) ✓ ⇢1>2(�W>2) \ ⇢0>2(�W0

>2
). Therefore,

 W0
>2
(x)

 W>2(x)
6

✓
1 + 1p

=

◆
·
✓
33
=

◆
B

·
✓
⌘3
2=

◆ |⇢1(�W0>2
)|�|⇢1(�W>2)|

·

⇣
23
=

3
2

⌘�|⇢1>2(�W>2)\⇢>2(�W0>2
)|

÷
DE2⇢0>2(�W>2)\⇢

0

>2(�W0>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Now since ⇢1>2(�W0
>2
) ✓ ⇢1>2(�W>2), we have

�
⇢
0

>2(�W>2) \ ⇢0>2(�W0
>2
)
�
\ ⇢1>2(�W0

>2
) ✓

�
⇢
0

>2(�W>2) \ ⇢0>2(�W0
>2
)
�
\ ⇢1>2(�W>2)

✓ ⇢0>2(�W>2) \ ⇢1>2(�W>2) = ú,

hence,

⇢
0

>2(�W>2) \ ⇢0>2(�W0
>2
) =

�
⇢
0

>2(�W>2) \ ⇢0>2(�W0
>2
)
�
\ ⇢1>2(�W0

>2
)

= ⇢0>2(�W>2) \
�
⇢
0

>2(�W0
>2
) [⇢1>2(�W0

>2
)
�

= ⇢0>2(�W>2) \ ⇢>2(�W0
>2
).

Therefore,

 W0
>2
(x)

 W>2(x)
6

⇣
1 + 1p

=

⌘
·
� 33
=

� B · � ⌘32=
� |⇢1(�W0>2

)|�|⇢1(�W>2)|

⇣
23
=

3
2

⌘ |⇢1>2(�W>2)\⇢>2(�W0>2
)|
·

÷
DE2⇢0>2(�W>2)\⇢>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i

6

⇣
1 + 1p

=

⌘
·
� 33
=

� B+|⇢1(�W0>2
)|�|⇢1(�W>2)|

⇣
23
=

3
2

⌘ |⇢1>2(�W>2)\⇢>2(�W0>2
)|
·

÷
DE2⇢0>2(�W>2)\⇢>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .
(B.3.40)

464

Now notice that �W>2 is obtained from �W0
>2

by adding the self-avoiding-walk, of
length B. This means that

⇢1(�W>2) =
�
⇢1(�W0

>2
) \,

�
[

�
, \ ⇢(�W0

>2
)
�
.

Therefore,

B + |⇢1(�W0
>2
)| � |⇢1(�W>2)| = |, | + |⇢1(�W0

>2
)| � |⇢1(�W0

>2
) \, | � |, \ ⇢(�W0

>2
)|

=
��
⇢1(�W0

>2
) \,

�� + ��
⇢(�W0

>2
) \,

��
=

��
⇢1(�W0

>2
) \,

�� + ��
⇢1(�W0

>2
) \,

�� + ��
⇢>2(�W0

>2
) \,

��
= 2 ·

��
⇢1(�W0

>2
) \,

�� + ��
⇢>2(�W0

>2
) \,

��
.

Now it is easy to see that

⇢1(�W0
>2
) \, = ⇢>2(�W>2) \ ⇢>2(�W0

>2
)

=
�
⇢
0

>2(�W>2) \ ⇢>2(�W0
>2
)
�
[

�
⇢
1

>2(�W>2) \ ⇢>2(�W0
>2
)
�
.

Thus,

B + |⇢1(�W0
>2
)| � |⇢1(�W>2)| = 2 ·

��
⇢
0

>2(�W>2) \ ⇢>2(�W0
>2
)
�� + 2 ·

��
⇢
1

>2(�W>2) \ ⇢>2(�W0
>2
)
��

+
��
⇢>2(�W0

>2
) \,

��
.

By combining this with Eq. (B.3.40), it follows that for = large enough, we have

 W0
>2
(x)

 W>2(x)

6

⇣
1 + 1p

=

⌘
·
� 33
=

�2|⇢0>2(�W>2)\⇢>2(�W0>2
)|+2|⇢1>2(�W>2)\⇢>2(�W0>2

)|+|⇢>2(�W0>2
)\, |

⇣
23
=

3
2

⌘ |⇢1>2(�W>2)\⇢>2(�W0>2
)|
·

÷
DE2⇢0>2(�W>2)\⇢>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i

=

⇣
1 + 1p

=

⌘
·
� 33
=

� |⇢>2(�W0>2
)\, |

⇣
2
p
=

93

⌘ |⇢1>2(�W>2)\⇢>2(�W0>2
)|
·
⇣
=

2

932

⌘ |⇢0>2(�W>2)\⇢>2(�W0>2
)|
·

÷
DE2⇢0>2(�W>2)\⇢>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Now since

|⇢>2(�W>2) \ ⇢>2(�W0
>2
)| = |⇢0>2(�W>2) \ ⇢>2(�W0

>2
)| + |⇢1>2(�W>2) \ ⇢>2(�W0

>2
)|,

we get

 W0
>2
(x)

 W>2(x)

465

6

⇣
1 + 1p

=

⌘
·
� 33
=

� |⇢>2(�W0>2
)\, |

⇣
2
p
=

93

⌘ |⇢>2(�W>2)\⇢>2(�W0>2
)|
·
⇣
=

p
=

23

⌘ |⇢0>2(�W>2)\⇢>2(�W0>2
)|
·

÷
DE2⇢0>2(�W>2)\⇢>2(�W0>2

)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

⇤

The following lemma proves an upper bound on W>2(x) for everyW>2 (W>2(�).
Lemma B.84. If � 2 BSAWB ,C and = is large enough, then for everyW>2 (W>2(�), we have

 W>2(x) 6
93p
=

· ̂W>2(�)(x),

where

 ̂W>2(�)(x) =
� ⌘3

2=
� |⇢1(�W>2(�))|

÷
E2L>2(�W>2(�))

=

1
4

✓
3

�W>2(�)
>2 (E)��

◆ ·
✓
23
=

◆ |⇢1>2(�W>2(�))|
·

÷
DE2⇢0>2(�W>2(�))

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 332

=

p
=

�
.

(B.3.41)

Proof. Let : = |W>2(�) \W2 |, and let,1, . . . ,,: 2 W>2(�) be such that

W>2(�) \W2 =
�
,1, . . . ,,:

.

Now defineW(0)
>2 =W>2 and for every 1 6 < 6 :, define

W(<)
>2 =W>2 [

�
,1, . . . ,,<

.

Clearly,W(:)
>2 =W>2(�), and for every 1 6 < 6 :, we haveW(<)

>2 =W(<�1)
>2 [{,<}.

From Lemma B.83, we know that for every 1 6 < 6 :, we have

 W(<�1)
>2

(x)

 W(<)
>2

(x) 6

⇣
1 + 1p

=

⌘
·
⇣

93
2
p
=

⌘ |⇢>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)|
·
⇣

23
=

p
=

⌘ |⇢0>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)|

�
=

33
� |⇢>2(�W(<�1)

>2
)\,< |

· ÷
DE2⇢0>2(�W(<)

>2
)\⇢>2(�W(<�1)

>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i .

Therefore,

 W>2(x)
 W>2(�)(x)

=
 W(0)

>2
(x)

 W(:)
>2
(x) =

:÷
<=1

 W(<�1)
>2

(x)

 W(<)
>2

(x)

6

⇣
1 + 1p

=

⌘
:

·
:÷

<=1

⇣
93

2
p
=

⌘ |⇢>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)|
·
⇣

23
=

p
=

⌘ |⇢0>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)|�

:÷
<=1

" �
=

33
� |⇢>2(�W(<�1)

>2
)\,< |

· ÷
DE2⇢0>2(�W(<)

>2
)\⇢>2(�W(<�1)

>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i # .

(B.3.42)

466

Now since
W(0)
>2 ✓ W

(1)
>2 ✓ . . . ✓ W(<)

>2 ,

we have
⇢>2(W(0)

>2) ✓ ⇢>2(W(1)
>2) ✓ . . . ✓ ⇢>2(W(<)

>2),
and

:÷
<=1

✓
93

2
p
=

◆ |⇢>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)|
=

:÷
<=1

✓
93

2
p
=

◆ |⇢>2(�W(<)
>2

)|�|⇢>2(�W(<�1)
>2

)|

=
✓

93
2
p
=

◆ |⇢>2(�W(:)
>2

)|�|⇢>2(�W(0)
>2

)|

=
✓

93
2
p
=

◆ |⇢>2(�W>2(�))|�|⇢>2(�W>2)|
.

(B.3.43)

On the other hand, we have✓
1 + 1p

=

◆
:

= 1 + $
✓
:p
=

◆
6 1 + $

✓
|W>2(�)|p

=

◆
6 1 + $

✓
|W(�)|p

=

◆
= 1 + $

✓
Cp
=

◆
6 2,

(B.3.44)
where the last inequality is true for = large enough.

Furthermore, from Definition B.81, we have

 W>2(�)(x) =
� ⌘3

2=
� |⇢1(�W>2(�))|

÷
E2L>2(�W>2(�))

=

1
4

✓
3

�W>2(�)
>2 (E)��

◆ ·
✓
23
=

◆ |⇢1>2(�W>2(�))|
·

÷
DE2⇢0>2(�W>2(�))

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

= 'W>2(�)(x) ·
÷

DE2⇢0>2(�W>2(�))

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
,

(B.3.45)
where

'W>2(�)(x) =
� ⌘3

2=
� |⇢1(�W>2(�))|

÷
E2L>2(�W>2(�))

=

1
4

✓
3

�W>2(�)
>2 (E)��

◆ ·
✓
23
=

◆ |⇢1>2(�W>2(�))|
.

Therefore,
 W>2(�)(x)

:÷
<=1

÷
DE2⇢0>2(�W(<)

>2
)\⇢>2(�W(<�1)

>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i

= 'W>2(�)(x) ·

÷
DE2⇢0>2(�W>2(�))

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i
:÷

<=1

÷
DE2⇢0>2(�W(<)

>2
)\⇢>2(�W(<�1)

>2
)

h �
1 + ⌘xDxE

2
�
3

=
+ 3

2

=
2

i

467

= 'W>2(�)(x) ·
÷

DE2⇢0>2(�W>2(�))\
"

:ÿ
<=1

✓
⇢
0

>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)
◆#

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�
.

By combining this with Eq. (B.3.42), Eq. (B.3.43), Eq. (B.3.44), we get

 W>2(x) 6 2 ·
✓

93
2
p
=

◆ |⇢>2(�W>2(�))\⇢>2(�W>2)|
· 'W>2(�)(x)

⇥
:÷

<=1

"✓
33
=

◆ |⇢>2(�W(<�1)
>2

)\,< |
·
✓

23
=

p
=

◆ |⇢0>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)|#

⇥
÷

DE2⇢0>2(�W>2(�))\
"

:ÿ
<=1

✓
⇢
0

>2(�W(<)
>2

)\⇢>2(�W(<�1)
>2

)
◆#

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2

�

6 2 ·
✓

93
2
p
=

◆ |⇢>2(�W>2(�))\⇢>2(�W>2)|
· 'W>2(�)(x) ·

:÷
<=1

✓
33
=

◆ |⇢>2(�W(<�1)
>2

)\,< |

⇥
÷

DE2⇢0>2(�W>2(�))

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 3
2

=
2 + 23

=

p
=

�

6 2 ·
✓

93
2
p
=

◆ |⇢>2(�W>2(�))\⇢>2(�W>2)|
· 'W>2(�)(x) ·

:÷
<=1

✓
33
=

◆ |⇢>2(�W(<�1)
>2

)\,< |

⇥
÷

DE2⇢0>2(�W>2(�))

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 332

=

p
=

�

6 2 ·
✓

93
2
p
=

◆ |⇢>2(�W>2(�))\⇢>2(�W>2)|+
:’

<=1
|⇢>2(�W(<�1)

>2
)\,< |

· 'W>2(�)(x)

⇥
÷

DE2⇢0>2(�W>2(�))

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 332

=

p
=

�
.

Now observe that

|⇢>2(�W>2(�))\⇢>2(�W>2)| +
:’

<=1
|⇢>2(�W(<�1)

>2
) \,< |

> |⇢>2(�W>2(�)) \ ⇢>2(�W(:�1)
>2

)| + |⇢>2(�W(:�1)
>2

) \,: |

= |⇢1(�W(:�1)
>2

) \,: | + |⇢>2(�W(:�1)
>2

) \,: | = |⇢(�W(:�1)
>2

) \,: | > 1,

where the last inequality follows from the fact that,: 2 W>2(�), which means that there
is at least one edge in,: that already appears in ⇢(�W(:�1)

>2
).

468

Therefore, for = large enough, we have

 W>2(x) 6 2 ·
✓

93
2
p
=

◆
· 'W>2(�)(x) ·

÷
DE2⇢0>2(�W>2(�))

⇣
1 + ⌘xDxE

2

⌘
3

=

+ 332

=

p
=

�
=

93p
=

· ̂W>2(�)(x).

⇤

Now we are ready to prove Lemma B.47.

Proof of Lemma B.47. We know from Lemma B.84 that for everyW>2 (W>2(�), we have

 W>2(x) 6
93p
=

· ̂W>2(�)(x).

On the other hand, it is easy to see that

 W>2(�)(x) 6 ̂W>2(�)(x).

Now from Lemma B.82 we get
’

W>2✓W>2(�)
�W>2(x)

6
’

W>2✓W>2(�)
 W>2(x) = W>2(�)(x) +

’
W>2(W>2(�)

 W>2(x)

6 ̂W>2(�)(x) ·
©≠
´
1 +

’
W>2(W>2(�)

93p
=

™Æ
¨
= ̂W>2(�)(x) ·

1 + 93p

=

⇣
2|W>2(�)| � 1

⌘�

6 ̂W>2(�)(x) ·
✓
1 + 93p

=

· 4C
◆
= ̂W>2(�)(x) ·

✓
1 + 93p

=

· =
◆
6 2 ̂W>2(�)(x),

(B.3.46)
where the last inequality is true if 6 1

100 and = is large enough.
By noticing that ⇢0>2(�W>2(�)) = ⇢

0

>2(�), ⇢1>2(�W>2(�)) = ⇢
1

>2(�), L>2(�W>2(�)) =

L>2(�) and that 3
�W>2(�)
>2 (E) = 3

�

>2(E) for every E 2 L>2(�W>2(�)) = L>2(�), if we combine
Eq. (B.3.46) with Eq. (B.3.41), we get Eq. (B.2.9). ⇤

B.4 Tools for block self-avoiding walks

B.4.1 Splitting the expectation of block self-avoiding walks
In this section we prove Fact 4.65, Fact 4.94 and Fact 4.58.

469

Fact B.85 (Restatement of Fact 4.65). Let B = {⌫1, . . . , ⌫I} be a collection of disjoint connected
graphs on at least 2 vertices. Then for any G, � 2 M{F8 , 8}I8=1

(B) and 9 2 [I]

Ö*�(x) 6
1
4=
�1/25�

✓
6
⌘

◆2✓9+2@9
Ö*

�(+ ,+\⌫9)(x) · Ö*�(+\⌫9)(x) · Ö*�(⌫9)(x) ,

Ö*�(x) >
1
4=
�1/25�Ö*

�(+ ,+\⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(⌫8)(x) .

Proof. The first inequality follows observing that there are at most ✓8+ @8 edges in ⇢01(�) inci-
dent to�(⌫8) and observing that the edges in the multiway cut separating�(⌫1), . . . ,�(⌫I)
have multiplicity 1. The second inequality is a consequence of Definition 4.55 and the fact
that for any ⌫8 2 B, the edges in the cut �(+ \ ⌫8 , ⌫8) have multiplicity 1. ⇤

Fact B.86 (Restatement of Fact 4.94). Consider the settings of Theorem 4.44. Let D , E 2 [=] , let
B = {⌫1, . . . , ⌫I} be a collection of disjoint connected graphs on at least 2 vertices and let ⌫DE be a
(possibly empty) graph disjoint from any graph in B. Then for any G, � 2 M{F8 , 8}I+1

8=1
(B , ⌫DE)

and 8 2 [I + 1]

Ö*�(x) 6
1
4=
�1/25�

✓
6
⌘

◆2✓8+2@8
Ö*

�(+ ,+\⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(⌫8)(x) ,

Ö*�(x) >
1
4=
�1/25�Ö*

�(+ ,+\⌫8)(x) · Ö*�(+\⌫8)(x) · Ö*�(⌫8)(x) .

Proof. The proof is similar to the one of Fact 4.65. There are at most ✓8 + @8 edges in
⇢
0

1(�) incident to �(⌫8) and observing that the edges in the multiway cut separating
�(⌫1), . . . ,�(⌫I) have multiplicity 1. The second inequality follows by Definition 4.55 and
definition ofM{F8 , 8}I+1

8=1
(B , ⌫DE). ⇤

Fact B.87 (Restatement of Fact 4.58). Consider the settings of Theorem 4.43 and let > 0. Let
� 2 BSAWB ,C be a multigraph on at most $(C) vertices and let �⇤ be an induced sub-multigraph of
� satisfying:

1. the maximum (> 2)-degree in �⇤ is > 0 ,

2. all the edges in the cut �(+(�),+(�) \+(�⇤)) have multiplicity one in � .

We denote ✓ , @ > 0 as the number of multiplicity-1 edges in �
⇤ and �(+(�),+(�) \ +(�⇤))

respectively. Let / be a set of vertices in+(�⇤) such that �(+(�⇤) \/) has no multiplicity-2 cycles.
Then

Ö*�(x) 6
1
4=
�1/25�

✓
6
⌘

◆2✓+2@
Ö*

�(+ ,+\+(�⇤))(x) · Ö*�(+\+(�⇤))(x)

·
⇣
1 + ⌘

2

⌘ |/ |·
·
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

470

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)| ÷
42⇢0>2(�⇤)

3

=

+ 332

=

p
=

�
,

and

Ö*�(x) >
1
4=
�1/25�Ö*

�(+ ,+\+(�⇤))(x) · Ö*�(+\+(�⇤))(x)

·
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)| ÷
42⇢0>2(�⇤)

3

=

+ 332

=

p
=

�
,

Proof. Consider the first inequality. We denote multigraph �0 as the multigraph obtained
by removing all edges incident to vertice in /. Then there is no multiplicity-2 cycles in �.
By the Fact B.86(or Fact B.85), we have

Ö*�(x) 6
1
4=
�1/25�

✓
6
⌘

◆2✓+2@
Ö*

�(+ ,+\+(�⇤))(x) · Ö*�(+\+(�⇤))(x) · Ö*�⇤(x)

It remains to bound Ö*�⇤(x). We note that

Ö*�⇤(x) =
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)|

Ö
÷

42⇢0>2(�⇤)

3

=

(1 + ⌘
2G8G9) +

332

=

p
=

�

6
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)|

(1 + ⌘
2)

|/ |· Ö
÷

42⇢0>2(�⇤)\⇢(�0)

3

=

(1 + ⌘
2G8G9) +

332

=

p
=

�

=
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

471

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)|

· (1 + ⌘
2)

|/ |·
÷

42⇢0>2(�⇤)\⇢(�0)

✓
3

=

+ 332

=

p
=

◆

6
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)|

· (1 + ⌘
2)

|/ |·
÷

42⇢0>2(�⇤)

✓
3

=

+ 332

=

p
=

◆

The first inequality follows from by observing that observing that |⇢(�⇤) \ ⇢(�0)| 6 |/ | · .
The second inequality follows since �0 does not contain any multiplicity-2 cycle. The first
bound thus follows.

For the second inequality, we still use Fact B.86.

Ö*�(x) 6
1
4=
�1/25�Ö*

�(+ ,+\+(�⇤))(x) · Ö*�(+\+(�⇤))(x) · Ö*�⇤(x)

We note that for any �⇤

Ö
÷

42⇢0>2(�⇤)

✓
3

=

(1 + ⌘
2G8G9) +

332

=

p
=

◆
>

÷
42⇢0>2(�⇤)

✓
3

=

+ 332

=

p
=

◆

Therefore we have

Ö*�⇤(x) =
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)|

Ö
÷

42⇢0>2(�⇤)

3

=

(1 + ⌘
2G8G9) +

332

=

p
=

�

>
✓
23
=

◆ |⇢1>2(�⇤)|
·

÷
E2+(�⇤)

✓
6
⌘

◆max{23�1 (E)��,0}

· 1
÷

E2L>2(�⇤)
=

1
4(3�⇤>2 (E)��)

✓
⌘3
2=

◆ |⇢1(�⇤)|

472

÷
42⇢0>2(�⇤)

3

=

+ 332

=

p
=

�

The claim thus follows. ⇤

B.4.2 Counting block self-avoiding walks
B.4.2.1 Bounding number of BSAW given a subgraph
In this section we provide the counting arguments needed in Section 4.5. We reuse the
notation of such section and we assume the premises of Theorem 4.43 and Theorem 4.44 to
hold.

Lemma B.88. Let ⌫8 be a connected subgraph of the underlying graph of a block self-avoiding
walk � 2 "B ,C with <8 vertices. Let �(⌫8) be the multigraph on +(⌫8) that is induced by �(⌫8).
Suppose that:

• The cut �(+(⌫8),+(�) \+(⌫8)) consists of ✓8 edges of multiplicity 1.

• All edges in �(⌫8) of multiplicity > 2 are in ⌫8 .

• The number of edges of multiplicity 1 in �(⌫8) is @8 .

• The number of edges of multiplicity 2 in �(⌫8) is ⌘8 .

• The edges of multiplicity larger than 2 satisfy’
42�(⌫8)
<�(4)>3

<�(4) = ?8 .

Then we have
’

E2+(⌫8)
3
�(E)>3

✓
<�(E)

2 � 1
◆
6 (8⌘8 + 4?8)/B + 11@8 + 8✓8 + 4?8 + 6(⌘8 � <8 + 1) ,

where 3�(E) is the degree of E in the underlying graph ⌧(�), i.e., without counting multiplicities,
and

<�(E) =
’

42⇢(�),
4 is incident to E

<�(4).

Proof. Let ⌫⇤ be a spanning tree of ⌫8 . We start by deriving an upper bound on the number
of leaves of ⌫⇤. Notice that if a vertex E 2 +(⌫⇤) is a leaf of ⌫⇤, then it must satisfy at least
one of the following three conditions:

473

(a) E is incident to an edge in the cut �(+(⌫8),+(�) \+(⌫8)).

(b) E is incident to an edge in ⌧(�(⌫8)) \ ⌫⇤.

(c) E is a pivot of �, i.e., E is an end-vertex of one of the B self-avoiding walks forming �.

We will now upper-bound the number of leaves of each kind:

• Since each edge in �(+(⌫8),+(�) \+(⌫8)) is incident to exactly one vertex in +(⌫8),
there are at most ✓8 leaves of ⌫⇤ satisfying Condition (a).

• Since there are at most
�
@8 + ⌘8 + ?8

3
�
� (<8 � 1) edges in ⌧(�(⌫8)) \ ⌫⇤, and since each

edge is incident to exactly two vertices, there are at most 2@8 + 2⌘8 + 2
3?8 � 2(<8 � 1)

leaves of ⌫⇤ satisfying Condition (b).

• Each pivot vertex must be an end-vertex of a self-avoiding walk of �. There are at
most (@8 + 2⌘8 + ?8)/B self-avoiding walks of � that lie entirely in �(⌫8), and there
are at most ✓8 self-avoiding walks of � that intersect �(⌫8) without being entirely in
�(⌫8). Hence, �(⌫8) intersects at most (@8 + 2⌘8 + ?8)/B + ✓8 self-avoiding walks of �.
Now since each self-avoiding walk contains exactly 2 end-vertices, we deduce that
the number of pivots of � in +(⌫8) is at most

2(@8 + 2⌘8 + ?8)/B + 2✓8 . (B.4.1)

We now conclude that there are at most 2(@8 + 2⌘8 + ?8)/B + 2✓8 leaves of ⌫⇤ satisfying
Condition (c).

Therefore, the number of leaves of ⌫⇤ is at most

✓8 + 2@8 + 2⌘8 +
2
3?8 � 2(<8 � 1)+2(@8 + 2⌘8 + ?8)/B + 2✓8

6 (4⌘8 + 2?8)/B + 3✓8 + 4@8 + ?8 + 2(⌘8 � <8 + 1)

Let 3⌫⇤(E) be the degree of a vertex E 2 ⌫⇤. It is easy to see that the number of leaves in
⌫
⇤ is equal to

2 +
’

E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 2).

Therefore, ’
E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 2) 6 (4⌘8 + 2?8)/B + 3✓8 + 4@8 + ?8 + 2(⌘8 � <8 + 1). (B.4.2)

Now define
<� ,2(E) =

’
42⇢(�),

4 is incident to E ,
<�(4)=2

<�(4) ,

474

and
<� ,<2(E) =

’
42⇢(�),

4 is incident to E ,
<�(4)<2

<�(4) .

Clearly, <�(E) = <� ,2(E) + <� ,<2(E). Therefore,
’

E2+(⌫8)
3
�(E)>3

✓
<�(E)

2 � 1
◆
=

’
E2+(⌫8)
3
�(E)>3

✓
<� ,2(E)

2 � 1
◆
+

’
E2+(⌫8)
3
�(E)>3

<� ,<2(E)
2

(0)
6

’
E2+(⌫8)
3
�(E)>3

⇣
3
⌫8 (E) � 1

⌘
+

’
E2+(⌫8)

<� ,<2(E)
2

=
’

E2+(⌫8)
3
�(E)>3

⇣
3
⌫
⇤(E) � 1

⌘
+

’
E2+(⌫8)
3
�(E)>3

⇣
3
⌫8 (E) � 3⌫⇤(E)

⌘
+ ✓8

2 +
’

42�(⌫8)
<�(4)<2

<�(4)

=
’

E2+(⌫8)
3
�(E)>3

⇣
3
⌫
⇤(E) � 1

⌘
+ 2

�
|⇢(⌫8)| � |⇢(⌫⇤)|

�
+ ✓8

2 + @8 + ?8

6
’

E2+(⌫8)
3
�(E)>3

(3⌫⇤(E) � 1) + 2
⇣
⌘8 +

?8

3 � (<8 � 1)
⌘
+ ✓8

2 + @8 + ?8

6
’

E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 1) +
 ’
E2+(⌫8)
3
�(E)>3
3
⌫
⇤ (E)=2

1

!
+ 2(⌘8 � <8 + 1) + ✓8 + @8 + 2?8

(1)
6 2 ·

’
E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 2) + (2@8 + ✓8) + 2(⌘8 � <8 + 1) + ✓8 + @8 + 2?8

(2)
6 (8⌘8 + 4?8)/B + 6✓8 + 8@8 + 2?8 + 4(⌘8 � <8 + 1)

+ 2(⌘8 � <8 + 1) + 2✓8 + 3@8 + 2?8
= (8⌘8 + 4?8)/B + 11@8 + 8✓8 + 4?8 + 6(⌘8 � <8 + 1) ,

where (a) follows from the fact that every edge of multiplicity 2 and incident to E 2 +(⌫8)
must be in ⌫8 , hence <� ,2(E) 6 23⌫8 (E). (b) follows from the fact that if E 2 +(⌫8) satisfies
3
�(E) > 3 and 3⌫8 (E) = 2, then E must be incident to an edge of multiplicity 1, i.e., E must

be incident to an edge in ⇢(�(⌫8)) \ ⇢(⌫8), or an edge in the cut �(+(⌫8),+(�) \ +(⌫8)).
There are @8 edges in ⇢(�(⌫8)) \ ⇢(⌫8), each of which is incident to two vertices in +(⌫8),
and there are ✓8 edges in the cut �(+(⌫8),+(�) \+(⌫8)), each of which is incident to one
vertex in +(⌫8). (c) follows from (B.4.2). ⇤

475

Lemma B.89. Let M
B ,C ,{F8 , 8}I8=1

(B) be as defined in Definition 4.62. We denote ✓ =
Õ
I

8=1 ✓8 ,
and define @ , ? , ⌘ in the same way. Then, the number of block self-avoiding walks in the set
M

B ,C ,{F8 , 8}I8=1
(B) is at most

2=BC�2⌘�?�@� ✓2+< · <2?+2@+✓ · (BC)3 ✓2+@+2 ·
I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

.

Proof. We would like to derive an upper bound on the number of block self-avoiding
walks inM

B ,C ,{F8 , 8}I8=1
(B). We will do this by analyzing how we can construct a block

self-avoiding walk � 2 M
B ,C ,{F8 , 8}I8=1

(B). In order to construct �, we will need to make
some choices, and by counting the number of possibilities of each choice, we can derive an
upper-bound on the size ofM

B ,C ,{F8 , 8}I8=1
(B).

We first choose the vertices of the respective copies ⌫01, ⌫
0
2, . . . , ⌫

0
I

of ⌫1, ⌫2, . . . , ⌫I inside
�. There are at most =< possibilities for choosing these vertices.

We denote the union of the I disjoint graphs ⌫01, ⌫
0
2, . . . , ⌫

0
I

as

⌫
0 =

Iÿ
8=1

⌫
0
8
.

The size of multiway cut �

+(⌫01), . . . ,+(⌫0

I
),+(�) \

 –
92[I]

+(⌫0
I
)
!!

is bounded by ✓ , and

all the edges in the cuts have multiplicity 1. Let �(⌫0) be the multi-graph that is induced
by � on +(⌫0). There are @ multiplicity-1 edges and ⌘ multiplicity-2 edges in �(⌫0). The
edges of multiplicity at least 3 in �(⌫0) satisfy the following equation:

’
42�(⌫0)
<�(4)>3

<�(4) = ?.

Next, we choose the multi-graph �(⌫0) that is induced by � on +(⌫0), i.e., we have to
choose multiplicities for the edges of ⌫0 (which must be at least 2), and we have to choose
@ edges of multiplicity 1 whose both end-vertices must lie in +(⌫0). Note that there are
? multi-edges in �(⌫0) that correspond to edges of multiplicity at least 3, so specifying
these multi-edges is equivalent to specifying the multiplicities of the edges of ⌫0, because
once we specify the edges of ⌫0 of multiplicity at least 3, any remaining edge in ⌫0 must
have multiplicity-2. Since both end-vertices of these multi-edges lie in +(⌫0) and since
|+(⌫0)| = <, there are at most <2? ways to specify the ? multi-edges. For choosing the @
multiplicity-1 edges, there are at most <2@ ways of doing so.

The remaining of the multi-graph � consists of edges of multiplicity-1. More precisely,
since � is a block self-avoiding walk, the remaining edges of � can be partitioned into a
number of disjoint walks of multiplicity 1: Each time we exit +(⌫0), we exit through one
of the cut edges, we go through a walk of multiplicity 1, and then re-enter +(⌫0) through

476

another cut edge. We call these walks as outside walks. We call the first edge of each outside
walk as an outgoing cut-edge, and we call the last edge of each outside walk as a returning
cut-edge. The remaining edges of the outside walks are called outside edges.

Note that there might be some cut-edges that are outgoing and returning at the same
time. This can happen if a cut-edge is incident to two disjoint connected components ⌫8
and ⌫9 with 8 < 9. We call such cut-edges as bridge cut-edges. Let 1 be the number of bridge
cut-edges. It is easy to see the following:

• The total number of cut-edges is equal to ✓ � 1.

• The total number of non-bridge cut-edges is ✓ � 21.

• The total number of non-bridge outgoing cut-edges is ✓�21
2 = ✓

2 � 1. Similarly, the total
number of non-bridge returning cut-edges is ✓

2 � 1.

• There are 1 outside walks of length 1. These correspond to bridge cut-edges.

• There are ✓�21
2 = ✓

2 � 1 outside walks of length at least 2. We call these outside walks
as non-bridge outside walks.

As we can see, the total number of outside walks is ✓

2 .
Since both end-vertices of each bridge cut-edge must lie inside +(⌫0), there are at most

<
21 ways of choosing them.

Now since one end-vertex of each non-bridge outgoing cut-edge must lie in+(⌫0) while
the other must like outside +(⌫0), there are at most =< ways to choose each non-bridge
outgoing cut-edge. Since there are ✓

2 � 1 non-bridge outgoing cut-edges, we have at most
(=<) ✓2�1 ways to choose them. Now for each non-bridge outgoing cut-edge, we specify the
length of the corresponding non-bridge outside walk. Since the length of each outside
walk is at most BC, there are at most (BC) ✓2�1 ways for choosing the lengths of all non-bridge
outside walks.

Next, we choose the outside edges. Since we have already specified the non-bridge
outgoing cut-edges, this already specifies one end-vertex of the first outside edge in each
of the ✓

2 � 1 non-bridge outside walks, so we can specify the first outside edge by only
specifying the second end-vertex. Similarly, we can iteratively specify all the outside edges
by successively specifying the second end-vertex for each outside edge. Since there are
BC � 2⌘ � ? � @ � ✓ + 1 outside edges37, there are at most =BC�2⌘�?�@�✓+1 ways for specifying
them.

Now we turn to specifying the non-bridge returning cut-edges. Since we have already
specified the lengths of the ✓

2 �1 non-bridge outside walks, we know when we have reached
the last outside edge, and so the next edge in the walk must be a returning non-bridge
cut-edge. Since the last outside edge of each non-bridge outside walk is already specified,
this determines one end-vertex of the returning cut-edge and we only need to specify the

37Recall that the total number of cut edges is ✓ � 1.

477

other end-vertex that lies inside +(⌫0). Now since there are ✓

2 � 1 non-bridge returning
cut-edges, there are at most < ✓

2�1 ways to specify them.
So far, we have completely specified the multi-graph structure of �. However, the block

self-avoiding walk structure is more than that. We have to specify an Eulerian walk of �
which can be divided into B subwalks that are self-avoiding.

Now before starting to specify the vertices E1, . . . , EBC in the sequence of the
block self-avoiding walk �, we will further specify where exactly will the @

multiplicity-1 edges of �(⌫0) and the ✓ � 1 cut-edges appear in the sequence
(E1E2), (E2, E3), . . . , (EBC�1, EBC), (EBC , E1), i.e., for each edge 4 among these edges, we will
specify an index :4 2 {1, . . . , BC} such that 4 = (E:4 , E:4+1) if :4 < BC, and 4 = (EBC , E1) if
:4 = BC. Since there are BC choices for each index, there are at most (BC)@+✓�1 possibilities to
choose all these indices. LetK be the set of indices that we obtain.

We start by specifying the first and second vertices38, which we denote as E1 and E2,
respectively, and from there we iteratively specify each next vertex in the walk. We have at
most (BC)2 choices for choosing the pair (E1, E2).

Assume that we have already specified the first : vertices E1, . . . , E: of the walk, where
: > 2. The next vertex E:+1 must be adjacent to E: in �. Notice the following:

• If E: 8 +(⌫0), then since we know both E:�1 and E: , we can deduce which non-bridge
outside walk contains the edge (E:�1, E:). Now given that all the non-bridge outside
walks have been specified, there is a unique choice for the vertex E:+1: It is the next
vertex in the outside walk.39

• If : 2 K , then the edge (E: , E:+1) has already been fixed to be one specific edge: It is
either a cut-edge, or an edge of multiplicity 1 in �(⌫0). Therefore, there is a unique
choice for E:+1.

• If E: 2 +(⌫8) for some 8 2 [I] and : 8 K , the next edge must be an edge of multiplicity
at least 2. Therefore, there are at most 3�>2(E:) 6 8 choices for E:+1. We note that
each vertex E is visited in � for <�(E)

2 times, where

<�(E) =
’

42⇢(�),
4 is incident to E

<�(4) .

Furthermore, when a vertex E 2 +(⌫0) is visited for the last time, there is only one
choice for the next vertex.

38We specified the first two vertices instead of only specifying the first vertex in order to know where to go
in case E1 8 +(⌫0). This will be made clear when we discuss how we choose the next vertex E:+1 assuming
that we already specified E1. . . . , E: .

39It is important to realize here that when we specified the non-bridge outside walks, we did not only
specify the structure of the graph that is formed by the cut-edges and the outside edges: We also specified
how the block self-avoiding walk � will pass through these edges and in what order.

478

Therefore, once we have fixed the multigraph, the number 1 of bridge cut-edges, the ✓

2 � 1
non-bridge outside walks, the indices of the cut-edges and the multiplicity-1 edges of
�(⌫0) in the walk, and the first two vertices, the number of remaining choices to completely
specify the block self-avoiding walk � is at most:

I÷
8=1

÷
E2+(⌫0

8
)

<
�
(E)

2 �1
8

=
I÷
8=1

Õ
E2+(⌫0

8
)
<
�
(E)

2 �1
8

6
I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

,

where the last inequality follows from Lemma B.88.
Now since 0 6 1 6 ✓

2 , we conclude that the size of M
B ,C ,{F8 , 8}I8=1

(B) can be upper-
bounded as follows:���M

B ,C ,{F8 , 8}I8=1
(B)

���
6
b ✓2 c’
1=0

=
< · <2? · <2@ · <21 · (=<) ✓2�1 · (BC) ✓2�1 · =BC�2⌘�?�@�✓+1 · < ✓

2�1 · (BC)@+✓�1 · (BC)2

⇥
I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

= ©≠
´
b ✓2 c’
1=0

(BC)�21™Æ
¨
=
BC�2⌘�?�@� ✓2+< · <2?+2@+✓ · (BC)3 ✓2+@+2 ·

I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

6
1

1 � (BC)�2 · =BC�2⌘�?�@� ✓2+< · <2?+2@+✓ · (BC)3 ✓2+@+2 ·
I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

6 2=BC�2⌘�?�@� ✓2+< · <2?+2@+✓ · (BC)3 ✓2+@+2 ·
I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

,

where the last inequality is true when BC > 2.
⇤

B.4.2.2 Counting nice block self-avoiding walks
We split the proof of Lemma 4.82 into two steps.

Lemma B.90. We denote NBSAWB ,C ,< ,I ,C�
as the subset of NBSAWB ,C ,< ,I , in which all nice block

self-avoiding walks contain C� pivoting vertices incident to any multiplicity-2 edge. Then there are at
most =✓+<�I(20B)2C�

�
✓

I

� �
<+I�1

I

� �
C+I�1
I

�
different multi-graphs associated with the block self-avoiding

walks in NBSAWB ,C ,< ,I ,C�

479

Proof. For any � 2 NBSAWB ,C ,< ,I , we denote the forest formed by all the multiplicity-2
edges in � as �� . Then we note the leaves in �� must be pivots in �, and there are C pivots
in �. Thus we have I 6 C. We denote the length of the cycle as ✓ . Since there are < � I
multiplicity-2 edges, we have ✓ = BC � 2(< � I). We pick the vertices in the cycle and choose
the roots of trees in �� . There are at most =✓

�
✓

I

�
such choices.

Next we generate each of the I trees. We first fix the number of vertices and leaves in each
tree. Since there are at most C leaves and < vertices in �� , we have at most

�
<+I�1

I

� �
C+I�1
I

�
choices, which is also bounded by (24B)C .

Then we bound the number of choices for each tree ⌫8 in the �� given the number of
vertices <8 and the number of leaves ?8 . Using lemma Fact B.105, there are at most

�2<8

2C8
�
22C8

shapes for a tree with <8 vertices and ?8 leaves. Multiplying together we have the number
of choices bounded by

I÷
8=1

✓
2<8

2?8

◆
22?8 6 22?

I÷
8=1

✓
2<8

2?8

◆

where ? =
Õ
I

8=1 ?8 is the total number of leaves in the forest. The inequality follows from the
fact that each leaf must be a pivot. Further we observe that <8 6 B(C8 + 2), where C8 > I8 is
the number of pivots contained in the tree ⌫8 . This follows since the tree is at most incident
to C8 + 2 blocks of self-avoiding walks in �. Thus we have

I÷
8=1

✓
2<8

2?8

◆
6

I÷
8=1

✓
2<8

2C8

◆
6

I÷
8=1

✓
4<8

C8

◆2C8
6

I÷
8=1

(10B)2C8

We denote C� =
Õ
I

8=1 C8 as the number of pivots contained in the forest. Then we have
I÷
8=1

✓
2<8

2?8

◆
6 (10B)2C�

Finally there are =<�I ways of choosing vertices in the trees which are not contained by
the multiplicity-1 cycle. Therefore in all, we have at most =✓+<�I(20B)2C�

�
✓

I

� �
<+I�1

I

� �
C+I�1
I

�
choices for the multigraph associated with such block self-avoiding walks. This leads to
the claim. ⇤

The following lemma is then a simple corollary:
Lemma B.91. There are at most =BC�<+I(20B)4C different multi-graphs associated with the block
self-avoiding walks in NBSAWB ,C ,< ,I

Proof. From the above lemma Lemma B.90, we already have bound
=
✓+<�I(20B)2C�

�
✓

I

� �
<+I�1

I

� �
C+I�1
I

�
. Next we note that I 6 C, thus we have

�
✓

I

�
6 (4B)C

and
�
C+I�1
I

�
6 22C . Further we have < 6 BC, thus

�
<+I�1

I

�
6 (24B)C . Therefore for I 6 C� 6 C,

we have

=
✓+<�I(20B)2C�

✓
✓

I

◆ ✓
< + I � 1

I

◆ ✓
C + I � 1

I

◆
6 =✓+<�I(20B)2C� (24B)2C

Finally by summing C� from I to C, we have the claim. ⇤

480

Finally we bound the number of nice block self-avoiding walks. For proving this, we
observe a simple fact which will be useful for counting nice block self-avoiding walks here
and future subsections. We say that the sequence of � enters a tree) at step : if the :-th
vertex is not in) and the : + 1-th vertex is the root of). Similarly we say that the sequence
of � leaves a tree) at step : if the :-th vertex is the root of) and the : + 1-th vertex is not
in).

Fact B.92. For each tree formed by a set of multiplicity-2 edges in the nice block self-avoiding walk
�, once the sequence of � enters the tree through a cut, then all of the edges in the tree must be
visited twice before the sequence of � leaves the tree through any cut edge.

Proof. We note that the cutting edges of any multiplicity-2 tree are either one multiplicity-2
edge or two multiplicity-1 edges. Thus if the sequence of � enters the tree through a cut
and then leaves through a cut, there is no cutting edge to take such that the sequence can
enter the tree again. Therefore all of the edges in this tree must be visited between the
entering cut edge and leaving cut edge. ⇤

Now we conclude the bound on the number of nice block self-avoiding walks.

Lemma B.93. The size of NBSAWB ,C ,< ,I is bounded by

�3C(40B)4C=BC�<+I

, where � 6 BC is the upper bound on the maximum degree > 2 in the nice block self-avoiding walks.

Proof. By lemma Lemma B.91, there are at most =BC�<+I(20B)4C multigraphs associated with
block self-avoiding walks in the set NBSAWB ,C ,✓ ,�. Then fixing the associated multi-graph,
we choose the block self-avoiding walk.

By truncation, the maximum degree-> 2 of vertices is bounded by �. There are at
most C leaves in the forest of multiplicity-2 edges, and other vertices have degree at least 2.
Therefore as in the proof of Lemma B.88, for one of the I trees ⌫, we have

’
E2+(⌫)

deg
⌫
(E)>3

(deg
⌫
(E) � 1) 6 2C + I 6 3C

By the above fact, for each root of the forest, all of the edges in associated tree must be
visited twice in the sequence of� before the next adjacent vertex in the cycle is taken unless
it is root of the tree containing the first vertex in the block self-avoiding walk. Further we
denote A as the root of ⌫, then deg

⌫
(A) is smaller than the number of leaves in ⌫.

For choosing the block self-avoiding walk based on the multigraph, we first decide the
first edge in the walk, which takes at most �BC choices. Next if the first edge is contained
in a multiplicity-2 tree ⌫, then we choose the the cut edge leaving ⌫ and its index in the
sequence of �, which takes 2BC choices. After these two steps, the multiplicities of edges in

481

each index of the sequence of � is fixed. Finally we generate the sequence of � respecting
these previous two steps. Then the number of choices for the block self-avoiding walk
given the associated multigraph is bounded by

�BC · 2BC
÷
⌫

26666664
÷
E2+(⌫)

ded⌫(E)>3

(deg
⌫
(E) � 1)

37777775
6 2C�3C

In all, we have the total number of such block self-avoiding walks bounded by
�3C(40B)4C=✓�I+< ⇤

The lemma Lemma B.94 is a simple corollary

Lemma B.94 (Restatement of Lemma 4.82). Consider the settings of Theorem 4.43. Let A > 0 be
an integer. For = large enough ’

< ,I>0
<�I=A

��NBSAW⇤
B ,C ,< ,I

�� 6 �5C+�
=
BC�A

.

Proof. Since � > B2, we have �3C(40B)4C=✓�I+< 6 (40)4C�5C
=
✓�A No we sum < , I from 0 to C,’

< ,I>0
<�I=A

��NBSAW⇤
B ,C ,< ,I

�� 6 C2(40)4C�5C
=
BC�A 6 �6C

.

⇤

B.4.2.3 Counting refined set of nice block self-avoiding walk
Here we prove Lemma 4.83

Lemma B.95 (Restatement of Lemma 4.83). Consider the settings of Theorem 4.43. Let < , I > 0
be integers such that 0 6 < � I < C

p
B

2 . Then for = large enough
��NF ,@ ,< ,I

�� 6 2FB · (1 + ⇣)
C

10 · =�@ ·
���NBSAW⇤

B ,C ,3
�6�,<0,I0

���
for some <0, I0 such that <0 � I0 = < � I � @. Moreover, it holds that @ > C � 2C/

p
B.

Proof. Let � 2 NF ,@ ,< ,I . Denote by @⇤ the number of pivots in � that are incident to an
edge of multiplicity 2. We have

|⇢>2(�)| = < � I > @ + (@⇤ � @) · B/2

since if a pivot has edges of multiplicity 2 and it is not a leaf, then one of the adjacent
walks must have all its edges of multiplicity 2. By definition of NF ,@ ,< ,I , we must have

482

@
⇤ > C � 2C/B since otherwise F > C/B and the set is empty. Suppose now that @ 6 @⇤ � C/

p
B.

By the above reasoning we have < � I > C

p
B

2 contradicting our assumption. Thus it must
be that @ > @

⇤ � C/
p
B > C � 2C/

p
B.

Now we need to bound the number of different ways in which we can choose F walks
to be in,1(�), @⇤ pivots among C and @ leaves among @⇤ pivots. This can be bounded by
✓

@
⇤

C � @⇤ � F

◆ ✓
F

C � @⇤ � F

◆ ✓
@
⇤

@

◆
6 2C/

p
B ·

✓
@
⇤

C � @⇤ � F

◆2
6 2C/

p
B ·

✓
@
⇤

F

◆2
6 B10C/B 6 (1 + ⇣)C/10

.

(B.4.3)

We are almost ready to carry out the counting argument. [T: To update from here] First
we introduce additional notation. For a nice block self-avoiding walk �1 with edges
D1D2, D2D3, D3, D4 of multiplicity 1. We say that �2 is obtained from �1 folding D2 if �2
obtained from � replacing the edges D2D3, D3D4 with the edges D2D1, D2D4. Notice that if
3
�2(D) = 3

�1(D) + 1, thus if 3�1(D) < � then �2 is a nice block self-avoiding walk. Moreover
if |⇢>2(�1)| = <1 then |⇢>2(�2)| = <1 + 1.

Now notice that each � 2 NF ,@ ,< can be obtained from some �⇤ in NBSAW⇤
B ,C
\M(;)

through a sequence of < foldings. Moreover, we may assume that the first @ folding are
those fixing the leaves of �. Let �⇤⇤ be the nice block self-avoiding walk obtained from �

⇤

by folding the @ leaves of � and let (⇤⇤ be the sequence of folding that results in � from
�
⇤⇤.

Applying (⇤⇤ to �⇤ we obtain a nice block self-avoiding walk �0 in NNBSAW2

B ,C
with

|⇢>2(�0)| = |⇢>2(�)| � @. Moreover Eq. (B.4.3) bounds the number of ways that a walk �0
may arise with this process from non-isomorphic � 2 NF ,@ ,< . The result follows.

⇤

B.4.2.4 Counting nice walks with large degree
Here we prove Lemma 4.70.

Lemma B.96. Consider the settings of Theorem 4.43. Define the set

NBSAW⇤
B ,C ,< ,I ,✓1 ,✓2

:=
�
� 2 NBSAW⇤

B ,C ,< ,I

�� ���
E 2 E(�)

��
3
�(E) = � + 1

 �� = ✓1 ,���
E 2 E(�)

��
3
�(E) = � + 2

 �� = ✓2
Then for = large enough, there exists C > ✓ > ✓1 + 2✓2 such that

���NBSAW⇤
B ,C ,< ,I ,✓1 ,✓2

��� 6 (1 + >(1)) · 2C · =�✓
���NBSAW⇤

B ,C ,3
�6�,< ,I+✓

��� .
Proof. Our plan is to show that for each � 2 NBSAW⇤

B ,C ,< ,I ,✓1 ,✓2
, we can transform it

into at least =✓ different �0 2 NBSAW⇤
B ,C ,3

�6�,< ,I+✓ . Further we show that for any �
0 2

NBSAW⇤
B ,C ,3

�6�,< ,I+✓ , it can be generated by at most 2C different � 2 NBSAW⇤
B ,C ,< ,I ,✓1 ,✓2

.

483

For each vertex E in� with degree larger than�, it must be contained in the multiplicity-
1 cycle of �. For each such vertex D, we denote the last multiplicity-2 edge incident to it in
the sequence as (D , E). Further we denote the second multiplicity-1 edge incident to it in
the sequence as (D , D0). Then our transformation strategy is to replace the last (D , E) edge
in � with (E ,FD) and (D , D0) edge with (FD , D) where FD 2 [=] \+(�). We further require
that for different D, FD are different.

We note that the nice block self-avoiding walk after transformation is also a nice block
self-avoiding walk. Further for each vertex with degree larger than �, its degree is reduced
by 1(but we need to be cautious that some vertices of degree � can have degree � + 1 after
the transformation). Finally after performing transformation for one vertex E, the number
of connected components of multiplicity-2 edges(i.e the value of I) is increased by 1 and
the number of different vertices in the nice block self-avoiding walk is also increased by 1.

We keep iterating on such transformation until every vertex has degree 6 �. Such
process terminates after at most C iterations because for nice block self-avoiding walks I < C.
Suppose we do such transformation ✓ times. Then the number of connected components is
increased by ✓ the number of vertices in the cycle is increased by ✓ . Further the number of
vertices in the path remains unchanged. Since there are (1 ± >(1))=✓ ways of choosing the
new vertices added in the transformations, each � 2 NBSAW⇤

B ,C ,< ,I ,✓1 ,✓2
can be transformed

into (1 ± >(1))=✓ �0 2 NBSAW⇤
B ,C ,< ,I+✓ .

Next we show that for each �
0 2 NBSAW⇤

B ,C ,< ,I+✓ , it can be generated by at most 2C
different � 2 NBSAW⇤

B ,C ,< ,I ,✓1 ,✓2
. Given �0, if for the I + ✓ roots of multiplicity-2 trees which

are contained in the multiplicity-1 cycle, we know whether they are also contained in the
multiplicity-1 cycle of �, then we can identify the unique � from �

0. Since there are at
most 2C choices for determining which of the I + ✓ roots are contained in the multiplicity-1
cycle of �, we can conclude that each �0 2 NBSAW⇤

B ,C ,< ,I+✓ can be generated by at most 2C
different � 2 NBSAW⇤

B ,C ,< ,I ,✓1 ,✓2
Combining the two facts, we have

• each �
0 2 NBSAW⇤

B ,C ,< ,I+✓ can be generated by at most 2C different � 2
NBSAW⇤

B ,C ,< ,I ,✓1 ,✓2

• each � 2 NBSAW⇤
B ,C ,< ,I ,✓1 ,✓2

can be transformed into (1± >(1))=✓ �0 2 NBSAW⇤
B ,C ,< ,I+✓ .

It follows that ���NBSAW⇤
B ,C ,< ,I ,✓1 ,✓2

��� 6 2C=�✓
���NBSAW⇤

B ,C ,< ,I+✓

���
which fulfills the proof. ⇤

B.4.2.5 Counting nice block self-avoiding walks with short cycles
We prove the Lemma 4.71

484

Lemma B.97. Consider the settings of Theorem 4.43. For � = (1000B)2, Let< , I , @ > 1 be integers
such that BC � 2< + 2I + @ = C

10
p
�

, then

��NBSAW⇤
B ,C ,< ,I

�� 6 210C
B
C · =�<+I ·

���NBSAW⇤
B ,C ,0,0

��� .
Proof. We denote ✓ = BC � 2< + 2I as the number of multiplicity-1 edges in the cycle. Then
we have I 6 ✓ 6 C

10
p
�

. We first pick the number of vertices and leaves in each of the I trees.
Since there are < vertices and C leaves to assign, there are at most

�
<

I

� �
C

I

�
choices. Since

I 6 C

10
p
�

, this is bounded by (100�B)C/10
p
� 6 2C . Further we fix the staring point of these

trees in the sequence. This take
�
✓

I

�
6 2C/10

p
� choices.

We denote the number of vertices and leaves in the tree)8 as <8 and C8 , for 8 2 [I]. Then
for each tree, we note that if the order of vertices and degree of each vertex is determined,
then the subsequence of this tree in � is totally determined (For order of vertices, we mean
order of the first appearence of vertices in the sequence). For determining the vertices and
the order, there are at most =<8 choices.

Next we determine the degrees of the vertices, there are at most
�
<8

C8

�
ways to choose

the leaves. We note that the leaves must be pivot vertices, and there are at most <8/B + 2
pivots of self-avoiding walks in tree 8. Therefore we have C8 6 <8/B + 2, and it follows that�2<8/B+2

C8

�
6 22<8/B+2. Let 3)8 (E) be the degree of vertice E in the tree)8 . Then by the degree

constraint, we have ’
E2)8

(3)8 (E) � 2) [3)
8
(E)>2] = C8

Since there are <8 � C8 vertices with degree at least 2 in)8 , the total number of choices for
the degrees of these vertices is upper bounded by✓

<8 � C8 + C8
C8

◆
6 (4B)C8

In all, we have the number of choices for the degrees of vertices upper bounded by
(4B)C822<8/B+2.

Now we multiplying the number of choices for each tree)8 , and we have
I÷
8=1

(4B)C822<8/B+2 6 210C
B
C

Therefore there are at most 210C
B
C
=
<8 choices for the multiplicity-2 tree. Finally we

choose the BC � 2< + I vertices which are only incident to multiplicity-1 edges, which takes
at most =BC�2<+I choices. Multiplying together, we get the claim. ⇤

B.4.2.6 Counting pairs of block self-avoiding walk
We prove lemma Lemma 4.93 here. The proof is very similar to lemma Lemma B.89.

485

Lemma B.98. Let ⌫8 be a connected subgraph of the underlying graph of a block self-avoiding walk
pair � 2 BSAWB ,C ,D ⇥ BSAWB ,C ,E with <8 vertices. Let �(⌫8) be the multigraph on +(⌫8) that is
induced by �(⌫8). Suppose that:

• The cut �(+(⌫8),+(�) \+(⌫8)) consists of ✓8 edges of multiplicity 1.

• All edges in �(⌫8) of multiplicity > 2 are in ⌫8 .

• The number of edges of multiplicity 1 in �(⌫8) is @8 .

• The number of edges of multiplicity 2 in �(⌫8) is ⌘8 .

• The edges of multiplicity larger than 2 satisfy
’

42�(⌫8)
<�(4)>3

<�(4) = ?8 .

Then we have
’

E2+(⌫8)
3
�(E)>3

✓
<�(E)

2 � 1
◆
6 (8⌘8 + 4?8)/B + 11@8 + 8✓8 + 4?8 + 6(⌘8 � <8 + 1) ,

where 3�(E) is the degree of E in the underlying graph ⌧(�), i.e., without counting multiplicities,
and

<�(E) =
’

42⇢(�),
4 is incident to E

<�(4).

Proof. For the case where D = E, each block self-avoiding walk pair in � 2 BSAWB ,C ,D ⇥
BSAWB ,C ,E is a block self-avoiding walk contained in "B ,2C . Further the ⌫8 , @8 , ⌘8 and ?8 are
defined in the same way as the Lemma B.88. Therefore, the bound follows by as a corollary
of Lemma B.88.

It remains to bound for the case D < E, which also follows from the same proof. Let
� = �1 ⌦�2 be the decomposition of � into two block self-avoiding walks �1 2 BSAWB ,C ,D

and �2 2 BSAWB ,C ,E . Let ⌫⇤ be a spanning tree of ⌫8 . We start by deriving an upper bound
on the number of leaves of ⌫⇤. Notice that if a vertex E 2 +(⌫⇤) is a leaf of ⌫⇤, then it must
satisfy at least one of the following three conditions:

(a) E is incident to an edge in the cut �(+(⌫8),+(�) \+(⌫8)).

(b) E is incident to an edge in ⌧(�(⌫8)) \ ⌫⇤.

(c) E is a pivot of �1 or �2, i.e., E is an end-vertex of one of the 2C blocks of self-avoiding
walks forming �.

486

By the same argument in Lemma B.88, there are at most ✓8 leaves satisfying (a),
2@8 + 2⌘8 + 2

3?8 � 2(<8 � 1) satisfying (b), and 2(@8 + 2⌘8 + ?8)/B + 2✓8 leaves satisfying
condition (c). Therefore the number of leaves of ⌫⇤ is at most

✓8 + 2@8 + 2⌘8 +
2
3?8 � 2(<8 � 1)+2(@8 + 2⌘8 + ?8)/B + 2✓8

6 (4⌘8 + 2?8)/B + 3✓8 + 4@8 + ?8 + 2(⌘8 � <8 + 1)

Let 3⌫⇤(E) be the degree of a vertex E 2 ⌫⇤. By degree constraint the number of leaves in
⌫
⇤ is equal to

2 +
’

E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 2).

Therefore, same as (B.4.2), we have’
E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 2) 6 (4⌘8 + 2?8)/B + 3✓8 + 4@8 + ?8 + 2(⌘8 � <8 + 1). (B.4.4)

Now define
<� ,2(E) =

’
42⇢(�),

4 is incident to E ,
<�(4)=2

<�(4) ,

and
<� ,<2(E) =

’
42⇢(�),

4 is incident to E ,
<�(4)<2

<�(4) .

Clearly, <�(E) = <� ,2(E) + <� ,<2(E). Therefore, by the same argument in Lemma B.88

’
E2+(⌫8)
3
�(E)>3

✓
<�(E)

2 � 1
◆
=

’
E2+(⌫8)
3
�(E)>3

✓
<� ,2(E)

2 � 1
◆
+

’
E2+(⌫8)
3
�(E)>3

<� ,<2(E)
2

(0)
6

’
E2+(⌫8)
3
�(E)>3

⇣
3
⌫8 (E) � 1

⌘
+

’
E2+(⌫8)

<� ,<2(E)
2

=
’

E2+(⌫8)
3
�(E)>3

⇣
3
⌫
⇤(E) � 1

⌘
+ 2

�
|⇢(⌫8)| � |⇢(⌫⇤)|

�
+ ✓8

2 + @8 + ?8

6
’

E2+(⌫8)
3
�(E)>3

(3⌫⇤(E) � 1) + 2
⇣
⌘8 +

?8

3 � (<8 � 1)
⌘
+ ✓8

2 + @8 + ?8

487

6
’

E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 1) +
 ’
E2+(⌫8)
3
�(E)>3
3
⌫
⇤ (E)=2

1

!
+ 2(⌘8 � <8 + 1) + ✓8 + @8 + 2?8

(1)
6 2 ·

’
E2+(⌫8)
3
⌫
⇤ (E)>3

(3⌫⇤(E) � 2) + (2@8 + ✓8) + 2(⌘8 � <8 + 1) + ✓8 + @8 + 2?8

(2)
6 (8⌘8 + 4?8)/B + 6✓8 + 8@8 + 2?8 + 4(⌘8 � <8 + 1)

+ 2(⌘8 � <8 + 1) + 2✓8 + 3@8 + 2?8
= (8⌘8 + 4?8)/B + 11@8 + 8✓8 + 4?8 + 6(⌘8 � <8 + 1) ,

where (a) follows from the fact that every edge of multiplicity 2 and incident to E 2 +(⌫8)
must be in ⌫8 , hence <� ,2(E) 6 23⌫8 (E). (b) follows from the fact that if E 2 +(⌫8) satisfies
3
�(E) > 3 and 3⌫8 (E) = 2, then E must be incident to an edge of multiplicity 1, i.e., E must

be incident to an edge in ⇢(�(⌫8)) \ ⇢(⌫8), or an edge in the cut �(+(⌫8),+(�) \ +(⌫8)).
There are @8 edges in ⇢(�(⌫8)) \ ⇢(⌫8), each of which is incident to two vertices in +(⌫8),
and there are ✓8 edges in the cut �(+(⌫8),+(�) \+(⌫8)), each of which is incident to one
vertex in +(⌫8). (c) follows from (B.4.4). ⇤

Now we prove lemma Lemma 4.93.

Lemma B.99. Consider the settings of Theorem 4.44. Let D , E 2 [=]. Let B = {⌫1, . . . , ⌫I} be
collections of disjoint connected graphs each with respectively <1, . . . ,<I > 2 vertices. Let ⌫DE
be a connected graph disjoint from any graph in B and with <I+1 > 2 vertices.Let {F:}I+1

8=1 be a
sequence of tuples of integers as in Definition 4.91. Let 5 ⇤

B ,C
, ,⇤

B ,C
be the functions

5
⇤
B ,C
(< ,<

0
, F ,) =()2⌘/B+10(@+✓+?+1)+2⌘�2(<0�1) · (BC)5✓+5@+8?+4⌘+4�4(<0�1)

,

,⇤
B ,C
(<0, F) ==�?�✓/2�@�2⌘+<0

.

Let < =
Õ

92[I+1]
<9 . Then there are at most

2=2BC�2+ [D=E] [⌫DE<;] ·
÷

16:6I0
5
⇤
B ,C
(< ,<: , F8 , 8) · ,⇤B ,C(<8 , F8 , ⌘8)

block self-avoiding walk pairs in the setM
B ,C ,D ,E{F8 , 8}I+I

0
8=1

(B).

Proof. We will prove by analyzing how we can construct a block self-avoiding walk pair
� 2 M

B ,C ,D ,E{F8 , 8}I+I
0

8=1
(B) as a sequence of edges {E0 = D , E1, E2, . . . , E2BC�1, E2BC = E}.We

denote the respective copies of {⌫1, . . . , ⌫I , ⌫DE} in� as
�
⌫
0
1, . . . , ⌫

0
I
, ⌫
0
I+1

The construction

is divided into two steps

• We first choose each ⌫0
8
and the underlying graph of �(+(⌫0

8
)) for 8 2 [I + 1].

488

• Second we choose the indice of the multiplicity-1 edges in the sequence of �.
Furthermore we decide which of the vertices in the cuts are contained in +(⌫0

8
) for

8 2 [I + 1].

• Finally we construct a sequence of 2BC vertices {E0 = D , E1, E2, . . . , E2BC�1, E} as the
block self-avoiding walk pair �, respecting the underlying graph of � and indices of
cut edges fixed in the first two steps.

We denote the union of the I disjoint graphs ⌫01, ⌫
0
2, . . . , ⌫

0
I
, ⌫
0
I+1 as

⌫
0 =

I+1ÿ
8=1

⌫
0
8
.

We recap the setting of the theorem. The size of multiway cut

�

+(⌫01), . . . ,+(⌫0

I
),+(�) \

 –
92[I]

+(⌫0
I
)
!!

is bounded by ✓ , and all the edges in the

cuts have multiplicity 1. Let �(⌫0) be the multi-graph that is induced by � on +(⌫0). There
are @ multiplicity-1 edges and ⌘ multiplicity-2 edges in �(⌫0). The edges of multiplicity at
least 3 in �(⌫0) satisfy the following equation:’

42�(⌫0)
<�(4)>3

<�(4) = ?.

For convenience of notation, we denote the number of vertices D , E contained in +(⌫0 as
2D ,E

2D ,E = [D2+(⌫0)] + [D<E] [E2+(⌫0)]

For the first construction step, we first choose the vertices of the respective copies of
{⌫1, . . . , ⌫I , ⌫DE} in �. There are at most =<�2DE choices.

Next, we choose the multi-graph �(⌫0) that is induced by � on +(⌫0), i.e., we have to
choose multiplicities for the edges of ⌫0 (which must be at least 2), and we have to choose
@ edges of multiplicity 1 whose both end-vertices must lie in +(⌫0). Note that there are
? multi-edges in �(⌫0) that correspond to edges of multiplicity at least 3, so specifying
these multi-edges is equivalent to specifying the multiplicities of the edges of ⌫0, because
once we specify the edges of ⌫0 of multiplicity at least 3, any remaining edge in ⌫0 must
have multiplicity-2. Since both end-vertices of these multi-edges lie in +(⌫0) and since
|+(⌫0)| = <, there are at most <2? ways to specify the ? multi-edges. For choosing the @
multiplicity-1 edges, there are at most <2@ ways of doing so.

Thus there are at most <2@+2?
=
<�2D ,E choices for the first step.

In the second step of construction, we consider � \�(+(⌫0)), which consists of edges of
multiplicity-1. More precisely, since � is a block self-avoiding walk, the remaining edges
of � can be partitioned into a number of disjoint walks of multiplicity 1. Each time the
walk of multiplicity 1 starts

489

• either by exiting +(⌫0
8
) for any 8 2 [I + 1] through a cut edge

• or from D as the start of �1 and EBC+1 = E as the start of �2

and then ends by

• either entering +(⌫0
9
) through a cut edge for any 9 2 [I + 1]

• or reaching EBC = D as the end of �1 or E2BC as the end of �2.

. We call these walks as outside walks. We call the first edge of each outside walk as an
outgoing edge, and we call the last edge of each outside walk as a returning edge. The
remaining edges of the outside walks are called outside edges. Note that for 8 < 9, then an
outside walk between ⌫0

8
and ⌫0

9
can be of length 1, and in such case the outgoing edge and

returning edge will be the same edge.
We decide the index of cutting edges in the block self-avoiding walk pair sequence �,

and for each vertex incident to an cut edge. Since there are at most ✓ cut edges, the number
of choices for the indices of cut edges in the sequence of � is bounded by

�2BC
✓

�
. Further for

deciding which of the vertices in the cuts are contained in each of ⌫8 for 8 2 [I + 1], there
are at most (I + 1)✓ choices.

Finally there are at most (BC)@ choices for the indices of the @ multiplicity-1 edges
contained in �(+(⌫8)) for 8 2 [I + 1]. Thus the total number of choice for the second step is
upper bounded by

�2BC
✓

�
(I + 1)✓ (BC)@

In the third step of construction, for : 2 [0, 2BC � 1], given E1, E2, . . . , E: , we choose E:+1.
For : = BC, we have E:+1 fixed as E. Since the second step of construction, we can decide
whether E: , E:+1 2 +(⌫0) for each :. Thus for : < BC, we can divide them into 3 conditions:

• If E:+1 2 +(⌫0
8
) and E: 8 +(⌫0

8
), then there are at most < choices for E:+1 given E: .

• If E:+1 2 +(⌫0
8
) and E: 2 +(⌫0

8
), then there are at most 8 + @8 choices for E:+1 given

E: .

• If E:+1 8 +(⌫0), then there are at most = choices for E:+1 given E: .

The total number of possibilities is upper bounded by the product of choices at each step.
Since (E: , E:+1) must be a cut for satisfying the first condition, there are at most ✓ values

of : 2 [0, 2BC � 1] satisfying the first condition. For each such : there are at most BC choices
for E:+1.

For the third condition, E:+1 is not contained in+(⌫0) and : < BC. The number of vertices
not contained in +(⌫0) is upper bounded by the number of edges in the outside walks
which are not returning edges. There are 2BC � 2⌘ � ? � @ edges in the outside walks, and
there are at least ✓/2 returning edges, thus there are at most 2BC � 2⌘ � ? � @ � ✓/2 values of
: such that E:+1 is not contained in +(⌫0). We consider three cases

• When ⌫DE exists, D , E are contained in +(⌫0) then there are at least ✓/2 returning
edges.

490

• When ⌫DE doesn’t exist and D = E, by definition the vertex D 8 +(⌫0) (otherwise ⌫DE
will exist as one of the ⌫1, ⌫2, . . . , ⌫I , leading to contradiction). In this case, there are
at least ✓/2 + 2 returning edges. Also for such case 2D ,E = 0.

• When ⌫DE doesn’t exist and D < E. In this case there are at least ✓/2+2� 2D ,E returning
edges,

Thus when ⌫DE exists, there are at most 2BC � 2⌘ � ? � @ � ✓/2 values of : < BC satisfying
the third condition. When ⌫DE doesn’t exist, there are at most 2BC �2+ 2D ,E �2⌘� ?� @� ✓/2
values of : < BC satisfying the third condition.

For the second condition, we already decide whether (E: , E:+1) is a multiplicity-1 edge
in the second step of construction. If (E: , E:+1) is of multiplicity 1, then E:+1 is already fixed
in the second step of construction. Thus we only need to consider : such that (E: , E:+1) has
multiplicity > 2. By product rule for counting, the number of possibilities is bounded by

I÷
8=1

÷
E2+(⌫0

8
)

<
�
(E)

2 �1
8

=
I÷
8=1

Õ
E2+(⌫0

8
)
<
�
(E)

2 �1
8

6
I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

,

where the last inequality follows from Lemma B.98.
Therefore multiplying together, when ⌫DE is empty, the number of choices for the third

step of construction is bounded by

I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

=
2BC�2⌘�?�@�✓/2�2+2(D ,E)(BC)✓

when ⌫DE exists, the number of choices is bounded by

I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

=
2BC�2⌘�?�@�✓/2(BC)✓

Combining all three construction steps, when ⌫DE exists, the number of choices is
bounded by

I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

=
2BC�2⌘�?�@�✓/2�2(D ,E)(BC)4✓+3@+2?

which is equivalent to

I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

=
2BC�2⌘�?�@�✓/2�2+ [D=E] (BC)4✓+3@+2?

491

When ⌫DE doesn’t exist, the number of choices is bounded by

I÷
8=1
 (8⌘8+4?8)/B+11@8+8✓8+4?8+6(⌘8�<8+1)
8

=
2BC�2⌘�?�@�✓/2�2(BC)4✓+3@+2?

which proves the claim. ⇤

B.4.2.7 Counting nice block self-avoiding walk pairs
Here we prove lemma Lemma 4.99

Lemma B.100. Consider the settings of Theorem 4.44. Let D 2 [=] and Then

|NMULTIGB ,C ,D ,D ,< | 6
<

10

=
<
|NMULTIGB ,C ,D ,D ,0 |

For proving this, our plan is first to show that for every <, the size of the set
NMULTIGB ,C ,D ,D ,< is dominated by two multiplity-1 cycles sharing < edges. Then we
compare the number of such simple block self-avoiding pairs for different <.

Lemma B.101. For every < > 0, we denote CyclePair
D ,D ,<

as the set of nice block self-avoiding
walk pairs which are two simple cycles starting from D and only sharing a length-< path containing
D. Then we have

CyclePair
D ,D ,<

6 |NMULTIGB ,C ,D ,D ,< | 6 2CyclePair
D ,D ,<

Proof. The nice block self-avoiding walks in the set NMULTIGB ,C ,D ,D ,< can be represented
as {E0, E1, . . . , E2BC�1, E0}, where E0, E1, . . . , E2BC�1 2 [=] are vertices and E0 = EBC = D.

First we note that for each� 2 CyclePair
D ,D ,<

, the underlying graph contains 2BC�<�2
vertices excluding vertex D. Therefore the size of CyclePair

D ,D ,<
is at least =2BC�<�2. Further

when < = BC, the size of CyclePair
D ,D ,<

is at least =2BC�<�1.
Now for � 2 NMULTIGB ,C ,D ,D ,< , we denote

? =
’
42�

<4(�) [<4 (�)>2]

✓ =
’
42�

[<4 (�)>2]

As an ordered sequence of edges, the block self-avoiding walk pairs � can be de-
composed into alternating segments of multiplicity-> 2 edges(type I) and multiplicity-1
edges(type II). For convenience, we view the first segment and last segment of � as the
same segment if they are of the same type. Then we denote the number of type I segments
in � as I. and the number of connected components formed by multiplicity-> 2 edges in

492

� as :. Further we denote the number of type I segments containing any of the < shared
edges in � as I0. Finally we denote the indicator variable of the event that E0 and EBC are
both contained in type I segments as [⇢].

We note the relation between : , I and I
0. For each connected component containing

any of the < shared edges in �, it must satisfy one of the following conditions

• it is visited in one segment of �1 and one segment of �2

• it is visited in a segment containing EBC or E0.

Thus we must have I � : > (I0 � 2)/2
We further define NMULTIGB ,C ,D ,D ,< ,: ,I , [⇢] as the subset of NMULTIGB ,C ,D ,D ,< respecting

: , I , [⇢] as defined above.
By the above definitions, the number of multiplicity 1 edges is equal to 2BC � ?, and

there are at most 2BC � ? � I vertices in the interior of type I segments. Further there are
at most ✓ + : different vertices contained in the type II segments. Thus there are at most
2BC � ? + ✓ + : � I different vertices in �.

If [⇢] = 0, then at least one of E0, EBC are contained in type II segments. Thus in this
case there are at most 2BC � ? + ✓ + : � I � 2 different vertices other than D contained
in NMULTIGB ,C ,D ,D ,< ,: ,I , [⇢] . The only case that ? � ✓ � : + I = < is that ? = 2✓ = < and
: = I. In such case � must be two multiplicity-1 cycles overlapping a length < path. The
number of such � 2 NMULTIGB ,C ,D ,D ,< ,: ,I ,0 is bounded by =2BC�2�< . Otherwise we have
2BC � ? + ✓ + : � I � 2 6 2BC � 2 � < � 1

If [⇢] = 1, then both of E0, EBC are contained in type II segments, then there are
at most 2BC � ? + ✓ + : � I � 1 different vertices other than D contained. Now because
2BC � ? + ✓ + : � I � 1 = 2BC � 2 � < � (? � ✓ + : � I � < � 1), there are 3 cases

• ? � ✓ + : � I �< = 0, in this case �(1) and �(2) are two identical cycles. For such case,
we must have < = BC, and it corresponds exactly to the set CyclePair

D ,D ,<

• ? � ✓ + : � I �< = 1, in this case �(1) and �(2) are two multiplicity-1 cycles sharing a
path containing D. Thus such case also corresponds to the set CyclePair

D ,D ,<

• Finally we have ? � ✓ + : � I � < > 1.

For proving |NMULTIGB ,C ,D ,D ,< | 6 2
��CyclePair

D ,D ,<

��, we only need to prove that for
< < BC

��NMULTIGB ,C ,D ,D ,< \ CyclePair
D ,D ,<

�� 6 ��CyclePair
D ,D ,<

��
By the above analysis, for any � 2 NMULTIGB ,C ,D ,D ,< \ CyclePair

D ,D ,<
, there are at most

2BC � < � 2 � (? � ✓ + : � I � <)/2 different vertices other than D in �.
For fixed ? , ✓ , : , I, we count the number of such � 2 NMULTIGB ,C ,D ,D ,< ,: ,I , [⇢] . We

divide the construction of � as a sequence of vertices into 3 steps

493

• In the first step, we put the multiplicity-> 2 edges which are not shared by �(1) and
�

(2) in the sequence.

• In the second step, we put the < shared edges which are shared by �(1) and �(2)

• In the final step, we label the vertices in �

Then we denote

?1 =
’

42�(1)\�(2)

<4(�) [<4 (�)>2]

?2 =
’

42�(1)��(2)

<4(�) [<4 (�)>2]

It’s easy to see ? = ?1 + ?2.
For the first step, there are at most (BC)2?2 choices.
For the second step, we first assign the multiplicities to the shared edges in �. Since

each shared edge has multiplicity 2, 3 or 4, there are at most (2BC)?1�2< choices. For each of
the shared edges with multiplicity 3 or 4, there are at most (2BC)4 choices for fixing all its
locations in the sequence. Therefore there are at most (2BC)4(?1�2<) choices for the locations
of all shared edges with multiplicity at least 3.

Next we decide the locations of multiplicity-2 shared edges in the sequence. We call
the segments of multiplicity-2 shared edges in � as type III segments. Since the shared
edges are contained in at most I0 type I segments, and there are at most ? � 2< shared
edges with multiplicity other than 2, the multiplicity-2 shared edges are split into at most
I
0 + ? � 2< type III segments. For fixing the locations of these segments in the sequence,

we only need to specify the starting indices and ending indices of these segments. Thus
there are only (BC)I0+?�2< choices for the locations of these type III segments.

For each of the multiplicity-2 shared edge, they appear exactly once both in �(1) and
�

(2)(where � = �
(1) ⌦ �(2) is the decomposition of nice block self-avoiding walk �). For

fixing two locations of each multiplicity-2 shared edge with multiplicity-2, we first choose
the set of locations taken by multiplicity-2 shared edges in �, and then match the locations
in �

(1) with locations in �
(2). For choosing the set of locations taken by multiplicity-2

shared edges, there are at most (2BC)?2 ways.
Now for the number of ways of matching locations in �

(1) and �
(2), we make the

following observation: once for the first and last edges in every type III segment, we fix
all their locations in the sequence of �, then the locations of each multiplicity-2 shared
edge are fixed. For proving this observation, we note that for � 2 NMULTIGB ,C ,D ,D , for each
vertex incident to a shared multiplicity-2 edge, it must be incident to 2 multiplicity-1 edges
in the subgraph of �(1) and subgraph of �(2) respectively. For any such vertex E, there are
two possibilities for the two edges 48 , 48+1 incident to it in �(1)

• 48 , 48+1 are two consecutive edges in the sequence

494

• each of 48 , 48+1 is the first or last edge of some type III segment

We denote the correspondance of 48 , 48+1 in �(2) as 40
8
, 4
0
8+1. For the second case, 40

8
, 4
0
8+1 has

been fixed under the setting. For the first case, the correspondance of 48 , 48+1 are either
consecutive in the sequence of �(2), or has been fixed as the first or last edge of some type
III segment. Therefore suppose 40

8
is fixed, then 40

8+1 is also fixed.
Since for fixing the first and last edge in each type III segment of �(1)(�(2)), , there are at

most (BC)4(I0+?�2<) choices. We conclude that there are at most (2BC)?2(BC)4(I0+?�2<)(BC)I0+?�2<

choices for the shared multiplicity-2 edges in the sequence.
Finally we only need to label at most 2BC � < � 2 � (? � ✓ � < + I � :)/2 vertices other

than D. Thus there are at most =2BC�<�2�(?�✓�<+I�:)/2 choices for labelling the vertices.
Putting together for fixed ? , ✓ , : , I , I0, the size of NMULTIGB ,C ,D ,D ,< \ CyclePair

D ,D ,<
is

bounded by

=
2BC�<�2�(?�✓�<+I�:)/2(BC)5(I0+?�2<)(BC)I0+2?2+4(?1�2<)+I0

Arranging the terms, this is upper bounded by

=
2BC�<�2

=
�(?�✓�<+I�:)/2(BC)7I0+9(?�2<)

Now we note that ? � 2< > 2(✓ � <), thus ? � ✓ � < > (? � 2<)/2. Therefore this is upper
bounded by

=
2BC�<�2

=
�(?�2<)/4

=
�(I�:)/2(BC)7I0+9(?�2<)

Since we have proved above that I � : > (I0 � 2)/2, we can sum this geometric series
satisfying constraints that I0 6 2(I � :) + 2, I � : > 0, ? > 2< and ? � ✓ + I � : > 0.’

?>2<

’
I�:>0

I�:+?�2<>0

’
I
062(I�:)+2

=
2BC�<�2

=
�(?�2<)/4

=
�(I�:)/2(BC)7I0+9(?�2<)

6
’
?>2<

’
I�:>0

I�:>2<+1�?

=
2BC�<�2

=
�(?�2<)/4

=
�(I�:)/2(BC)14(I�:)+15+9(?�2<)

6
’
?>2<

=
2BC�<�2

=
�max(1,?�2<)/4(BC)30+9(?�2<)

6=�0.24
=

2BC�<�2

Therefore we obtain that

NMULTIGB ,C ,D ,D ,< \ CyclePair
D ,D ,<

6 >(
��CyclePair

D ,D ,<

��)
The claim thus follows. ⇤

Now the Lemma 4.99 is easy to prove.

495

Proof. By the last lemma, we have

|NMULTIGB ,C ,D ,D ,< | 6 2
��CyclePair

D ,D ,<

��
Thus for < < BC,

|NMULTIGB ,C ,D ,D ,< | 6 4BC=2BC�<�2

For < = BC, we have

|NMULTIGB ,C ,D ,D ,BC | 6 4=BC�1

Further

|NMULTIGB ,C ,D ,D ,0 | > (1 � >(1))=2BC�<�2

Therefore it follows that for < < BC

|NMULTIGB ,C ,D ,D ,< | 6
2BC
=
<
|NMULTIGB ,C ,D ,D ,0 |

and for < = BC

|NMULTIGB ,C ,D ,D ,BC | 6
4

=
BC�1 |NMULTIGB ,C ,D ,D ,0 |

⇤

B.5 Additional tools
We present here some generic tools that are used throughout Chapter 4. We start by stating
the classical Paley-Zygmund inequality:

Lemma B.102 (Paley-Zygmund inequality). If / > 0 is a random variable with finite variance,
then for 0 6 6 1, we have

P(/ > E[/]) > (1 �)2 E[/]2
E[/2]

The next lemma relates different norms in í= .

Lemma B.103. Let E 2 í= be a vector and let @ < ? > 1. Then

kEk
?
6 =1/?�1/@ kEk

@
.

Proof. Let A = @/?. Applying Hölder’s inequality

kEk?
?
6 ©≠

´
’
82[=]

E
@

8

™Æ
¨

1/A

· ©≠
´
’
82[=]

1™Æ
¨

1�1/A

= =
1�?/@©≠

´
’
82[=]

E
@

8

™Æ
¨

?/@

.

Taking the ?-th root the lemma follows. ⇤

496

Lemma B.104 (Courant-Fischer min-max theorem). Let / be an = ⇥ = Hermitian matrix with
eigenvalues ⌫1 6 ⌫2 . . . 6 ⌫: 6 . . . 6 ⌫= , then we have

⌫:+1 = max
*

n
min
G

{'/(G) | G 2 * and G < 0} | dim(*) = = � :
o

where '/(G) = h/,GG
>i

kGk2

The fact below counts the number of non-isomorphic trees with bounded number of
leaves.

Fact B.105. Let 2 6 B 6 C. The number of non-isomorphic trees on BC vertices with at most C leaves,
denoted by)(BC , C) is at most

)(BC , C) 6 2C · (84 · B)2C .

Proof. Each non-isomorphic tree can be encoded with a length-2BC planar code. There is a
one-to-one mapping between leaves in the graph and flips from 1 to 0 in the code. Hence
there are at most 2C flips in the code. The number of length-2BC binary codes with at most
2C flips is bounded by

✓
2BC
2C

◆
· 22C 6 (84 · B)2C .

⇤

497

Appendix C

Deferred proofs and addendum to
Chapter 5

C.1 Push-out effect of basic SDP
In this section, we present Theorem C.1 that captures the push-out effect of the basic SDP
value of uncorrupted stochastic block model. This theorem is based on Theorem 5 and
Theorem 8 of [MS16] and is stated in a way that is easier for us to use in our analysis. It
is intensively used in Section 5.3, where we prove weak recovery guarantees of our SoS
algorithm.

Theorem C.1 (Restatement of Theorem 5 and Theorem 8 of [MS16]). Given a graph ⌧ ⇠
SBM=(3, ⌘), there exists ⇠ = ⇠(⇣) and 3⇣ that only depend on ⇣ = ⌘2

3 � 1 such that, with
probability at least 1 � ⇠4�=/⇠ , we have

SDP(�̃) > (2 + �)=
p
3

and,
SDP(�̃ � ⌘3

=

-
⇤) 6 (2 + ⌧)=

p
3

where ⌧ = ⇠ log 3
3

1/10 and � = �(⇣) for some value �(⇣) that only depends on ⇣.

C.2 Spectral bound of degree-pruned submatrix
In this section, we use the following result to show that we can prune out a small fraction of
the high degree vertices to get a spectrally bounded submatrix of the centered adjancency
matrix.

Theorem C.2 (Restatement of [FO05, CRV15, LM22]). Suppose " is a random symmetric
matrix with zero on the diagonal whose entries above the diagonal are independent with the following

498

distribution

"89 =

(
1 � ?89 w.p. ?89
?89 w.p. 1 � ?89

Let � be a quantity such that ?89 6 �
=

and "1 be the matrix obtained from " by zeroing out all the
rows and columns having more than 20� positive entries. Then with probability 1 � 1

=
2 , we have

k"1kop 6 "
p
�

for some constant ".
From Theorem C.2, we can get the following spectral bound for degree-pruned adjacency

matrix.
Corollary C.3. In the setting of Definition 5.1, with probability at least 1 � >(1), there exists a
subset) ✓ [=] of size at least (1 � �)= such that��

�̃)

��
op 6 ⇠B

p
3

where ⇠B is some constant and � = �(⇣) is a value that only depends on ⇣.
Proof. For simplicity, let us set 0 to be 0 = (1 + ⌘)3 and set C = �=. We apply Theorem C.2
by setting � > 0 to be a large enough constant. The probability that there exists more than
�= vertices with degree at least 20� is at most✓

=

C

◆ ✓
C=

10�C

◆ ⇣
0

=

⌘10�C
6

⇣
4=

C

⌘
C
⇣
4=

10�

⌘10�C ⇣
0

=

⌘10�C
=

⇣
4=

C

⌘
C
⇣
40

10�

⌘10�C

Since � > 0, we have⇣
4=

C

⌘
C
⇣
40

10�

⌘10�C
6

⇣
4=

C

⌘
C
⇣
4

10

⌘10�C
6 4�10�C+C(log(=/C)+1)

Plug in C = �=, we get the failure probability is 4�10��=+�=(log(1/�)+1). As long as �10� +
log(1/�) + 1 < 0 for some � and �, the failure probability is >(1). Take union bound with
failure probability of Theorem C.2, we get that, with probability 1 � >(1), we have����

⇣
�̃ � ⌘3

=

-
⇤
⌘
)

����
op
6 "
p
�

Since � > 0 > 3, we have ����
⇣
�̃ � ⌘3

=

-
⇤
⌘
)

����
op
6 ⇠0

B

p
3

for some constant ⇠0
B
. Notice that

��(⌘3
=
-
⇤))

��
op 6 ⌘3. Apply triangle inequality, we get��

�̃)

��
op 6 ⇠

0
B

p
3 + ⌘3

When ⌘
p
3 = $(1), we get ⌘3 = $(

p
3). Hence, with probability 1 � >(1), we have��
�̃)

��
op 6 ⇠B

p
3

for some constant ⇠B . ⇤

499

C.3 Deferred proofs
We present here deferred proofs of Chapter 5.
Claim C.4 (Restatement of Claim 5.9). Given matrix ", we have SDP(") 6 k"k

⌧A
.

Proof. If we look at the second definition of the basic SDP in Eq. (5.2.2) and the second
definition of Grothendieck norm in Eq. (5.2.4), it is easy to check that the optimizer of
Eq. (5.2.2) is a solution to Eq. (5.2.4) if we take ⇣8 = �8 . Hence, we have

SDP(") 6 k"k
⌧A

⇤

Claim C.5 (Restatement of Claim 5.10). Let " be an = ⇥ = matrix whose diagonal entries
are 0 and (✓ [=] be a subset of indices, we have

SDP("() 6 SDP(")

Proof. Let - be the optimizer of SDP("() and / = -(+ Id[=]\B . We have

SDP("() =h- ,"(i
=h-(,"i

Since " has zero on diagonals, we have h-(,"i = h/,"i. Notice that / ⌫ 0 and /88 = 1
for all 8 2 [=]. Therefore, / is a solution to the basic SDP, which implies that

h/,"i 6 SDP(")

Thus, we have

SDP("() =h-(,"i
=h/,"i
6 SDP(")

⇤

Lemma C.6 (Formal statement of Lemma 5.6). Let �̃ 2 í=⇥= and (⇢ [=] be a set of size
(1 � ⇠)=. Suppose

��
�̃(

��
op 6 ⇠B

p
3 for some constant ⇠B , then for all (0 ✓ (with size at most

(1 � 2⇠)=, there is a deg-4 SoS proof that

SDP(�̃(� �̃(0) 6 3 ⌧⇠B
p
⇠ · = ·

p
3

where ⌧ is the Grothendieck constant.

500

Proof. Consider arbitrary matrix - 2 í=⇥= such that -88 = 1 for 8 2 [=] and - ⌫ 0. To
bound the value of h- , �̃(� �̃(0i, we consider the1! 1 norm of �̃(� �̃(0. Once we have
its1! 1 norm bound, we can apply the Grothendieck inequality and get

h- , �̃(� �̃(0i 6
��
�̃(� �̃(0

��
⌧A
6 ⌧

��
�̃(� �̃(0

��
1!1 (C.3.1)

where ⌧ is the Grothendieck constant. For simplicity, let us write �̃(0 = �̃(� (1�I)(1�I)>
where I is the indicator vector such that I8 = 1 if and only if 8 is in (but not in (0. Consider
G , H 2 {±1}= , we have

hG , (�̃(� �̃(0)Hi =hG , (�̃(� �̃(� (1�I)(1�I)>)Hi
=2hG , (�̃(� I 1>)Hi � hG , (�̃(� II>)Hi
=2hG � I , �̃(Hi � hG � I , �̃((H � I)i
62kG � Ik

��
�̃(H

�� + kG � Ik���̃((H � I)��
where we applied Cauchy Schwarz in the last step. Since

��
�̃(

��
op 6 ⇠B

p
3 by our constraint

and there can be at most ⇠= vertices that is in (but not in (0, we have

hG , (�̃(� �̃(0)Hi 62kG � Ik
��
�̃(H

�� + kG � Ik���̃((H � I)��
62⇠B

p
3kG � Ik

��
H

�� + ⇠Bp3kG � Ik��H � I��
=2⇠B

p
3

p
⇠= + ⇠B

p
3⇠=

63⇠B
p
⇠=
p
3

Therefore,
��
�̃(� �̃(0

��
1!1 is bounded by 3⇠B

p
⇠=
p
3. Plug this into Eq. (C.3.1), we get

h- , �̃(� �̃(0i 6 3 ⌧⇠B
p
⇠=
p
3

for any - 2 í=⇥= such that -88 = 1 for 8 2 [=] and - ⌫ 0. Thus, we have

SDP(�̃(� �̃(0) 6 3 ⌧⇠B
p
⇠ · = ·

p
3

where ⌧ is the Grothendieck constant.
Notice that, every step of the proof can be made to be deg-4 SoS. Hence, the proof is

deg-4 SoS. ⇤

Lemma C.7 (Restatement of Lemma 5.16). The SoS program in Eq. (5.3.1) is feasible with
probability 1 � >(1).

Proof. From Corollary C.3, we know that, with probability 1� >(1), there exists a submatrix
�̃) of size (1 � �)= whose spectral norm is bounded by ⇠B

p
3. By monotonicity of spectral

norm, the spectral norm of all submatrices of size (1 � ⇠ � �)= of �̃) are bounded by
⇠B

p
3. Therefore, if we consider the set (=) \ (⇤, it satisfies the spectral constraint with

probability 1 � >(1).

501

Now, we need to show that, with probability 1� >(1), the matrix �̃(with (=) \ (⇤ has
large enough basic SDP value. Apply Theorem C.1, we get that with probability at least
1 � ⇠4�(1�⇠��)=/⇠ , a stochastic block model of size (1 � ⇠ � �)= has basic SDP value larger
than or equal to (2 + �)(1 � ⇠ � �)=

p
3. Consider all submatrices of size (1 � ⇠ � �)= of �̃

and take union bound, the failure probability is
✓

=

(1 � ⇠ � �)=

◆
⇠4
�(1�⇠��)=/⇠ 6⇠

⇣
4=

(⇠ + �)=
⌘ (⇠+�)=

4
�(1�⇠��)=/⇠

=⇠4(⇠+�)=(log(1/(⇠+�))+1)�(1�⇠��)=/⇠

When ⇠ 6 ⇠⇣ for some value ⇠⇣ that only depends on ⇣ and � ⌧ 1/⇠, the failure probability
is >(1). Therefore, with probability 1 � >(1), for the uncorrputed stochastic block model,
the basic SDP value of all its submatrices of size (1 � ⇠ � �)= is larger than or equal to
(2 + �)(1 � ⇠ � �)=

p
3, which include the submatrix defined by the set (=) \ (⇤.

Hence, with probability 1 � >(1), there exists a subset (=) \ (⇤ of size (1 � ⇠ � �)=
such that �̃(has basic SDP value larger than or equal to (2 + �)(1 � ⇠ � �)=

p
3 and has

spectral norm less than or equal to ⇠B
p
3.

For the value of -, we can simply take the optimizer of the basic SDP for �̃(. This
concludes the feasibility analysis of the program. ⇤

Lemma C.8 (Restatement of Lemma 5.18). For - and F that satisfy the SoS program in
Eq. (5.3.1), we have

A 4
- ,F h- ,-

⇤i >
�0(1 � �)=2

⌘
p
3

� $(p⇠ =
2

⌘
p
3

) � 2�=2

where � is the small constant fraction of high degree nodes we need to prune to get bounded spectral
norm according to Corollary C.3 and �0 = �0(⇣) for some value �0(⇣) that only depends on ⇣.

Proof. We decompose h- ,-
⇤i into h- ,-

⇤i = h-(0 ,-⇤
(
0i + h- � -(0 ,-⇤i. For h-(0 ,-⇤

(
0i, we

can apply Lemma 5.17 and get

A 4
- ,F h-(0 ,-⇤

(
0i >

�0(1 � �)=2

⌘
p
3

� $(p⇠ =
2

⌘
p
3

)

Now, we consider h- � -(0 ,-⇤i. Notice that, since - is positive semidefinite whose
diagonals are 1’s, all its entries are within [�1, 1]. This is because all principle submatrices of a
positive semidefinite matrix are positive semidefinite. If we consider the principle submatrix
formed by -88 , -89 , -98 and -99 , its determinant is non-negative. Hence, -2

8 9
6 -88-9 9 = 1.

Since there can be at most (2⇠+ �)= vertices that are not in (0, h- �-(0 ,-⇤i is a summation
of at most 2(2⇠ + �)=2 entries whose absolute values are less than or equal to 1. Therefore,
we have

|h- � -(0 ,-⇤i | 6 2(2⇠ + �)=2

502

Combine the bounds on h-(0 ,-⇤
(
0i and h- � -(0 ,-⇤i, we have

A 4
- ,F h- ,-

⇤i =h-(0 ,-⇤
(
0i + h- � -(0 ,-⇤i

>
�0(1 � �)=2

⌘
p
3

� $(p⇠ =
2

⌘
p
3

) � 2(2⇠ + �)=2

>
�0(1 � �)=2

⌘
p
3

� $(p⇠ =
2

⌘
p
3

) � 2�=2

which finishes the proof. ⇤

503

Appendix D

Deferred proof and addendum to
Chapter 6

D.1 Deferred proofs
This section contains proofs deferred troughout Chapter 6.

Deferred proofs of Section 6.4
We upper bound the number of 100(log log =) tangle free canonical paths for sparse graphs.

Lemma D.1 (Enumeration of canonical paths, restatement of Lemma 6.20). LetW2@ ,I(E , 4)
be the set of canonical paths with E vertices and 4 distinct edges. We have

��W2@ ,I(E , 4)
�� 6 �

22C
I

�2@C · (2I@)6C@·(4�E+1)
.

Proof. Our proof is closely related to Lemma 17 in [BLM15], thus we only specify where it
differs. Using similar notation, we may represent each walk, 2 W2@ ,I(E , 4) as a sequence
�1,1, . . . ,�1,I , . . . ,�2@ ,I . We explore the sequence in lexicographic order and think of index
(8 , ✓) as a time. We say �8 ,✓ is a first time if the target endpoint of the edge did not appear
in the sequence before. The set of first time edges form a tree with vertex set {1, . . . , E}.
The distinct edges in, not in the tree are thus ⌘ = 4 � E + 1. We use the same encoding of
[BLM15]. In particular we encode long cycling times in the same way. For short cycling
times we use them same encoding, however as we may have up to 2C cycles in each
subsequence �8 ,1, . . . ,�8 ,I , we further need to specify which among the possible paths we
are going to take for each short cycling time, there are 22C possible such paths. Finally, we
may have up to C short cycling times in each walk and up to ⌘ · C long cycling times. The
result follows. ⇤

The next lemma shows that graphs sampled from a distribution inD3,✏ for ✏ > $(log2
=)

have small average degree.

504

Lemma D.2. Let = be an integer, 3 > 0, ✏ > $(3+ log =) and consider a distribution %3,✏ 2 D3,✏.
Then for A ⇠ P3,✏, with probability 0.999

Tr⇡(A) 6 $(=3) .

Proof. The expected average degree of the graph G associated with A is 3. By linearity of
expectation we thus have ÖTr⇡(A) = =3. By Markov’s inequality the result follows. ⇤

Deferred proofs of Section 6.5
We start by proving the rough bound on A00 of Lemma 6.25.

Lemma D.3 (Restatement of Lemma 6.25). Consider the settings of Lemma 6.24. Let A0 as
defined in Eq. (6.5.3) and let A00 = A �A0. Then with probability 1 � >(1)

kA00k1!1 6 =
:�1�⌦(1) · $(? · =:/2) .

Proof. Since each entry in A00 is either zero or at least ⌦(1) in absolute value, we have
kA00k1!1 6 $

⇣
kA00k2

�

⌘
. We may decompose kA00k2F as

kA00k2F =
’

�1 ,�2 ,�1 ,�22[=](:�1)/2

s. t. ((�1 ,�2)=((�1 ,�2)

A00(�1 ,�1),(�2 ,�2) +
’

�1 ,�2 ,�1 ,�22[=](:�1)/2

s. t. :�1>|((�1 ,�2)\((�1 ,�2)|>1

A00(�1 ,�1),(�2 ,�2) (D.1.1)

We have less than =:�1(: � 1)! elements in the first sum and less than =2:�3(: � 1)! elements
in the second one. To bound the first sum, notice that for any C > 1 and and �, � 2 [=](:�1)/2

ê
✓⇣

A00(�,�),(�,�)
⌘2

= C2
◆
= ê

©≠≠
´
©≠
´
’
✓2[=]

)
2
(�,�,✓)

™Æ
¨

2

= C2
™ÆÆ
¨
=

= ê©≠
´

������
’
✓2[=]

)
2
(�,�,✓)

������ = C
™Æ
¨

6
✓
=

C

◆
(1 � ?)=�C ?C

6
✓
=

C

◆
?
C

6
⇣
4 · = · ?

C

⌘
C

.

We split the contribution of entries based on their magnitude and bound their number
using Markov’s inequality. For any C > 1, denote by EC the event that’

�1 ,�2 ,�1 ,�22[=](:�1)/2

s. t. ((�1 ,�2)=((�1 ,�2)

⇣
A00(�1 ,�2),(�1 ,�2)

⌘2
~A00(�1 ,�2),(�1 ,�2) = C� 6 100 · =:�1 · (: � 1)! · ?1/10 · 2�C ,

505

where the Iverson brackets denote the indicator function. Let ĒC be its complement event.
Notice that if EC is verified for all C > 1, then

’
�1 ,�2 ,�1 ,�22[=](:�1)/2

s. t. ((�1 ,�2)=((�1 ,�2)

⇣
A00(�1 ,�1),(�2 ,�2)

⌘2
6 103 · =:�1 · (: � 1)! · ?1/10

6 =(:�1)/2�⌦(1)(: � 1)! · $(? · =:/2) ,

where in the last step we used the assumption that ? > =�:/2. We verify that with high
probability this intersection event happens. By Markov’s inequality

ê
�
ĒC

�
6

�
24 · = · ?

�
C · 100
?

1/10 .

Thus

ê

 ÿ
C>1
ĒC

!
6 $(= · ?9/10) 6 =�⌦(1) .

We focus next onto the second sum in Eq. (D.1.1). Let �1, �2, �1, �2 2 [=](:�1)/2 chosen
accordingly, then

Ö
⇣

A00(�1 ,�1),(,�2 ,�2)

⌘2
�
=

’
✓ ,✓
02[=]

ÖT�1�2✓T�1�2✓T�1�2✓ 0T�1�2✓ 0

=
’
✓2[=]

ÖT2
�1�2✓

T2
�1�2✓

6 =?2
.

where in the second step we used independence of the entries of T. As before, by Markov’s
inequality the result follows. ⇤

Next we show that the trace of⇡(A), for A0 as in defined in Eq. (6.5.3) and the associated
⇡ as defined in Section 6.3, concentrates around its expectation.

Lemma D.4. Consider the settings of Lemma 6.26. Let A0 as defined in Eq. (6.5.3) and let ⇡ be the
associated matrix as defined in Section 6.3. Then with probability at least 1 � 104

Tr⇡(A0) 6 $
⇣
?

2 · =2:�1
⌘
.

Proof. By linearity

ÖTr⇡(A0) = TrÖ⇡(A0) =
’

(�1 ,�1)2[=]:�1

’
(�2 ,�2)2[=]:�1

Ö
���A0(�1 ,�1)(�2 ,�2)

��� .

As Ö
���A0(�1 ,�1)(�2 ,�2)

��� = $(?2
=), by Markov’s inequality the result folllows. ⇤

506

We restate and prove Lemma 6.31.

Lemma D.5 (Restatement of Lemma 6.31). Consider the settings of Theorem 6.27. Let , 2
BNBW2@ ,I . Then for any term in AN(,)

Ö
2@÷
8=1

266664

������
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)

������

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!377775
6 ⇠2@ · Ö

2@÷
8=1

266664
©≠
´
’
✓
8

1

T(�81�
8

2✓
8

1)
T(�81�

8

2✓
8

1)
™Æ
¨

2
I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!377775
,

for some constant ⇠ > 0.

Proof. We may rewrite the left hand side

Ö
2@÷
8=1

������
’
✓
8

12[=]
T(�81�

8

2✓
8

1)
T(�81�

8

2✓
8

1)

������
| {z }

=:L81

·

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!

| {z }
=:L8

B

and the right hand side

Ö
2@÷
8=1

©≠
´
’
✓
8

12[=]
T(�81�

8

2✓
8

1)
T(�81�

8

2✓
8

1)
™Æ
¨

2

| {z }
=:R8

1

·

I�1÷
B=2

T(�8
B
�8
B+1✓

8

B
)T(�8

B
�8
B+1✓

8

B
)

!

| {z }
=:L8

B

.

Opening up the sums in L1
2, . . . , L

2@
I�1 we get sums of terms of the form

on the LHS: L1
1 · · ·L

2@
1 · T(��0✓) · · ·| {z }

=:S

on the RHS: R1
1 · · ·R

2@
1 · T(��0✓) · · ·| {z }

=S

.

By linearity of expectation we may consider each such element independently. By inde-
pendence of the entries of T if there is a term in S of odd degree that does not appear in
L1

1 · · ·L
2@
1 we have

ÖL1
1 · · ·L

2@
1 · S 6 0 6 ÖR1

1 · · ·R
2@
1 · S .

507

It remains to consider the case in which each term in S has even degree. But then for any
possible realization) of T, as all entries are non-zero entries are bounded away from 0, we
have

Ö
h
L1

1 · · ·L
2@
1 · S

��� T =)
i
6 ⇠2@ Ö

h
R1

1 · · ·R
2@
1 · S

��� T =)
i
,

for some constant ⇠ > 0. This concludes the proof. ⇤

D.2 Additional tools
Fact D.6. Let) 2 (í=)⌦: be a tensor. Let)̃ 2 (í=)⌦: be its symmetrization, that is for any
multi-index � 2 [=]:

)̃� =
1
:!

’
�02⇧(�)

)�0 ,

where ⇧(�) is the set of permutations of �. Then for any G 2 í=

h) , G⌦:i = h)̃ , G⌦:i .

Proof. Fix a mapping � : [:]! [:], then we have

h) , G⌦:i =
’

�2[=]:
)�G

� =
’

�2[=]:
)�(�)G

�
.

Repeating the reasoning for all :! possible permutations the result follows. ⇤

Next we provide some matrix concentration inequalities.

Theorem D.7 (Matrix Bernstein, [Tro12]). Consider a finite sequence {M✓ } of independent,
random, matrices with dimensions =1 ⇥ =2. Assume that each random matrix satisfies

ÖM✓ = 0 and kM✓ k 6 ' almost surely.

Define

�2 := max

(�����
’
✓

ÖM✓MT
✓

����� ,
�����
’
✓

ÖMT
✓
M✓

�����
)
.

Then, for all C > 0,

ê

"�����
’
✓

M✓

����� > C
#
6 (=1 + =2) · exp

✓
�C2/2

�2 + 'C/3

◆
.

508

Appendix E

Deferred proofs and addendum to
Chapter 7

E.1 Deferred proofs for stochastic block models
We prove Lemma 7.33 restated below.

Lemma E.1 (Restatement of Lemma 7.33). Consider the settings of Lemma 7.32. With probability
1 � exp(�⌦(=)) over G ⇠ SBM=(✏, 3, G),

����-̂(.(G)) � 1
=

GG
>
����

2

�

6
800
✏
p
3

.

Proof. RecallK = {- 2 í=⇥= : - ⌫ 0,-88 = 1/= 88}. Let -⇤ := 1
=
GG
>. Since -̂ = -̂(.(G)) is

a minimizer of min-2K k.(G) � -k2
�

and -⇤ 2 K , we have
���-̂ � .(G)

���2

�

6 k-⇤ � .(G)k2
�
()

���-̂ � -⇤���2

�

6 2
D
-̂ � -⇤,.(G) � -⇤

E
.

The infinity-to-one norm of a matrix " 2 í<⇥= is defined as

k"k1!1 := max{hD ,"Ei : D 2 {±1}< , E 2 {±1}=}.

By [GV16, Fact 3.2], every / 2 K satisfies

|h/,.(G) � -⇤i | 6 ⌧

=

· k.(G) � -⇤k1!1,

where ⌧ 6 1.783 is Grothendieck’s constant. Similar to the proof of [GV16, Lemma 4.1],
using Bernstein’s inequality and union bound, we can show (cf. Fact E.2)

k.(G) � -⇤k1!1 6
100=
✏
p
3

509

with probability 1 � exp(�⌦(=)). Putting things together, we have
����-̂(.(G)) � 1

=

GG
>
����

2

�

6
400 · ⌧
✏
p
3

,

with probability 1 � exp(�⌦(=)). ⇤

Fact E.2. Let ✏ > 0, 3 2 é, G
⇤ 2 {±1}= , and G ⇠ SBM(✏, 3, G⇤). Let .(G) = 1

✏3

�
�(G) � 3

=
�

�
,

where �((⌧)) is the adjacency matrix of (⌧) with entries 3/= on the diagonal. Then

max
G2{±1}=

��
G
> �
.(G) � 1

=
G
⇤(G⇤)>

�
G

�� 6 100=
✏
p
3

with probability at least 1 � 4�10= .

Proof. The result will follow using Bernstein’s Inequality and a union bound. Define
K B .(G) � 1

=
G
⇤(G⇤)>. Fix G 2 {±1}= and for 1 6 8 < 9 6 =, let `8 , 9 B K8 , 9 G8G9 . Then

G
>
KG = 2

Õ
168< 96= `8 , 9 . Note that

Ö`8 , 9 = 0 ,��`8 , 9 �� 6 1
✏=

·
⇣
=

3

� 1
⌘
+ 1

✏3=
6

1
✏3

,

Ö`
2
8 , 9

= Var
⇥
_ (G)8 , 9

⇤
6 Ö_ (G)2

8 , 9
6 (1 + ✏) 3

=

· 1
✏2
=

2

⇣
=

3

� 1
⌘2
� 1

✏2
=

2

�
+ 1

✏2
=

2

6 (1 + ✏) 1
3✏2

=

+ 1
✏2
=

2 6
3

✏2
3=

.

By Bernstein’s Inequality (cf. [Wai19, Proposition 2.14]) it follows that

ê©≠
´
’
8< 9

`8 , 9 >
50=
✏
p
3

™Æ
¨
6 ê©≠

´
’
8< 9

`8 , 9 >
=

2

2 · 100=
✏
p
3

™Æ
¨
6 2 exp©≠

´
�

104

✏2
3

3
✏2
3=

+ 100
3✏2

3
3/2
=

™Æ
¨

= 2 exp

� 104

=

3 + 100p
3

!
6 exp(�50=) .

Hence, by a union bound over all G 2 {±1}= it follows that

max
G2{±1}=

��
G
> �
.(G) � 1

=
G
⇤(G⇤)>

�
G

�� 6 100=
✏
p
3

with probability at least 1 � 4�10= . ⇤

510

E.2 Deferred proofs for clustering mixtures of
Gaussians

In this section, we will prove Lemma 7.65 restated below.

Lemma (Restatement of Lemma 7.65). Consider the settings of Theorem 7.53. Suppose Y is a
good set as per Definition 7.56. Let ,(Y) 2 W(Y) be the matrix computed by Algorithm 7.55.
Suppose the algorithm does not reject. Then

��)(,(Y)) �W⇤
��

1 6
=

2

:

· 3
:

98 .

We will need the following fact about our clustering program. Similar facts where used,
e.g., in [HL18, FKP+19]. One difference for us is that we don’t have a constraint on the lower
bound on the cluster size indicated by our SoS variables. However, since we maximize a
variant of the ✓1 norm of the second moment matrix of the pseudo-distribution this will
make up for this.

Fact E.3. Consider the same setting as in Lemma 7.65. Let 0 < ⇣ 6 1
1.5·1010 · 1

:
201 and denote by

C1, . . . ,C: ✓ [=] the indices belonging to each true cluster. Then,(Y) satisfies the following three
properties:

1. For all 8 , 9 2 [=] it holds that 0 6 W8 , 9 6 1,

2. for all 8 2 [=] it holds that
Õ
=

9=1 W8 , 9 6 =

:
and for at least (1 � 1

1000:100)= indices 8 2 [=] it
holds that

Õ
=

9=1 W8 , 9 > (1 � 1
(10)6:200) · =: ,

3. for all A 2 [:] it holds that
Õ
82CA , 98CA

W8 , 9 6 ⇣ · =2

:
.

We will prove Fact E.3 at the end of this section. With this in hand, we can proof
Lemma 7.65.

Proof of Lemma 7.65. For brevity, we write W = ,(Y). Since)(W⇤) = W⇤ and) is 10-
Lipschitz we can also bound��)(W) �W⇤

��
1 6 10 · kW �W⇤k1 .

Let ⇣ 6 1
1.5·1010 · 1

:
201 and again let C1, . . . ,C: ✓ [=] denote the indices belonging to each

true cluster. Note that by assumption that Y is a good sample it holds for each A 2 [:] that
=

:
� =0.6 6 |CA | 6 =

:
+ =0.6.

Let A , A0 2 [:]. We can write

kW �W⇤k1 =
:’
A=1

’
8 , 92CA

��W8 , 9 � 1
�� + :’

A=1

’
82CA , 98CA

��W8 , 9 � 0
�� (E.2.1)

511

Note that we can bound the second sum by : · ⇣ =2

:
using Item 3. Further, in what follows

consider only indices 8 such that
Õ
=

9=1 W8 , 9 > (1 � 1
(10)6:200) · =: . By Item 2 we can bound the

contribution of the other indices by

1
1000:100= ·

⇣
=

:

+ =0.6
⌘
6

2
1000:100 · =

2

:

.

Focusing only on such indices, for the first sum in Eq. (E.2.1), fix A 2 [:]. We will aim
to show that most entries of W are large if and only if the corresponding entry of W⇤ is 1.
By Item 3 and Markov’s Inequality, it follows that for at least a (1 � 1

1000:100)-fraction of the
indices 8 2 CA it holds that’

98CA

W8 , 9 6 1000:100 · ⇣ =
2

:·|CA | 6 1000:100⇣ · =

1�:·=�0.4 6 2000:101⇣ · =
:
,

where we used that |CA | > =

:
� =0.6. Call such indices good. Notice that for good indices it

follows using Item 2 that
’
92CA

W8 , 9 > =

:
· (1 � 1

(10)6:200 � 2000:101⇣) .

Denote by ⌧ the number of 9 2 CA such that W8 , 9 > 1 � 1
1000:100 . Using the previous display

and that W8 , 9 6 1 we obtain

=

:
·
✓
1 � 1

(10)6:200 � 2000:101⇣

◆
6

’
92CA

W8 , 9 6 ⌧ · 1 + (|CA | � ⌧) · (1 � 1
1000:100)

6 ⌧ · 1
1000:100 + =

:
· (1 + 1

:=
0.4) · (1 � 1

1000:100)
6 ⌧ · 1

1000:100 + =

:
· (1 + 1

:=
0.4) ,

where we also used |CA | 6 =

:
+ =0.6. Rearranging now yields

⌧ >
=

:

·
✓
1 � 1

1000:100 �
103

:
99

=
0.4 � 2 · 106

:
101⇣

◆
>
=

:

·
✓
1 � 2

1000:100 � 2 · 106
:

101⇣

◆
.

We can now bound’
8 , 92CA

��W8 , 9 � 1
�� = ’

8 , 92CA ,8 is good

��W8 , 9 � 1
�� + ’

8 , 92CA ,8 is not good

��W8 , 9 � 1
��

6 |CA | ·
⇣
(|CA | � ⌧) · 1 + |CA | · 1

1000:100

⌘
+ 1

1000:100 · |CA |2

6 |CA |2(1 + 1
500:100) � ⌧ · |CA |

6 =
2

:
2 (1 + :

=
0.4)2(1 + 1

500:100) � =
2

:
2 (1 � 2

1000:100 � 2 · 106
:

101⇣)(1 � :

=
0.4)

6 =
2

:
2 · (30 · 106

:
101⇣ + 11

500:100) 6 =
2

:
· (30 · 106

:
100⇣ + 11

500:101)

512

6 =
2

:
· 3

125:101 .

Putting everything together, it follows that
��)(W) �W⇤

��2
F 6

��)(W) �W⇤
��

1 6 10 · =2

:

✓
⇣: + 2

1000:100 + 3
125:100

◆
6 =

2

:
· 4
:

100 6 =
2

:
· 3
:

98 .

⇤

It remains to verify Fact E.3.

Proof of Fact E.3. Let P = P= ,: ,C(Y) be the system of Eq. (P= ,: ,C(.)). Recall that W8 , 9 =
Ö̃

Õ
;2[:] I8 ,; I 9 ,; . Since

P 4

8>><
>>:

0 6
’
;2[:]

I8 ,; I 9 ,; 6
’
;2[:]

I8 ,; 6 1
9>>=
>>;
,

it follows that 0 6 W8 , 9 6 1. Further, for each 8 2 [=] it holds that

P 4

8>><
>>:

’
92[=],;2[:]

I9 ,; I8 ,; 6 =

:

’
;2[:]

I8 ,; 6 =

:

9>>=
>>;

implying that
Õ
92[=] W8 , 9 6 =

:
. Further, by Lemma 7.64

kWk1 >
=

2

:

·
✓
1 � =�0.4 � 1

(10)10
:

300

◆
>
=

2

:

·
✓
1 � 1

(10)9:300

◆
.

Denote by W8 the 8-th row of W and by ! the number of rows which have ✓1 norm at least
(1 � 1

(10)6:200) · =: . Since for all 8 it holds that kW8 k1 6 =

:
it follows that

=
2

:

·
✓
1 � 1

(10)9:300

◆
6

’
82[=]
kW8 k1 6 ! · =

:

+ (= � !) ·
⇣
1 � 1

(10)6:200

⌘
· =
:

= ! · 1
(10)6:200 ·

=

:

+ =
2

:

·
⇣
1 � 1

(10)6:200

⌘

Rearranging then yields ! > (1 � 1
1000:100) · = which proofs Item 2.

It remains to verify Item 3. Fix A , ; 2 [:] and define I;(CA) = :

=

Õ
82CA

I8 ,; . Let C > 0 be an
integer. We aim to show that for all unit vectors E it holds that

P 10C

(
I;(CA) ·

1
�2C

’
A
0<A

I;(CA
0)h⇠A � ⇠A0 , Ei2C 6

⇣
:

)
, (E.2.2)

where � is the minimal separation between the true means. Before proving this, let us
examine how we can use this fact to prove Item 3. Note, that for all A < A0 it holds that

’
B ,D2[:]

⌧
⇠A � ⇠A0 , ⇠B�⇠D

k⇠B�⇠Dk

�2C
> �2C

.

513

Hence, if the above SoS proof indeed exists, we obtain

’
82CA , 98CA

W8 , 9 =
:’
;=1
Ö̃

’
82CA , 98CA

I8 ,; I 9 ,; =
=

2

:
2 Ö̃I;(CA) ·

’
A
0<A

I;(CA
0)

6
=

2

�2C
:

2

’
B ,D2[:]

Ö̃I;(CA) ·
’
A
0<A

I;(CA)
⌧
⇠A � ⇠A0 , ⇠B�⇠D

k⇠B�⇠Dk

�2C

6
⇣
:

:
2 · =

2

:
2 = ⇣ · =

2

:

.

In the remainder of this proof we will prove Eq. (E.2.2). We will use the following SoS
version of the triangle Inequality (cf. Fact E.14)

2C
G ,H

(G + H)2C 6 22C�1(G2C + H2C) .

Recall that ⇠0
;
= :

=

Õ
=

8=1 I8 ,; H8 and denote by ⇠�(8) the true mean corresponding to the 8-th
sample. Let E be an arbitrary unit vector, it follows that

P 10C {I;(CA) ·
1
�2C

’
A
0<A

I;(CA
0)h⇠A � ⇠A0 , Ei2C

6 I;(CA) ·
22C�1

�2C

’
A
0<A

I;(CA
0)
�
h⇠A � ⇠0

;
, Ei2C + h⇠A0 � ⇠0

;
, Ei2C

�

6
22C�1

�2C

:’
A=1

I;(CA)h⇠A � ⇠0
;
, Ei2C = 22C�1

�2C · :
=

=’
8=1

I8 ,; h⇠�(8) � ⇠0; , Ei
2C} ,

where we used that P 1
Õ
:

A=1 I;(CA) 6 1. Using the SoS triangle inequality again and that
P 2 I8 ,; 6 1 we obtain

P 10C {I;(CA) ·
1
�2C

’
A
0<A

I;(CA
0)h⇠A � ⇠A0 , Ei2C

6
24C�1

�2C ·

: · 1
=

=’
8=1
hy8 � ⇠�(8), Ei2C +

:

=

=’
8=1

I8 ,; hy8 � ⇠0
;
, Ei2C

!
} .

We start by bounding the first sum. Recall that by assumption the uniform distribution
over each true cluster is 2C-explicitly 2-bounded. It follows that

2C { 1
=

=’
8=1
hy8 � ⇠�(8), Ei2C =

1
:

:’
A=1

:

=

’
82CA

hy8 � ⇠A , Ei2C 6
1
:

:’
A=1

:

=

· |CA | · (2C)C · kEk2C2 (E.2.3)

6
✓
1 + :

=
0.4

◆
· (2C)C 6 2(2C)C} , (E.2.4)

514

where we used that |CA | 6 =

:
+ =0.6. To bound the second sum, we will use the moment

bound constraints. In particular, we know that

P 10C

(
:

=

=’
8=1

I8 ,; hy8 � ⇠0
;
, Ei2C 6 (2C)C

)
. (E.2.5)

Combining Eq. (E.2.4) and Eq. (E.2.5) now yields

P 10C

(
I;(CA) ·

1
�2C

’
A
0<A

I;(CA
0)h⇠A � ⇠A0 , Ei2C 6 :

22C+1(2C)C
�2C 6 :

✓
8C
�2

◆
C

)
.

Note that by assumption � > $(
p
C:

1/C). Overloading notation, we can choose the C
parameter in the SoS proof to be 202 times the C parameter in the lower bound in the
separation to obtain1 ’

82CA , 98CA

W8 , 9 6 ⇣ · =
2

:

.

⇤

E.2.1 Privatizing input using the Gaussian Mechanism
In this section, we will proof the following helpful lemma used in the privacy analysis
of our clustering algorithm (Algorithm 7.55). In summary, it says that when restricted to
some set our input has small ✓2 sensitivity, we can first add Gaussian noise proportional to
this sensitivity and afterwards treat this part of the input as "privatized". In particular, for
the remainder of the privacy analysis we can treat this part as the same on adjacent inputs.
Note that we phrase the lemma in terms of matrix inputs since this is what we use in our
application. Of course, it also holds for more general inputs.

Lemma E.4. Let + ,+
0 2 í=⇥3 ,< 2 [=] and � > 0 be such that there exists a set (of size at least

= � < satisfying
88 2 (.

��
+8 �+08

��2
2 6 �

2
,

where +8 ,+0
8

denote the rows of + ,+
0, respectively. Let A2 : í=⇥3 ! O be an algorithm that

is (⌘2, ⇣2)-differentially private in the standard sense, i.e,., for all sets S ✓ O and datasets
- ,-

0 2 : í=⇥3 differing only in a single row it holds that

ê(A2(-) 2 () 6 4⌘2ê(A2(-0) 2 () + ⇣2 .

Further, let A1 : í=⇥3 ! í=⇥3 be the Gaussian Mechanism with parameters �, ⌘1, ⇣1. I.e., on

input " it samples W ⇠ #
⇣
0, 2�2 · log(2/⇣1)

⌘2
1

⌘
=⇥3

and outputs " + W.

1Note that this influences the exponent in the running time and sample complexity only by a constant
factor and hence doesn’t violate the assumptions of Theorem 7.53.

515

Then for

⌘0 B ⌘1 + <⌘2 ,

⇣0 B 4
⌘1
<4

(<�1)⌘2⇣2 + ⇣1 .

A2 � A1 is (⌘0, ⇣0)-differentially private with respect to + and +0, i.e., for all sets S ✓ O it holds
that

ê((A2 � A1)(+) 2 () 6 4⌘0ê((A2 � A1)(+0) 2 () + ⇣0 .

Proof. Without loss of generality, assume that (= {1, . . . ,<}. Denote by +1,+2 the first <
and last = � < rows of + respectively. Analogously for +01 ,+

0
2. We will later partitin the

noise W of the Gaussian mechanism in the same way. Further, for a subset � of í=⇥= and
. 2 í<⇥= define

)�,. =
⇢
- 2 í(=�<)⇥=

����
✓
-

.

◆
2 �

�
✓ í(=�<)⇥=

.

Note that
✓
-

.

◆
2 � if and only if - 2)�,. .

Let S ✓ O. It now follows that

êA2 ,W[(A2 � A1)(+) 2 (] = Ö
A2 ,W

⇥
1
�
+ + W 2 A�1

2 (()
 ⇤

= Ö
A2 ,W2

Ö
W1

1

⇢✓
+1 + W1
+2 + W2

◆
2 A�1

2 (()
�� ���� W2

�

= Ö
A2 ,W2

Ö
W1

h
1
n
+1 + W1 2)A�1

2 ((),+2+W2

oi ���� W2

�

6 4⌘1 · Ö
A2 ,W2

Ö
W1

h
1
n
+
0
1 + W1 2)A�1

2 ((),+2+W2

oi ���� W2

�
+ ⇣1

= 4
⌘1 · Ö
A2 ,W

1

⇢✓
+
0
1 + W1
+2 + W2

◆
2 A�1

2 (()
��

+ ⇣1 ,

where the inequality follows by the guarantees of the Gaussian Mechanism. Further, we
can bound

Ö
A2 ,W

1

⇢✓
+
0
1 + W1
+2 + W2

◆
2 A�1

2 (()
��

= Ö
W

Ö
A2

1

⇢
A2

✓
+
0
1 + W1
+2 + W2

◆
2 (

� ���� W
� �

6 4<⌘2 · Ö
W

Ö
A2

1

⇢
A2

✓
+
0
1 + W1
+
0
2 + W2

◆
2 (

� ���� W
� �

+ <4(<�1)⌘2⇣2

= 4
<⌘2 · Ö

A2 ,W

1

⇢✓
+
0
1 + W1
+
0
2 + W2

◆
2 A�1

2 (()
��

+ <4(<�1)⌘2⇣2 ,

where the inequality follows by the privacy guarantees of A2 combined with standard
group privacy arguments.

516

Putting the above two displays together and plugging in the definition of ⌘0, ⇣0 we
finally obtain

êA2 ,W[(A2 � A1)(+) 2 (] 6 4⌘0êA2 ,W[(A2 � A1)(+0) 2 (] + ⇣0 .

⇤

E.3 Additional tools

Concentration of measure
We introduce here several useful and standard concentration inequalities.

Fact E.5 (Concentration of spectral norm of Gaussian matrices). Let W ⇠ N(0, 1)<⇥= . Then
for any C, we have

ê
⇣p
< �
p
= � C 6 �min(W) 6 �max(W) 6

p
< +
p
= + C

⌘
> 1 � 2 exp

✓
� C

2

2

◆
,

where �min(·) and �max(·) denote the minimum and the maximum singular values of a matrix,
respectively.

Let W0 be an =-by-= symmetric matrix with independent entries sampled from #(0, �2). Then
kW0k 6 3�

p
= with probability at least 1 � exp(�⌦(=)).

Fact E.6 (Maximum degree of Erdős-Rényi graphs). Let ⌧ be an Erdős-Rényi graph on =

vertices with edge probability ?. Then with probability at least 1 � = exp(�=?/3), any vertex in ⌧
has degree at most 2=?.

Fact E.7 (Gaussian concentration bounds). Let X ⇠ N(0, �2). Then for any C > 0,

max{ê(X > C),ê(X 6 �C)} 6 exp
✓
� C

2

2�2

◆
.

Fact E.8 (Chernoff bound). Let X1, . . . ,Xn be independent random variables taking values in
{0, 1}. Let X :=

Õ
=

8=1 Xi and let ⇠ := ÖX. Then for any ⇣ > 0,

ê
�
X 6 (1 � ⇣)⇠

�
6 exp

✓
�
⇣2⇠

2

◆
,

ê
�
X > (1 + ⇣)⇠

�
6 exp

✓
�

⇣2⇠

2 + ⇣

◆
.

Lemma E.9 (Restatement of Lemma 8.9). Let � be a 3-by-= Gaussian matrix, with each entry
independently chosen from #(0, 1/3). Then, for every vector D 2 í= and every � 2 (0, 1)

ê(k�Dk = (1 ± �)kDk) > 1 � 4�⌦(�2
3)
.

517

Linear algebra
Lemma E.10 (Weyl’s inequality). Let � and ⌫ be symmetric matrices. Let ' = � � ⌫. Let
�1 > · · · > �= be the eigenvalues of �. Let �1 > · · · > �= be the eigenvalues of ⌫. Then for each
8 2 [=], ���8 � �8

�� 6 k'k.
Lemma E.11 (Davis-Kahan’s theorem). Let � and ⌫ be symmetric matrices. Let ' = � � ⌫.
Let �1 > · · · > �= be the eigenvalues of � with corresponding eigenvectors E1, . . . , E= . Let
�1 > · · · > �= be the eigenvalues of ⌫ with corresponding eigenvectors D1, . . . , D= . Let 8 be the
angle between ±E8 and ±D8 . Then for each 8 2 [=],

sin(28) 6
2k'k

min9<8
���8 � � 9

�� .

Convex optimization
Proposition E.12. Let 5 : í< ! í be a convex function. Let K ✓ í< be a convex set. Then
H
⇤ 2 K is a minimizer of 5 overK if and only if there exists a subgradient , 2 % 5 (H⇤) such that⌦

H � H⇤, ,
↵
> 0 8H 2 K .

Proof. Define indicator function

�K (H) =
(

0, H 2 K ,

1, H 8 K .

Then for H 2 K , one has

%�K (H) =
�
, 2 í< :

⌦
, , H � H0

↵
> 0 8H0 2 K

.

Note H⇤ is a minimizer of 5 over K , if and only if H⇤ is a minimizer of 5 + �K over í< , if
and only if 0< 2 %(5 + �K)(H⇤) = % 5 (H⇤) + %�K (H⇤), if and only if there exists , 2 % 5 (H⇤) such
that h, , H � H⇤i > 0 for any H 2 K . ⇤

Proposition E.13 (Pythagorean theorem from strong convexity). Let 5 : í< ! í be a
convex function. LetK ✓ í< be a convex set. Suppose 5 is �-strongly convex overK . Let G⇤ 2 K
be a minimizer of 5 overK . Then for any G 2 K , one has

kG � G⇤k2 6 2
�
(5 (G) � 5 (G⇤)).

Proof. By strong convexity, for any subgradient , 2 % 5 (G⇤) one has

5 (G) > 5 (G⇤) +
⌦
G � G⇤, ,

↵
+ �

2 kG � G
⇤k2.

By Proposition E.12, hG � G⇤, ,i > 0 for some , 2 % 5 (G⇤). Then the result follows. ⇤

518

Minor Lemmas
Fact E.14 (Lemma A.2 in [KSS18]). For all integers C > 0 it holds that

2C
G ,H

(G + H)2C 6 22C�1(G2C + H2C) .

Fact E.15. Let ⌘, ⇣ > 0. Let M : Y ! O be a randomized algorithm that, for every pair of
adjacent inputs, with probability at least 1 � ✏ > 1/2 over the internal randomness ofY 2 satisfies
(⌘, ⇣)-privacy. ThenM is (⌘ + 2✏, ⇣ + ✏)-private.

Proof. Let - ,-
0 be adjacent input and let ⌫ be the event under whichM is (⌘, ⇣)-private.

By assumption, we know that ê(⌫) > 1 � ✏. Let (2 O, it follows that

ê(M(-) 2 () = ê(⌫) · ê(M(-) 2 (| ⌫) + ê(⌫2) · ê(M(-) 2 (| ⌫2)
6 ê(M(-) 2 (| ⌫) + ✏

6 4⌘ê(M(-) 2 (| ⌫) + ⇣ + ✏

6
4
⌘

ê(⌫) · ê(M(-) 2 () + ⇣ + ✏

6 4
⌘+log

⇣ 1
1�✏

⌘
· ê(M(-) 2 () + (⇣ + ✏)

6 4⌘+2✏ · ê(M(-) 2 () + (⇣ + ✏) ,

where we used that log(1 � ✏) > �2✏ for ✏ 2 [0, 1/2]. ⇤

2In particular, this randomness is independent of the input

519

	Introduction
	Themes
	The price of robustness
	Certification algorithms
	Sharp phase transitions in the presence of adversarial corruptions
	Constraint satisfaction problems with adversarial signs
	From robustness to privacy
	Fast and robust algorithms

	Main contributions and road-map of the thesis

	Preliminaries
	General definitions and notation
	Sum-of-squares
	Pseudo-distributions
	Sum-of-squares proofs
	Sum-of-squares toolkit

	I The price of robustness
	Sparse PCA with adversarial perturbations
	Techniques
	Robustness from sparse eigenvalue certificates
	Concrete lower bounds for robust algorithms

	Robustness of the basic SDP and certified upper bounds
	Basic certificates for sparse quadratic forms
	The basic SDP algorithm

	Robustness of SoS and stronger certified upper bounds
	SoS certificates for sparse eigenvalues via certifiable subgaussianity
	SoS certificates for sparse eigenvalues via limited brute force
	SoS algorithms

	Unconditional lower bound in the presence of adversarial perturbations
	Low-degree likelihood ratio
	Almost Gaussian vector in random subspace

	Stochastic block models with edge corruptions
	Techniques
	Preliminaries
	Robust recovery meta-algorithm
	Lower bound for the optimum
	Correlation of nearly-optimal solutions

	Robust recovery for stochastic block model
	Applying the meta-algorithm to the stochastic block model
	Boosting the probability of success

	Trace bounds for stochastic block models
	Preliminary discussion
	Lower bound for non-centered Schatten norm
	Upper bound on the centered Schatten norm
	Concentration of block self-avoiding walks

	Stochastic block models with node corruptions
	Techniques
	Preliminaries
	 Reaching the KS threshold for diverging degree
	Reaching KS threshold for constant degree
	Degree-pruning based algorithm

	Lower bound on the corrupted fraction
	Robust synchronization

	Random CSPs with adversarial signs
	Techniques
	Preliminaries
	CSPs, k-XOR and strong refutations

	A generalized Ihara-Bass formula
	Norm bounds via the Ihara-Bass formula

	Warm-up: spectrum of binary matrices with dependencies
	Powers of non-backtracking matrices
	Expectation of block non-backtracking walks
	Bound on the spectrum of non-backtracking matrices

	Strong refutations for random k-XOR
	Bounding the norm of A'

	Strong refutations for random CSPs
	Algorithm for k-XOR with adversarial signs
	Rounding with low local correlation
	Driving down global correlation
	From local correlation to global correlation

	Algorithm for CSPs with adversarial signs patterns

	II Privacy from robustness
	Private algorithms for stochastic block models and mixture models
	Techniques
	Preliminaries
	Differential privacy
	Explictly bounded distributions

	Stability of strongly-convex optimization
	Private recovery for stochastic block models
	Private weak recovery for stochastic block models
	Private exact recovery for stochastic block models
	Inefficient recovery using the exponential mechanism
	Lower bound on the parameters for private recovery

	Private algorithms for learning mixtures of spherical Gaussians
	Privacy analysis
	Utility analysis

	III Speeding up robust algorithms
	Fast and robust algorithm for graph partitioning problems
	Techniques
	Preliminaries
	The matrix multiplicative weights method for SDPs

	A fast algorithm for semi-random balanced cut
	The algorithm

	The heavy vertices removal oracle
	The fast heavy vertices removal procedure
	The oracle

	The semi-random hierarchical stochastic model
	Related notions
	The algorithm for the semi-random hierarchical stochastic model

	Practical algorithms robust against adversarial distributions
	The algorithm
	Recovery of the random vector u
	Recovery of the sparse direction v

	Experimental results
	Experimental Setup

	Bibliography
	IV Appendices
	Deferred proofs and addendum to Chapter 3
	Thresholding algorithms are fragile
	SVD with thresholding is fragile
	Diagonal thresholding is fragile
	Covariance thresholding is fragile

	Existence of the adversarial distribution of Model 3.41
	Additional tools

	Deferred proofs and addendum to Chapter 4
	Bounds for the non-centered matrix
	Useful notation
	An upper bound for every multigraph
	Bounds for nice multigraphs
	Bounds for products of block self-avoiding-walks

	Bounds for the centered matrix
	An upper bound for every block self-avoiding-walk

	Proofs of technical lemmas for the trace bounds
	Proofs of technical lemmas for the non-centered matrix
	Proofs of technical lemmas for the centered matrix

	Tools for block self-avoiding walks
	Splitting the expectation of block self-avoiding walks
	Counting block self-avoiding walks

	Additional tools

	Deferred proofs and addendum to Chapter 5
	Push-out effect of basic SDP
	Spectral bound of degree-pruned submatrix
	Deferred proofs

	Deferred proof and addendum to Chapter 6
	Deferred proofs
	Additional tools

	Deferred proofs and addendum to Chapter 7
	Deferred proofs for stochastic block models
	Deferred proofs for clustering mixtures of Gaussians
	Privatizing input using the Gaussian Mechanism

	Additional tools

